首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro-genotoxic, and metabolic activation by cytochrome P-450 enzymes is needed for its genotoxic activity. In metabolically competent cells, it induces DNA strand breaks and exerts clastogenic and aneugenic activity. In addition, CYN increased the expression of p53 regulated genes involved in cell cycle arrest, DNA damage repair, and apoptosis. It also has cell transforming potential, and limited preliminary rodent studies indicate that CYN could have tumor-initiating activity. In 2010, the International Agency for Research on Cancer (IARC) classified MCLR as possible human carcinogen (Group 2B). Although there is not enough available information for the classification of other cyanobacterial toxins, the existing data from in vitro and in vivo studies indicate that NOD and especially CYN may be even more hazardous than MCLR to human and animal health. In addition in the environment, cyanobacterial toxins occur in complex mixtures as well as together with other anthropogenic contaminants, and numerous studies showed that the toxic/genotoxic potential of the extracts from cyanobacterial scums is higher than that of purified toxins. This means that the mixtures of toxins to which humans are exposed may pose higher health risks than estimated from the toxicological data of a single toxin. Future research efforts should focus on the elucidation of the carcinogenic potential of NOD, CYN, and the mixture of cyanobacterial extracts, as well as on the identification of possible novel toxins.  相似文献   

2.
水华蓝藻对鱼类的营养毒理学效应   总被引:2,自引:0,他引:2  
董桂芳  解绶启  朱晓鸣  韩冬  杨云霞 《生态学报》2012,32(19):6233-6241
水体富营养化导致蓝藻水华的发生已成为全球关注的水环境问题,很多鱼类处于水生态系统食物链的最高级,蓝藻水华的主要次级代谢产物-微囊藻毒素可通过鱼类的摄食活动或生物富集作用在鱼体组织中累积,并通过食物链危及人类健康。近年来,微囊藻毒素对鱼类的毒性效应引起众多科学家的关注。在天然水体中不少鱼类可以主动摄食蓝藻,所以,水华蓝藻对鱼类来说既具有营养物作用、也具有潜在的毒性作用。鉴于目前机械收获的水华蓝藻生物量资源化利用问题以及水产饲料业亟需大力开发鱼粉替代蛋白源的需要,从营养学和毒理学这两个角度来研究水华蓝藻对鱼类的营养作用和毒性效应具有较高的理论和现实意义。主要概述了蓝藻粉、蓝藻细胞对鱼类的营养学和毒理学效应,以期拓展水华蓝藻对鱼类毒性效应的研究视野,同时也为水华蓝藻的资源化利用提供新的思路。  相似文献   

3.
The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro-genotoxic, and metabolic activation by cytochrome P-450 enzymes is needed for its genotoxic activity. In metabolically competent cells, it induces DNA strand breaks and exerts clastogenic and aneugenic activity. In addition, CYN increased the expression of p53 regulated genes involved in cell cycle arrest, DNA damage repair, and apoptosis. It also has cell transforming potential, and limited preliminary rodent studies indicate that CYN could have tumor-initiating activity. In 2010, the International Agency for Research on Cancer (IARC) classified MCLR as possible human carcinogen (Group 2B). Although there is not enough available information for the classification of other cyanobacterial toxins, the existing data from in vitro and in vivo studies indicate that NOD and especially CYN may be even more hazardous than MCLR to human and animal health. In addition in the environment, cyanobacterial toxins occur in complex mixtures as well as together with other anthropogenic contaminants, and numerous studies showed that the toxic/genotoxic potential of the extracts from cyanobacterial scums is higher than that of purified toxins. This means that the mixtures of toxins to which humans are exposed may pose higher health risks than estimated from the toxicological data of a single toxin. Future research efforts should focus on the elucidation of the carcinogenic potential of NOD, CYN, and the mixture of cyanobacterial extracts, as well as on the identification of possible novel toxins.  相似文献   

