首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Once widely distributed throughout the lowland forests of Costa Rica, scarlet macaws (Ara macao) have been reduced to two major, geographically separated, populations along the Pacific slope. Past demographic declines raise conservation concerns regarding the detrimental effects of population fragmentation. This investigation aimed to evaluate the current status of scarlet macaws along the Pacific slope by examining levels of genetic variation and patterns of genetic structure within and among remnant populations. Statistical analyses using multilocus genotypes revealed strong differentiation between Central and South Pacific populations, suggesting local geographic barriers have historically restricted gene flow between these localities. High genetic diversity suggests neither population suffers from genetic erosion, likely resulting from relatively large population sizes and high dispersal capacity and longevity. However, evidence of disequilibrium within the Central Pacific population infers anthropogenic threats have disrupted natural population dynamics. These results advocate on focusing available resources on habitat restoration and nest protection, as a means to assist in reestablishing demographic stability and maintain the genetic health of wild scarlet macaws in Costa Rica.  相似文献   

2.
For species that are habitat specialists or sedentary, population fragmentation may lead to genetic divergence between populations and reduced genetic diversity within populations, with frequent inbreeding. Hundreds of kilometres separate three geographical regions in which small populations of the endangered Eastern Bristlebird, Dasyornis brachypterus, a small, ground-dwelling passerine that occurs in fire-prone bushland in eastern Australia, are currently found. Here, we use mitochondrial and microsatellite DNA markers to: (i) assess the sub-specific taxonomy designated to northern range-edge, and central and southern range-edge D. brachypterus, respectively, and (ii) assess levels of standing genetic variation and the degree of genetic subdivision of remnant populations. The phylogenetic relationship among mtDNA haplotypes and their spatial distribution did not support the recognised subspecies boundaries. Populations in different regions were highly genetically differentiated, but in addition, the two largest, neighboring populations (located within the central region and separated by ~50 km) were moderately differentiated, and thus are likely closed to migration (microsatellites, F ST = 0.06; mtDNA, F ST = 0.12, ?? ST = 0.08). Birds within these two populations were genotypically diverse and apparently randomly mating. A long-term plan for the conservation of D. brachypterus??s genetic diversity should consider individual populations as separate management units. Moreover, managers should avoid actively mixing birds from different populations or regions, to conserve the genetic integrity of local populations and avoid outbreeding depression, should further translocations be used as a recovery tool for this species.  相似文献   

3.
An electrophoretic genetic analysis utilising starch gel electrophoresis was employed to assess clonality in endangered Zieria baeuerlenii populations distributed over an area of less than a kilometre square in Nowra (NSW). Eleven enzymes systems encoded by 19 loci (41 alleles) when assayed to estimate levels of genetic diversity within and among populations, revealed moderate levels of genetic diversity. Despite finding seven loci being fixed at a particular locus, 20 unique multilocus genotypes/clones restricted to a particular population were detected within a sample of 179 ramets collected from throughout the range of the species. The probability of finding any clone produced by sexual reproduction is <0.0025 and is further supported by the fact that reproduction appears to be exclusively by vegetative spread and there is virtually no pollen viability and seed production. The lack of seed set in this area may be due to additional factors inhibiting sexual reproduction. Overall, such genetic studies play a crucial role in devising conservation and management strategies for rare and endangered taxa.  相似文献   

4.
The purging of deleterious alleles has been hypothesized to mitigate inbreeding depression, but its effectiveness in endangered species remains debatable. To understand how deleterious alleles are purged during population contractions, we analyzed genomes of the endangered Chinese crocodile lizard (Shinisaurus crocodilurus), which is the only surviving species of its family and currently isolated into small populations. Population genomic analyses revealed four genetically distinct conservation units and sharp declines in both effective population size and genetic diversity. By comparing the relative genetic load across populations and conducting genomic simulations, we discovered that seriously deleterious alleles were effectively purged during population contractions in this relict species, although inbreeding generally enhanced the genetic burden. However, despite with the initial purging, our simulations also predicted that seriously deleterious alleles will gradually accumulate under prolonged bottlenecking. Therefore, we emphasize the importance of maintaining a minimum population capacity and increasing the functional genetic diversity in conservation efforts to preserve populations of the crocodile lizard and other endangered species.  相似文献   

