首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We theoretically investigate the plasmonic Fano resonance in a triangular nanoprism dimer. By adjusting the geometry parameters, we have observed a Fano line shape in the scattering spectra, which is induced by the competence of bonding and antibonding modes in the triangular nanoprism dimer. The Fano line shape can be well described by a theoretical model of two harmonic oscillators. A figure of merit value as high as 16.1 is achieved in the triangular nanoprism dimer, which is caused by the Fano resonance. The electric field at the corner of the triangular prisms is the highest among the circular cylinder dimer and square rod dimmers, which shows that the triangular prism dimer is more suitable for the detection of biomolecules. The triangular prism dimer may also used in plasmonic circuits.  相似文献   

2.
The optical responses of metal nanoparticles induced by subtle variations in geometry, especially by the rounding of the edges and corners, have generated great interest at present due to the requirement of fabricating refined structures of metal nanoparticles and theoretical simulations of the real particles. We study the effect of both inner and outer edge rounding on the optical properties of gold nanobox and gold nanobox dimer with small interparticle distances by using the discrete dipole approximation method. The shift of extinction peaks, the electric field distribution, and the variation of refractive index sensitivities by changing the curvature of the inner and outer edges of gold nanobox are investigated. We demonstrate that the optical properties of nanobox are more sensitive to the outer edge rounding than the inner edge rounding. By edge rounding of two very close gold nanoboxes, the blue shift of the dipolar and the quadrupolar plasmonic resonances of nanobox dimer are shown. Comparing with the inner edge rounding of nanobox dimer, we find that rounding of the outer edges causes the larger shift of the quadrupolar mode and approximate shift of the dipole mode.  相似文献   

3.
The extinction spectra and electric field distributions of hollow triangular nanoprisms are calculated using the discrete dipole approximation method and compared with those of the solid triangular nanoprisms. When light propagates along the prisms, the main plasmon peaks of hollow triangular nanoprisms red shift compared with those of the solid triangular nanoprisms. At the main plasmon peaks, the hollow triangular nanoprisms provide more hot spots than the solid triangular nanoprisms. Therefore, the hollow triangular nanoprisms are more surface-enhanced Raman scattering active than the solid triangular prisms and can be used to detect small amount of molecules. For the hollow triangular nanoprism, although the local electric field distribution extremely relates to the incident polarization, the extinction spectra are independent of the incident polarization. In addition, the main plasmon peaks red shift linearly with the edge length, while they blue shift exponentially with the increase of the thickness of the hollow triangular nanoprisms. These results could be used to engineer hollow triangular nanoprisms for specific plasmonic applications.  相似文献   

4.
Optical properties of multi-ring with spatial symmetry breaking are investigated theoretically. Tunable ultrahigh order surface plasmonic resonance is achieved, which is found to be sensitive to geometric parameters. Certain high-order surface plasmonic resonances can be either suppressed or enhanced when geometrical parameters are adjusted. Moreover, more than one quadrupolar-dipolar, octupolar-dipolar, and hexadecapolar-dipolar mode of the surface plasmonic resonance can be achieved. The asymmetry also allows the generation of strong electric field enhancement with these nanostructures that can be applied in the field of surface-enhanced spectroscopy and biosensing.  相似文献   

5.
Negative curvature-dependent localized surface plasmon resonance (LSPR) properties of concentric core–shell metallic nanostructure have been studied using quasistatic approach and plasmon hybridization theory. Whether in single-layered gold nanoshell or double gold nanoshells, the oscillating surface charges always concentrate close to the poles of the metal surface with negative curvature, which results in the anisotropic local electric field distribution and affects both the inter-surface plasmonic coupling and inter-shell plasmonic coupling. Therefore, the change of the radius of the gold surface with negative curvature could modulate the plasmon hybridization and lead to the LSPR shifting. The physical mechanism of the negative curvature-dependent LSPR presents a potential for design and fabrication of nanoscale optical device based on core–shell type metallic nanostructures.  相似文献   