4.
有毒蓝藻产生的蓝藻毒素对淡水生态系统构成了严重的全球性环境威胁,其中微囊藻毒素(MCs)是所有蓝藻毒素中分布最广、危害最大的一类肝毒素。MCs已对水生态系统的结构、功能和稳定性造成了不良影响,并对人类健康构成威胁。本文综述了当前MCs在水体、沉积物和水生动物体内的分布,以及MCs的生物毒性机制,在此基础上,总结了MCs对水生动物、水生植物及陆生植物的生态毒理效应,及其引发的人类健康风险,并关注了MCs的生物防治方法。最后,针对当前MCs相关研究领域中存在的不足提出展望,旨在为淡水水体中MCs的风险评估与治理管控提供参考。  相似文献   

5.
靳红梅  常志州 《生态学报》2013,33(11):3298-3310
微囊藻毒素(Microcystins,MCs)是全世界范围内普遍存在、且随着水体污染的加剧而在自然环境中大量积聚的蓝藻毒素之一,对多种生物有着严重的毒性作用.MCs在生物体内富集并通过食物链传递,对人类健康造成威胁.近些年,MCs对陆生植物的毒害作用及累积研究尤为引人关注,取得了一批重要的研究成果.MC-LR(L为亮氨酸)和MC-RR(R为精氨酸)是淡水水体中普遍存在且危害较大的两种MCs异构体.针对这两种毒素,重点介绍其对陆生植物的污染途径、毒性作用及其在作物体内的累积量,对今后的研究进行了展望.  相似文献   

6.
李瑶  左平  周进 《微生物学通报》2021,48(4):1206-1214
【背景】微藻囊毒素(Microcystins,MCs)是蓝藻暴发后产生的主要有害物质之一,在河口、湖泊和近海水体中均存在。【目的】研究水体营养物质浓度对新鞘氨醇杆菌(Novo sphingobium sp.ERN07)降解能力的影响,以求达到快速降解MCs的目的。【方法】通过正交实验、基因转录分析等方法鉴定菌株降解特性,了解生物降解和功能基因的表达关系,认识其降解机理。【结果】菌株去除MCs的能力受水体中碳、氮和磷源浓度的影响,由碳、氮源组成的双营养物质对生物降解抑制作用比单源弱;与标准MSM培养基相比,添加碳源、氮源和减少磷源会抑制生物降解MCs,表现为降解基因表达下调。不同营养条件下,mlr在转录水平上的基因表达不同,从而产生不同的降解效果。【结论】Novo sphingobium sp. ERN07具有较高的MCs降解能力,在水华发生之前能有效去除水环境中碳源和氮源,可以应用于治理受MCs污染的水体。  相似文献   

7.
Toxic cyanobacterial harmful algal blooms (CyanoHABs) have posed serious water use and public health threats because of the toxins they produce, such as the microcystins (MCs). The direct physical effects of turbulence on MCs, however, have not yet been addressed and is still poorly elucidated. In this study, a 6-day mesocosm experiment was carried out to evaluate the effects of wind wave turbulence on the competition of toxic Microcystis and MCs production in highly eutrophicated and turbulent Lake Taihu, China. Under turbulent conditions, MCs concentrations (both total and extracellular) significantly increased and reached a maximum level 3.4 times higher than in calm water. Specifically, short term (∼3 days) turbulence favored the growth of toxic Microcystis species, allowing for the accumulation of biomass which also triggered the increase in MCs toxicity. Moreover, intense turbulence raises the shear stress and could cause cell mechanical damage or cellular lysis resulting in cell breakage and leakage of intracellular materials including the toxins. The results indicate that short term (∼3 days) turbulence is beneficial for MCs production and release, which increase the potential exposure of aquatic organisms and humans. This study suggests that the importance of water turbulence in the competition of toxic Microcystis and MCs production, and provides new perspectives for control of toxin in CyanoHABs-infested lakes.  相似文献   