5.
The accurate diagnosis of conservation units now typically includes recognition of genetic diversity and unique evolutionary lineages and is necessary to inform the conservation management of endangered species. We evaluated whether the two currently recognized subspecies of the endangered Central American squirrel monkey (Saimiri oerstedii) in Costa Rica are evolutionarily significant units (ESUs) that should be managed separately in conservation efforts. We used previously published sequences of 50 individuals of Saimiri oerstedii for 880 bp of the mtDNA d-loop and genotypes of 244 individuals for 16 microsatellites and conducted novel analyses to characterize genetic differentiation between subspecies of Saimiri oerstedii. We measured sequence differentiation and inferred an intraspecific molecular phylogeny and a haplotype network, and found consistent results supporting statistically significant divergence and reciprocal monophyly between subspecies. A population aggregation analysis also supported Saimiri oerstedii citrinellus and S. o. oerstedii as diagnosably distinct units. These results confirm previous genetic studies with smaller sample sizes and are consistent with other factors including differences in pelage and morphology and divergence at nuclear markers. Conservation managers should manage these subspecies separately to prevent the loss of genetic diversity via artificially induced outbreeding. High levels of genetic diversity may buffer populations against outside extinction pressures, to which Saimiri oerstedii are vulnerable because of their dwindling habitat and small population size.  相似文献   

6.
Anthropogenic activities, such as agricultural intensification, caused large declines in biodiversity, including farmland birds. In addition to demographic consequences, anthropogenic activities can result in loss of genetic diversity, reduction of gene flow and altered genetic structure. We investigated the distribution of the genetic variation of a declining farmland and long-distance migratory bird, the ortolan bunting Emberiza hortulana, across its European breeding range to assess the impact of human-driven population declines on genetic diversity and structure in order to advise conservation priorities. The large population declines observed have not resulted in dramatic loss of genetic diversity, which is moderate to high and constant across all sampled breeding sites. Extensive gene flow occurs across the breeding range, even across a migratory divide, which contributes little to genetic structuring. However, gene flow is asymmetric, with the large eastern populations acting as source populations for the smaller western ones. Furthermore, breeding populations that underwent the largest declines, in Fennoscandia and Baltic countries, appear to be recently isolated, with no gene exchange occurring with the eastern or the western populations. These are signs for concern as declines in the eastern populations could affect the strength of gene flow and in turn affect the western populations. The genetic, and demographic, isolation of the northern populations make them particularly sensitive to loss of genetic diversity and to extinction as no immigration is occurring to counter-act the drastic declines. In such a situation, conservation efforts are needed across the whole breeding range: in particular, protecting the eastern populations due to their key role in maintaining gene flow across the range, and focussing on the northern populations due to their recent isolation and endangered status.  相似文献   

7.
Apicomplexan protozoan parasites include some of the most globally important human and animal pathogens, all of which have obligatory sexual cycles in their definitive hosts. Despite their importance and the relevance of understanding the population genetic structure and role of genetic exchange in generating diversity, population genetic analysis has largely been restricted to Plasmodium spp. and Toxoplasma gondii. These species show a considerable diversity of population structure suggesting different strategies for transmission and survival in mammalian hosts. We have undertaken a population genetic analysis of a further apicomplexan species (Cryptosporidium parvum) to extend our understanding of the diversity of genetic structures and test whether it has a clonal population structure. Nothing is known about the population structure of this parasite. We have analyzed 180 parasite isolates from both humans and cattle derived from a single discrete geographical area, using three minisatellite and four microsatellite markers that define 38 multilocus genotypes. Analysis of linkage disequilibria between pairs of loci combined with measures of genetic distance and similarity provides evidence that the sample comprises four genetically isolated populations. One group of human isolates consists primarily of two closely related multilocus genotypes (clonal), while the major subtypes of a second group, common to both humans and animals, show a panmictic population structure. The data provide an important step in understanding the role of genetic exchange in these parasites, which is an essential prerequisite for determining the value of multilocus genotyping for the analysis of sources of human infection as well as future molecular epidemiological studies.  相似文献   