6.
The plasmonic effect is introduced in solar thermal areas to enhance light harvest and absorption. The optical properties of plasmonic nanofluid are simulated by finite difference time domain (FDTD) method. Due to the excitation of localized surface plasmon resonance (LSPR) effect, an intensive absorption peak is observed at 0.5 μm. The absorption characteristics are sensitive to particle size and concentration. As the particle size increases, the absorption peak is broadened and shifted to longer wavelength. The absorption of SiO2/Ag plasmonic nanofluid is improved gradually as the volume concentration increases, especially in the UV region. The absorption edge is shifted from 0.6 to 1.0 μm as the volume concentration increases from 0.001 to 0.01. The thermal simulation of suspended SiO2/Ag nanoparticle shows a uniform temperature rise of 17.91 K under solar irradiation (AM 1.5), while under the same condition, the temperature rises in Ag nanoparticle and Al nanoparticle are 11.12 and 5.39 K, respectively. The core/shell plasmonic nanofluid exhibits a higher photothermal performance, which has a potential application in photothermal areas. A higher temperature rise can be obtained by improving the incident light intensity or optical absorption properties of nanoparticles.  相似文献   

7.
Glancing angle deposition is a powerful method for direct fabrication of nanostructures on various substrates. In this research, GLAD method has been used to fabricate Ag nanostructures with columnar morphology for refractive index sensing applications. The morphology and plasmonic properties of the nanostructures are controlled by changing deposition parameters such as glancing angle, speed of azimuthal rotation of the substrate, and the height of deposited nanostructures. The results show that increasing the deposition thickness from 200 to 500 nm leads to narrowing the plasmonic peak, which mainly relates to increment of the distance between larger nanostructures. By changing the glancing angle between 86° to 80°, the narrowest plasmonic peak corresponding to the greatest sensitivity has been obtained for the film deposited at the angle of 82°. Also, increment of the rotation speed of the samples leads to narrowing of the plasmonic peaks. By measuring the refractive index sensitivity (RIS) of the nanostructures, a best sensitivity of 154 nm/RIU has been obtained. Finally, we investigated the stability of Ag nanostructures in deionized water by introducing a new stabilizing technique in which a thin Au layer is coated on the Ag nanostructures. This technique has the merits of simultaneously protecting the Ag nanostructures against oxidation and keeping their refractive index sensitivity high enough for long time usages.  相似文献   

8.
The plasmonic spectra of solution phase ensembles of triangular silver nanoplates have been analysed in order to examine the fundamental properties underlying their size-dependent enhanced refractive index sensitivities. Linewidth studies highlight variations in the response of these solution phase nanostructures to those previously reported for single immobilized triangular nanostructures. The observation of insignificant broadening of the resonance linewidth for larger edge length nanoplates highlights minimal contribution of radiative damping processes at these dimensions. Comparative single nanoplate studies using discrete dipole approximations were performed to analyse the dephasing processes contributing to these reduced linewidths and to determine the key parameters defining the underlying plasmonic response. These single nanoplate approximations highlight the dominance of absorption processes over radiative processes and demonstrate that this dominance can be attributed to the platelet nature/geometry of the nanoplates. These calculations indicate that the higher aspect ratio allows for the maintenance of coherent plasmon oscillations as the edge length of the triangular platelet increases within the sols. Thickness studies verify that this reduction in radiation damping is due to high aspect ratio and can act to confine electromagnetic fields at the nanoplate surface, thereby increasing near-field enhancement and hence the resultant plasmonic refractive index sensitivity.  相似文献   

9.
Song  Gang  Zhang  Wei 《Plasmonics (Norwell, Mass.)》2017,12(1):179-184

Strong local electromagnetic (EM) fields and efficient EM energy transport in metallic nanostructures are two important issues in their applications in quantum computations/communications. We investigate the propagation characteristics of the hotspots in one-dimensional silver nanoparticle dimer chains, which combine the functions of the gap field enhancement and the waveguide. The near field and the far field induced interplay among the local field enhancement, the radiative interaction, and the dissipation affects significantly the EM field transport efficiency. Moreover, the correlation between local structure and global structure leads to the structure-dependent excitation. With the help of the combined effects of the structure-dependent excitation, the field confinement and the propagation, the efficient EM field excitation, and long-range propagation can be obtained by tuning the structure of our systems. With suitable geometric parameters (dimer orientations, dimer gap sizes) of our system, the electric field intensity at the position 5000 nm away from the starting point (exciting point) is about 50 times of the corresponding field intensity in a silver nanoparticle chain.