8.
Gravity-driven membrane (GDM) filtration is a promising tool for low-cost decentralized drinking water production. The biofilms in GDM systems are able of removing harmful chemical components, particularly toxic cyanobacterial metabolites such as microcystins (MCs). This is relevant for the application of GDM filtration because anthropogenic nutrient input and climate change have led to an increase of toxic cyanobacterial blooms. However, removal of MCs in newly developing GDM biofilms is only established after a prolonged period of time. Since cyanobacterial blooms are transient phenomena, it is important to understand MC removal in mature biofilms with or without prior toxin exposure. In this study, the microbial community composition of GDM biofilms was investigated in systems fed with water from a lake with periodic blooms of MC-producing cyanobacteria. Two out of three experimental treatments were supplemented with dead biomass of a MC-containing cyanobacterial strain, or of a non-toxic mutant, respectively. Analysis of bacterial rRNA genes revealed that both biomass-amended treatments were significantly more similar to each other than to a non-supplemented control. Therefore, it was hypothesized that biofilms could potentially be ‘primed’ for rapid MC removal by prior addition of non-toxic biomass. A subsequent experiment showed that MC removal developed significantly faster in mature biofilms that were pre-fed with biomass from the mutant strain than in unamended controls, indicating that MC degradation was a facultative trait of bacterial populations in GDM biofilms. The significant enrichment of bacteria related to both aerobic and anaerobic MC degraders suggested that this process might have occurred in parallel in different microniches.  相似文献   

9.
Mangroves are subject to the effects of tides and fluctuations in environmental conditions, which may reach extreme conditions. These ecosystems are severely threatened by human activities despite their ecological importance. Although mangroves are characterized by a highly specialized but low plant diversity in comparison to most other tropical ecosystems, they support a diverse microbial community. Adapted microorganisms in soil, water, and on plant surfaces perform fundamental roles in nutrient cycling, especially nitrogen and phosphorus. Cyanobacteria contribute to carbon and nitrogen fixation and their cells act as phosphorus storages in ecosystems with extreme or oligotrophic environmental conditions such as those found in mangroves. As the high plant productivity in mangroves is only possible due to interactions with microorganisms, cyanobacteria may contribute to these ecosystems by providing fixed nitrogen, carbon, and herbivory-defense molecules, xenobiotic biosorption and bioremediation, and secreting plant growth-promoting substances. In addition to water, cyanobacterial colonies have been detected on sediments, rocks, decaying wood, underground and aerial roots, trunks, and leaves. Some mangrove cyanobacteria were also found in association to algae or seagrasses. Few studies on mangrove cyanobacteria are available, but together they have reported a substantial number of species in these ecosystems. However, the cyanobacterial diversity in this biome has been traditionally underestimated. Though mangrove communities generally host cyanobacterial taxa commonly found in marine environments, unique microhabitats found in mangroves potentially harbor several undescribed cyanobacterial taxa. The relevance of cyanobacteria for mangrove conservation is highlighted in their use for the recovery of degraded mangroves as biostimulants or in bioremediation.  相似文献   

10.
Microcystis spp., which occur as colonies of different sizes under natural conditions, have expanded in temperate and tropical freshwater ecosystems and caused seriously environmental and ecological problems. In the current study, a Bayesian network (BN) framework was developed to access the probability of microcystins (MCs) risk in large shallow eutrophic lakes in China, namely, Taihu Lake, Chaohu Lake, and Dianchi Lake. By means of a knowledge-supported way, physicochemical factors, Microcystis morphospecies, and MCs were integrated into different network structures. The sensitive analysis illustrated that Microcystis aeruginosa biomass was overall the best predictor of MCs risk, and its high biomass relied on the combined condition that water temperature exceeded 24 °C and total phosphorus was above 0.2 mg/L. Simulated scenarios suggested that the probability of hazardous MCs (≥1.0 μg/L) was higher under interactive effect of temperature increase and nutrients (nitrogen and phosphorus) imbalance than that of warming alone. Likewise, data-driven model development using a naïve Bayes classifier and equal frequency discretization resulted in a substantial technical performance (CCI = 0.83, K = 0.60), but the performance significantly decreased when model excluded species-specific biomasses from input variables (CCI = 0.76, K = 0.40). The BN framework provided a useful screening tool to evaluate cyanotoxin in three studied lakes in China, and it can also be used in other lakes suffering from cyanobacterial blooms dominated by Microcystis.  相似文献   