8.
Dendrobium officinale (Orchidaceae) is an endangered plant species with important medicinal value. To evaluate the effectiveness of ex situ collection of D. officinale genetic diversity, we developed 15 polymorphic trinucleotide microsatellite loci of D. officinale to examine the genetic diversity and structure of three D. officinale germplasm collections comprising 120 individuals from its germplasm collection base and their respective wild populations consisting of 62 individuals from three provinces in China. The three germplasm collections showed reductions in gene diversity and average number of alleles per locus, but an increase in average number of rare alleles (frequency?≤?0.05) per locus in comparison to their wild populations. However, the differences in gene diversity between the germplasm collections and wild populations were not statistically significant. The analysis using STRUCTURE revealed evident differences in genetic composition between each germplasm collection and its wild population, probably because the D. officinale individuals with distinct genotypes in each wild population were unevenly selected for establishing its germplasm collection. For conservation management plans, we propose that D. officinale individuals with rare alleles need to be conserved with top priority, and those individuals with the most common alleles also should be concerned. The 15 new microsatellite loci may be used as a powerful tool for further evaluation and conservation of the genetic diversity of D. officinale germplasm resources.  相似文献   

9.
The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as ‘endangered’ under the Environment Protection and Biodiversity Conservation Act 1999, and ‘vulnerable’ under the International Union for Conservation of Nature’s Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy–Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST  = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E. bispinosus.  相似文献   

10.
Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remaining V. variegata range. We used 10 polymorphic microsatellite loci and ~550 bp of mtDNA sequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of the Mangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNA haplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high average FST (0.247) and ΦST (0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward.  相似文献   

11.
Trees are key ecosystem engineers. Many analyses of the genetic diversity of forest trees over substantial parts of their distributional ranges are appearing. These studies are of relevance for forest and landscape management, the inventory of botanical genetic resources and the conservation biology of rare, endemic, relictual, and endangered tree species. This review focuses on (i) recent investigations of the influence of human disturbances, (ii) comparative analyses of closely related and hybridizing species, (iii) reconstructions of refugia and of the spread of tree populations during the postglacial, (iv) studies of both range-wide and range-edge genetic patterns, and (v) assessments of the role of tree genetic diversity in the face of future climate warming. There is a need to include more tropical and austral trees in genetic analyses, as most studies have dealt with the relatively species-poor Palaearctic and Nearctic regions. Further studies are also needed on the role of tree genetic diversity in variations in phenology, resistance to insect defoliators and fungal pathogens, reactions to increased CO2 and ozone concentrations, growth, mortality rates and other traits. Most macroecological and scaling patterns of species richness still need to be studied for genetic diversity. Open research questions in this rapidly evolving field involve invasion biology, island biogeography, and urban ecology. There is a need for more knowledge transfer from the many studies of tree genetic diversity to the day-to-day management of trees and forests.  相似文献   

12.
We developed 13 species‐specific microsatellite markers for the federally endangered Atlantic slope unionid Alasmidonta heterodon. Four to 18 alleles per locus were observed among 30 individuals. Observed heterozygosity throughout the loci ranged from 26.9 to 86.2% and averaged 63.6%. Estimates of individual pairwise genetic distances indicated that levels of genetic diversity among loci were sufficient to produce unique multilocus genotypes for all animals surveyed. Randomization tests showed that genotypes for this collection were consistent with Hardy–Weinberg expectations, and no significant linkage disequilibrium was observed between loci. These loci therefore appear suitable for population surveys, kinship assessment and other such applications.  相似文献   