  相似文献   

10.
Among the plasmonic nanostructures, ordered arrangement of metal nanoparticles with inter-particle gap distances in the nanometer scale is becoming increasingly important due to their ability to confine huge electromagnetic fields and tunable optical properties. Using time dependent density functional theory calculations, we study the optical response evolution in a planar square-shaped array of Sodium nanoparticles via morphology deformation. To this aim, we vary the inter-particle gap distance in the range of 2 to 30 Å separately along one and two directions. We compare and cross-examine the optical response evolution for both deformation process, and we find that the interaction between sodium nanoparticles in an ordered arrangement can be controlled to a large extent by simple deformation process. We believe that our theoretical results will be useful for designing ultra-small and tunable plasmonic devices that utilize quantum effects.  相似文献   

11.
Edge effects strongly affect the abundance and distribution of organisms across landscapes, with wide‐ranging implications in ecology and conservation biology. The extensive literature on the subject has traditionally considered that edge effects result from the active avoidance or preference of organisms for certain portions of the habitat patch, assuming that abundance is uniform across a patch when environmental conditions are uniform. We demonstrate that this assumption is incorrect due to the so‐far ignored ‘geometric edge effect’ (GEE). In the absence of environmental gradients, abundance of any organism living in a bounded habitat patch will tend to be lower in areas located near the edges compared to areas in the centre of the patch, simply because the areas in the centre receive individuals from all directions, whereas areas near the edge do not receive individuals from outside the patch. This geometric effect was already known for species richness at large geographic scales, the mid‐domain effect, but its importance in the literature of edge effects remained neglected so far. Using simulations, we show that the GEE tends to reduce population abundance and community richness near the edges of bounded habitat patches, and that apparently neutral or negative responses to the edge may occur even when habitat quality is higher near the edges. A published study that detected significant edge effects is reanalyzed, demonstrating that interpreting observed abundance patterns without taking the GEE into account – as traditionally done in the vast literature on edge effects – could provide misleading conclusions. The incorporation of the GEE into sampling and analytical protocols of future studies could advance substantially our ability to understand and predict edge effects in heterogeneous landscapes.  相似文献   

12.
The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures.  相似文献   

13.
Present work demonstrates the simple, chemical free, fast, and energy efficient method to produce reduced graphene oxide (r-GO) solution at RT using visible light irradiation with plasmonic nanoparticles. The plasmonic nanoparticle is used to improve the reduction efficiency of GO. It only takes 30 min at RT by illuminating the solutions with Xe-lamp, the r-GO solutions can be obtained by completely removing gold nanoparticles through simple centrifugation step. The spherical gold nanoparticles (AuNPs) as compared to the other nanostructures is the most suitable plasmonic nanostructure for r-GO preparation. The reduced graphene oxide prepared using visible light and AuNPs was equally qualitative as chemically reduced graphene oxide, which was supported by various analytical techniques such as UV-Vis spectroscopy, Raman spectroscopy, powder XRD and XPS. The reduced graphene oxide prepared with visible light shows excellent quenching properties over the fluorescent molecules modified on ssDNA and excellent fluorescence recovery for target DNA detection. The r-GO prepared by recycled AuNPs is found to be of same quality with that of chemically reduced r-GO. The use of visible light with plasmonic nanoparticle demonstrates the good alternative method for r-GO synthesis.  相似文献   

14.
15.
We present a quantum mechanical approach to calculate broadening of plasmonic resonances in metallic nanostructures due to collisions of electrons with the surface of the structure. The approach is applicable if the characteristic size of the structure is much larger than the de Broglie electron wavelength in the metal. The approach can be used in studies of plasmonic properties of both single nanoparticles and arrays of nanoparticles. Energy conservation is insured by a self-consistent solution of Maxwell's equations and our model for the photon absorption at the metal boundaries. Consequences of the model are illustrated for the case of spheroid nanoparticles, and results are in good agreement with earlier theories. In particular, we show that the boundary-collision broadening of the plasmonic resonance in spheroid nanoparticles can depend strongly on the polarization of the impinging light.  相似文献   