11.
微囊藻毒素对鱼类的毒性效应   总被引:5,自引:0,他引:5  
隗黎丽 《生态学报》2010,30(12):3304-3310
湖泊富营养化导致的蓝藻水华已成为国内外普遍关注的环境问题,它所带来的主要危害之一是产生的藻毒素对鱼类的影响。在已发现的藻毒素中,微囊藻毒素(microcystins,MCs)的分布广、毒性大、危害严重,而备受关注。阐述了MCs对鱼类的影响。微囊藻毒素能干扰胚胎的发育,降低孵化率,增加畸形率,影响存活率,胚胎孵化受微囊藻毒素影响还具有剂量依赖效应;野外室内实验均表明鱼类暴露于微囊藻毒素后不仅可在肝脏中富集还可在肌肉、肠道等组织器官中快速积累;对鱼类进行组织病理检测发现MCs可导致肝脏、肾脏、心脏、脑、鳃等组织受损;MCs在鱼体中的解毒过程可能开始于由谷胱甘肽S-转移酶催化的还原型谷胱甘肽的结合反应;MCs还可影响鱼类的生长、行为和血清生化指标,此外,还具有一定的免疫毒性。MCs的转运机制和分子作用机制以及在食物链中传递过程中对人类造成的潜在影响可能成为今后研究重点。  相似文献   

12.
Microcystin-LR (MC-LR) and microcystin-RR (MC-RR) produced by harmful cyanobacterial blooms (HCBs) pose substantial threats to the ecosystem and public health due to their potential hepatotoxicity. Degradation of microcystins (MCs) by indigenous bacteria represents a promising method for removing MCs from fresh water without harming the aquatic environment, but only a few microcystin (MC)-degrading bacteria have been isolated and had their mechanisms reported. This study aimed to isolate indigenous bacteria from Lake Taihu, and investigate the capability and mechanism of MC degradation by these bacteria. During a Microcystis bloom, an indigenous MC-degrading bacterium designated MC-LTH2 was successfully isolated from Lake Taihu, and identified as Stenotrophomonas acidaminiphila based on phylogenetic analysis. In the presence of MC-LR together with MC-RR, the strain MC-LTH2 was capable of totally degrading both simultaneously in 8 days, at rates of 3.0 mg/(L⋅d) and 5.6 mg/(L⋅d), respectively. The degradation rates of MCs were dependent on temperature, pH, and initial MC concentration. Adda (3-amino-9-methoxy-2, 6, 8-trimethyl-10-phenyldeca-4, 6-dienoic acid) was detected as an intermediate degradation product of MCs using high performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-TOF-MS). To the best of our knowledge, this is the first report of Stenotrophomonas acidaminiphila capable of degrading two MC analogues and other compounds containing Adda residue completely under various conditions, although the mlrA gene in the strain was not detected. These results indicate the Stenotrophomonas acidaminiphila strain MC-LTH2 possesses a significant potential to be used in bioremediation of water bodies contaminated by MC-LR and MC-RR, and is potentially involved in the degradation of MCs during the disappearance of the HCBs in Lake Taihu.  相似文献   

13.
Cyanobacterial blooms have increased in freshwater ecosystems worldwide in the last century, mostly resulting from eutrophication and climate change. These blooms represent serious threats to environmental and human health because of the production of harmful metabolites, called cyanotoxins. Like many countries, Egypt has been plagued with cyanobacterial blooms in most water sources, including the Nile River, irrigation canals, lakes and fishponds. However, the data about cyanotoxins produced in these blooms are limited. Only two types of cyanotoxins, microcystins and cylindrospermopsin, have been identified and characterised, mainly from Microcystis and Cylindrospermopsis blooms. The data revealed the presence of microcystins in raw and treated drinking waters at concentrations (0.05–3.8 µg l?1), exceeding the WHO limit (1 µg l?1) in some drinking water treatment plants. In addition, Nile tilapia Oreochromis niloticus caught from ponds containing heavy cyanobacterial blooms have accumulated considerable amounts of cyanotoxins in their edible tissues. The data presented here could be the catalyst for the establishment of a monitoring and management programme for harmful cyanobacteria and their cyanotoxins in Egyptian fresh waters. This review also elucidates the important research gaps and possible avenues for future research on cyanobacterial blooms and cyanotoxins in Egypt.  相似文献   