13.
Assessing patterns of genetic variation in rare endangered species is critical for developing both in situ and ex situ conservation strategies. Pinus dabeshanensis Cheng et Law is an endangered species endemic to the Dabieshan Mountains of eastern China. To obtain fundamental information of genetic diversity, population history, effective population size, and gene flow in this species, we explored patterns of genetic variation of natural populations, in addition to an ex situ conserved population, using expressed sequence tag-simple sequence repeats (EST-SSR) markers. Our results revealed moderate levels of genetic diversity (e.g., HE = 0.458 vs. HE = 0.423) and a low level of genetic differentiation (FST = 0.028) among natural and conserved populations relative to other conifers. Both contemporary and historical migration rates among populations were high. Bayesian coalescent-based analyses suggested that 3 populations underwent reductions in population size ca. 10,000 yr ago, and that two populations may have experienced recent genetic bottlenecks under the TPM. Bayesian clustering revealed that individuals from the ex situ population were largely assigned to the ‘red’ cluster. Additionally, our results identified private alleles in the natural populations but not in the ex situ population, suggesting that the ex situ conserved population insufficiently represents the genetic diversity present in the species. Past decline in population size is likely to be due to Holocene climate change. Based on the genetic information obtained for P. dabeshanensis, we propose some suggestions for the conservation and efficient management of this endangered species.  相似文献   

14.
The occurrence of clonality in threatened plants can have important implications for their conservation. In this study, allozymes and RAPDs were used to determine the extent of clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae), which is known from only four sites within an 8 km range. Allozyme markers identified only six multilocus genotypes among the 53 ramets sampled across the four sites, although a total of 54 different genotypes were possible with the three polymorphic allozyme loci detected. The polymorphic bands detected in the RAPD analysis were capable of producing 246 genotypes, but again only six multilocus genotypes were delineated. The allozyme and RAPD data were congruent at three of the four sites. At the fourth site two genotypes were detected by each marker; however, once combined, three multilocus genotypes were observed. The probabilities that the observed number of replicates of each combined allozyme and RAPD genotype could be generated by sexual reproduction were less than 10–18, leaving little doubt that clonality is the explanation for the observed patterns of genotypes. The genetic conclusions are supported by root excavations which show potential for vegetative reproduction and the observation of no sexual reproduction in the species. The recognition of extensive clonality in H. lucasii has had immediate implications for the conservation management of the species and resulted in changes to the management priorities for the species. Thus it is clear that appropriate genetic studies can play an important role in the management of threatened species.  相似文献   

15.
Rosa praelucens is a critically endangered decaploid alpine rose with an extremely narrow geographic distribution in Northwestern Yunnan, China. We sampled almost all the extant individuals (527 individuals in 31 natural locations and 56 individuals preserved in three local living collections) to assess the genetic variation and to probe the genetic connectivity among the individuals and populations based on three cpDNA intergenic spacers and six fluorescent amplified fragment length polymorphism (AFLP) markers. The morphological traits from seven populations were also measured. R. praelucens exhibited high levels of morphological variation, genetic diversity, and differentiation. The extant individuals were clustered into eight groups in neighbor-net networks, and subsequent Bayesian analysis assigned them into three larger gene pools, both in accordance with their morphological traits, especially flower color. The living collections embraced two private cpDNA haplotypes and included three out of the species’ total eight AFLP genotypes. Rhizome clonal growth, decaploid, and mixed breeding system may largely contribute to high genetic diversity and differentiation in R. praelucens. We concluded that the endangered status of R. praelucens may mainly be due to habitat fragmentation and loss and inherent reproductive difficulties, rather than low genetic diversity. The populations contributing higher cpDNA genetic diversity, representing more AFLP genotypes, and encompassing private cpDNA haplotypes should be given conservation priority by creating plant-micro reserves. The living collections should also be targeted for further ex situ conservation, population recovery, and reintroduction of R. praelucens plants.  相似文献   