16.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

17.
The interaction of surface plasmons supported on a nanohole array and a single nanoparticle affixed to an atomic force microscopy (AFM) probe was studied for optimizing gap mode enhancement of the plasmonic field. Scanning probe microscopy controlled the AFM probe position, and the location specific interaction of the single nanoparticle (SNP) probe-nanohole array surface plasmons, was measured by darkfield spectroscopy. Raster-scanned darkfield imaging of the surface plasmons on the nanohole array is demonstrated, as well as image formation from measuring the SNP interaction at various (X, Y) locations relative to the nanohole. Coupling of the nanoparticle to the nanohole array exhibited maximal coupling when the SNP resided within a nanohole, resulting in a maximum SPR wavelength shift of 17 nm and an increase in scatter intensity of 137×. This technique may be expanded to mapping nanostructure coupling across three dimensions to determine optimal coupling conditions for applications in biosensing and surface enhanced spectroscopy. This contribution presents the first empirical observations of scanning probe microscopy (SPM) controlled gap mode enhancement of more complex nanostructures, a method for positioning optimization prior to sensing applications and experimental evidence for optimal lateral SNP-nanohole array positioning.  相似文献   

18.

We demonstrate the optical response of metal nanoparticles and their interaction with organic-inorganic perovskite (methyl ammonia lead halide (CH3NH3PbI3)) environment using discrete dipole approximation (DDA) simulation technique. Important optical properties like absorption, scattering, and electric field calculations for metal nanoparticle using different geometry have been analyzed. The metal nanoparticles embedded in the perovskite media strongly support surface plasmon resonances (SPRs). The plasmonic interaction of metal nanoparticles with perovskite matrix is a strong function of MNP’s shape, size, and surrounding environment that can manipulate the optical properties considerably. The cylindrical shape of MNPs embedded in perovskite environment supports the SPR which is highly tunable to subwavelength range of 400–800 nm. Wide range of particle sizes has been selected for Ag, Au, and Al spherical and cylindrical nanostructures surrounded by perovskite matrix for simulation. The chosen hybrid material and anisotropy of structure together make a complex function for resonance shape and width. Among all MNPs, 70-nm spherical silver nanoparticle (NP) and cylindrical Ag NP having diameter of 50 nm and length of 70 nm (aspect ratio 1.4) generate strong electric field intensity that facilitates increased photon absorption. The plasmonic perovskite interaction plays an important role to improve the absorption of photon inside the thin film perovskite environment that may be applicable to photovoltaics and photonics.

  相似文献   

19.
Electron beam induced deposition (EBID) is used to grow on a transparent substrate plasmonic antennas formed by gold nanorods. We first discuss the influence of the growth parameters on the geometrical homogeneity of the structures. The optical response of optimized rods with different aspect ratios are measured using scattering spectroscopy. The optical data show antenna resonances in good agreement with 3D numerical simulations for pure gold antennas, validating EBID as a novel relevant technique for the fabrication of plasmonic nanostructures.  相似文献   

20.
Geometry-based control of local field of coupled plasmonic nanostructures is efficient for optimization of the field intensity. However, it provides weak control over spatial and temporal dynamics of the field and thus unsuitable for experimental studies and practical applications where fixed geometries are needed. In this study, we report on pulsed excitation of strongly coupled plasmonic nanosystem comprised of nanorod and split-ring antenna. The near-field intensities are manipulated by controlling time delay, relative phase, and polarization of the ultrafast excitation pulses. We show that the spectral and spatial intensities of the local fields at the gap regions of the coupled nanosystem can be pronounced by using two identical pulses with least time delay and phase difference. The corresponding temporal intensities of electric near-fields for both parallel and orthogonal polarization of the illumination fields are also briefly discussed. These findings might have implications for controlled excitation of complexly coupled plasmonic nanosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号