14.
近年来,随着全球气候变暖和水体富营养化程度加深,蓝藻水华频繁暴发。微囊藻毒素是有害蓝藻产生及释放的危害最大的一类蓝藻毒素,对生态环境和公众健康造成了严重的威胁。因此,寻求有效的微囊藻毒素降解方法已成为全球科学领域的研究热点。针对微囊藻毒素生物治理技术展开综述,阐述了微囊藻毒素的产生、理化性质及生物毒性,总结了微生物、水生植物、浮游动物等自然生物降解微囊藻毒素的能力。在此基础上概述了生物滤池、人工湿地、生态浮床、膜生物膜反应器等生物治理技术对微囊藻毒素的去除效果,分析了现有微囊藻毒素生物处理方法的优势和局限性,并对今后的研究方向提出展望,为解决水环境中微囊藻毒素的污染问题提供思路。  相似文献   

15.
Toxic cyanobacterial blooms are globally increasing with negative effects on aquatic ecosystems, water use and human health. Blooms' main driving forces are eutrophication, dam construction, urban waste, replacement of natural vegetation with croplands and climate change and variability. The relative effects of each driver have not still been properly addressed, particularly in large river basins. Here, we performed a historical analysis of cyanobacterial abundance in a large and important ecosystem of South America (Uruguay river, ca 1900 km long, 365,000 km2 basin). We evaluated the interannual relationships between cyanobacterial abundance and land use change, river flow, urban sewage, temperature and precipitation from 1963 to the present. Our results indicated an exponential increase in cyanobacterial abundance during the last two decades, congruent with an increase in phosphorus concentration. A sharp shift in the cyanobacterial abundance rate of increase after the year 2000 was identified, resulting in abundance levels above public health alert since 2010. Path analyses showed a strong positive correlation between cyanobacteria and cropland area at the entire catchment level, while precipitation, temperature and water flow effects were negligible. Present results help to identify high nutrient input agricultural practices and nutrient enrichment as the main factors driving toxic bloom formation. These practices are already exerting severe effects on both aquatic ecosystems and human health and projections suggest these trends will be intensified in the future. To avoid further water degradation and health risk for future generations, a large-scale (transboundary) change in agricultural management towards agroecological practices will be required.  相似文献   

16.
The recognition that ultraviolet radiation has harmful effects on the skin has led to the commercial development of inorganic and synthetic organic UV filters that can reduce the negative effects of exposure to sunlight. In addition, moisturizing chemicals are extensively used in personal care products to improve the ability of skin to retain water. Whilst current UV filter and moisturizing chemicals have clear beneficial qualities, they may also have adverse effects such as contact sensitivity, oestrogenicity and even tumorigenic effects on human skin. Furthermore, the accumulation of these chemicals in the aquatic environment could be potentially harmful. Consequently, there is interest in exploiting safer alternatives derived from biological sources, especially from photosynthetic organisms such as cyanobacteria which have developed mechanisms for coping with high UV irradiation and desiccation. In order to overcome the detrimental effects of UV radiation, these microorganisms produce UV screening compounds such as mycosporine-like amino acids and scytonemin, which are good candidates as alternatives to current synthetic UV filters. In addition, extracellular substances produced by some extremophilic species living in hyper-arid habitats have a high water retention capacity and could be used in cosmetic products as moisturizers. In this review, we present an overview of the literature describing the potential of cyanobacterial metabolites as an alternative source for sunscreens and moisturizers.  相似文献   