16.
During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.  相似文献   

17.
Litsea szemaois (Lauraceae) is an endemic and endangered species from the tropical rain forests of Xishuangbanna, southern Yunnan, SW China, but habitat fragmentation, especially exacerbated by rubber planting, has caused a decline in population size of the species. AFLP and ISSR were used to investigate the genetic diversity and population structure of eight populations from across its known distribution. Three AFLP and ten ISSR primer combinations produced a total of 203 and 77 unambiguous and repeatable bands respectively, of which 164 (80.8%) and 67 (87.0%) were polymorphic for the two markers. These two markers showed that Litsea szemaois exhibits comparatively high genetic diversity at species level (heterozygosity (hs) = 0.2109) relative to some other Lauraceae. Most of the genetic variation was partitioned within populations, but genetic differentiation between populations was significant and relatively high (Φ st = 0.2420, θ= 0.1986) compared with other tropical plants. The genetic characteristics of L. szemaois may be related to its outbreeding system, insect pollination and fragmented distribution. Because L. szemaois is dioecious and slow to mature, ex situ conservation across its genetic diversity is unlikely to succeed, although seedlings grow well under cultivation. Thus, in situ conservation is very important for this endangered species, especially as only 133 adult individuals are known in the wild. In particular, the Nabanhe and Mandian populations should be given a high conservation priority due to their higher genetic diversity, larger population size and better field condition, but wider sampling is required across all populations to determine additional areas with significant genetic conservation value.  相似文献   

18.
The endangered Yangtze finless porpoise is found in the middle and lower reaches of the Yangtze River and its adjoining big lakes. To explore the major histocompatibility complex (MHC) genetic diversity and allelic distribution patterns across its range, we investigated variation at DQB exon 2. From 76 porpoises, we identified 18 DQB sequences. The freshwater Yangtze populations had much higher allelic diversity than marine populations. Among these freshwater populations, the middle-reach population had higher allelic diversity than the lower-reach population. The high DQB diversity level, relative to that of a neutral mtDNA locus, suggests that balancing selection is acting at the DQB gene and that rapid evolution and local positive selection play critical roles in generating and retaining high MHC diversity in the freshwater population. As the balancing selection might be driven by environmental pathogens, we suggest that maintaining MHC variation should be a high priority in the conservation and management of this endangered population, especially as an ex situ conservation strategy.  相似文献   

19.
The conservation status of Euchresta japonica Hook. f. ex Regel in Korea was investigated, with an emphasis on its genetic diversity. From field surveys, we obtained the only locality record for a wild population in Korea, which contained eight individuals. Genotyping was performed using nine microsatellite markers for all 20 remaining individuals, including those in ex situ collections. Among nine microsatellite loci that amplified within this group, five showed polymorphism with low hererozygosities, and a total of 12 multilocus genotypes were detected. Wild-specific alleles were detected in two individuals, and ex situ-specific alleles were detected in six individuals. Five individuals proved to have individual-specific alleles. The Korean population was also distinguished from the previously reported Japanese population by different alleles and higher diversity. To conserve this species more effectively in Korea, we recommend the following: (1) fencing the remaining wild population; (2) no relocation of wild individuals, as nine ex situ plants are already available; (3) complete ex situ conservation of all genetic diversity via clonal propagation of wild individuals; and (4) continuous protection and monitoring of the wild population.  相似文献   

20.
In this work, we report on the population genetic structure of the endangered tree species Manilkara huberi, an Amazonian tree species intensely exploited due to the high density and resistance of its wood. We investigated the patterns of spatial distribution, genetic structure, and mating system using 7 microsatellite loci and here discuss the consequences for conservation and management of the species. To examine the population genetic structure, 481 adult trees and 810 seedlings were sampled from an area of 200 ha from a natural population in FLONA Tapajós, PA, Brazil. We found relatively high and consistent inbreeding levels (intrapopulation fixation index [f] 0.175 and 0.240) and a significant spatial genetic structure up to a radius of approximately 300 m, most likely due to a limited seed and pollen flow. The multilocus (tm) population outcrossing rate was high (0.995), suggesting that the species is predominantly allogamous with a pollen flow restricted to 47 m. These results suggest that M. huberi is spatially structured, consistent with a model of isolation by distance. Fragmentation may therefore cause the loss of subpopulations, suggesting that management programs for production and conservation should include large areas. The genetic data also revealed that for ex situ conservation, seeds should be collected from more than 175 maternal trees, in order to keep an effective population size of 500. Furthermore, as the species is widely distributed across the Amazon Forest, samples should include several populations in order to represent the highest genetic diversity possible. These results provide a blueprint to guide the production and conservation management policies of this valuable timber species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号