17.
Microcystins (MCs) produced by some freshwater cyanobacterial species possess potent liver toxicity as evidenced by acute neutrophil infiltration. Here, we investigate the ability of three structurally distinct toxins (MC-LA, MC-LR, and MC-YR) to evoke neutrophil recruitment per se and their effects on migration pathways. Intravital microscopic studies showed that topical application of only MC-LR enhanced the numbers of rolling and adhered leukocytes in the endothelium of postcapillary mesenteric venules. The latter effects may be dependent upon induction of the synthesis and expression of l-selectin and β2-integrin in neutrophils, as assessed by flow cytometry and RT-PCR, respectively. Conversely, the three toxins promoted direct locomotion of neutrophils and enhanced their migration in response to fMLP, as measured by Boyden chamber assays, and increased intracellular calcium, a messenger in the chemotaxic process. In conclusion, our results show that MCs act on specific pathways of neutrophil recruitment, indicating their potential effect on neutrophils activation.  相似文献   

18.
Dissolved microcystins (MCs) are regularly present in water dominated by microcystin-producing, bloom-forming cyanobacteria. In vitro experiments with environmentally feasible concentrations (5 × 10−7 M) of the three most common microcystins, MC-LR, MC-RR, and MC-YR, revealed that they influence the metabolism of different representative phytoplanktons. At light intensities that are close to the cyanobacterial bloom environment (50 μmol m−2 s−1), they produce morphological and physiological changes in both microcystin-producing and -nonproducing Microcystis aeruginosa strains and also have similar effects on the green alga Scenedesmus quadricauda that is frequently present in cyanobacterial blooms. All three microcystin variants tested induce cell aggregation, increase in cell volume, and overproduction of photosynthetic pigments. All three effects appear to be related to each other but are not necessarily caused by the same mechanism. The biological activity of microcystins toward the light-harvesting complex of photobionts can be interpreted as a signal announcing the worsening of light conditions due to the massive proliferation of cyanobacteria. Although the function of microcystins is still unknown, it is evident that they have numerous effects on phytoplankton in nature. These effects depend on the individual organism as well as on the various intracellular and extracellular signaling pathways. The fact that dissolved microcystins also influence the physiology of microcystin-producing cyanobacteria leads us to the conclusion that the role of microcystins in the producing cells differs from the role in the water environment.  相似文献   

19.
There is growing concern that harmful cyanobacterial blooms are increasing in frequency and occurrence around the world. Although nutrient enrichment is commonly identified as a key predictor of cyanobacterial abundance and dominance in freshwaters, several studies have shown that variables related to climate change can also play an important role. Based on our analysis of the literature, we hypothesized that temperature or water‐column stability will be the primary drivers of cyanobacterial abundance in stratified lakes whereas nutrients will be the stronger predictors in frequently mixing water bodies. To test this hypothesis, as well as quantify the drivers of cyanobacteria over different scales and identify interactions between nutrients and climate‐related variables, we applied linear and nonlinear mixed‐effect modeling techniques to seasonal time‐series data from multiple lakes. We first compared time series of cyanobacterial dominance to a published lake survey and found that the models were similar. Using time‐series data of cyanobacterial biomass, we identified important interactions among nutrients and climate‐related variables; dimictic basin experienced a heightened susceptibility to cyanobacterial blooms under stratified eutrophic conditions, whereas polymictic basins were less sensitive to changes in temperature or stratification. Overall, our results show that due to predictable interactions among nutrients and temperature, polymictic and dimictic lakes are expected to respond differently to future climate warming and eutrophication.  相似文献   

20.
Cyanobacterial blooms and the production of cyanotoxins represent a serious global problem. Although the effects of a group of important cyanotoxins, microcystins (MCs), have been studied intensively in various organisms, little is known about the natural functions of these cyclic heptapeptides. MCs may have allelopathic effects. This paper summarizes the information from the studies that have investigated the effects of MCs on photoautotrophs in vitro and in vivo. Interactions with terrestrial plants, macrophytes, macroalgae, and planktonic microalgae are reported in detail with respect to the ecological relevancy of experimental conditions related to allelopathy. Our review shows that only a limited number of studies described harmful effects of MCs at concentrations that are typical for the environment. Consequently, the ability of MCs to act as general allelopathic compounds against photoautotrophs seems unlikely. However, further research is needed for definitive confirmation or rejection of the allelopathic hypothesis as well as, an explanation of the crucial question of MC function in the context of new information from evolutionary and molecular biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号