首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
异养微生物在金属生物淋滤技术中的应用   总被引:4,自引:0,他引:4  
生物淋滤技术主要应用于低品位矿石金属选矿、煤气脱硫、废弃物中金属回收和污染介质中金属离子毒性的去除等方面。作为生物淋滤技术中的主体微生物之一,异养微生物可通过其产生的酸性代谢物还原、酸化及络合,提取或者溶解非硫化矿、固体废弃物、污水污泥及土壤中的金属,有助于解决目前的资源短缺问题,还可对污染环境治理提供技术支持,具有重要的理论意义和实践价值。应用于异养微生物淋滤技术中的常见微生物包括细菌(以假单胞菌为主)和真菌(以曲霉菌和青霉菌应用最为广泛)。淋滤过程涉及酸解、络合、还原及碱化等。目前,异养微生物淋滤技术主要应用于生物冶金、固体废弃物处理、污水处理和污染土壤修复等。本文分析了异养微生物金属淋滤过程中的问题,并提出了未来研究的发展方向。  相似文献   

2.
Biotechnological applications for metal recovery have played a greater role in recovery of valuable metals from low grade sulfide minerals from the beginning of the middle era till the end of the twentieth century. With depletion of ore/minerals and implementation of stricter environmental rules, microbiological applications for metal recovery have been shifted towards solid industrial wastes. Due to certain restrictions in conventional processes, use of microbes has garnered increased attention. The process is environmentally-friendly, economical and cost-effective. The major microorganisms in recovery of heavy metals are acidophiles that thrive at acidic pH ranging from 2.0–4.0. These microbes aid in dissolving metals by secreting inorganic and organic acids into aqueous media. Some of the well-known acidophilic bacteria such as Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Sulfolobus spp. are well-studied for bioleaching activity, whereas, fungal species like Penicillium spp. and Aspergillus niger have been thoroughly studied for the same process. This mini-review focuses on the acidophilic microbial diversity and application of those microorganisms toward solid industrial wastes.  相似文献   

3.
A spent refinery processing catalyst was physically and chemically characterized, and subjected to one-step and two-step bioleaching processes using Aspergillus niger. During bioleaching of the spent catalysts of various particle sizes ("as received", 100-150 microm, <37 microm, and x =2.97 (average) microm) and pulp densities, the biomass dry weight and pH were determined. The corresponding leach liquor was analysed for excreted organic acids along with heavy metal values extracted from the catalyst. Chemical characterization of the spent catalyst confirmed the presence of heavy metal including Al (33.3%), Ni (6.09%) and Mo (13.72%). In general, the presence of the spent catalyst caused a decrease in the biomass yield and an increase in oxalic acid secretion by A. niger. The increase in oxalic acid secretion with a decrease in the catalyst particle size (up to <37 microm) led to corresponding increase in the extraction of metal values. The highest extraction of metal values from the spent catalyst (at 1% w/v pulp density and particle size <37 microm) were found to be 54.5% Al, 58.2% Ni and 82.3% Mo in 60 days of bioleaching. Oxalic acid secretion by A. niger in the presence of the spent catalyst was stimulated using 2-[N-Morpholino]ethanesulfonic acid (MES) buffer (pH 6), which resulted in comparable metal extraction (58% Al, 62.8% Ni and 78.9% Mo) in half the time required by the fungus in the absence of the buffer. Spent medium of A. niger grown in the absence and in the presence of MES buffer were found to leach almost similar amounts of Al and Ni, except Mo for which the spent medium of buffered culture was significantly more effective than the non-buffered culture. Overall, this study shows the possible use of bioleaching for the extraction of metal resources from spent catalysts. It also demonstrated the advantages of buffer-stimulated excretion of organic acids by A. niger in bioleaching of the spent catalyst.  相似文献   

4.
典型固体废物(废电器、废电池、污泥、焚烧飞灰、废催化剂等)含有大量金属资源,回收再利用的价值极高。微生物浸出典型固体废物受多因素影响。对不同微生物浸出金属的菌种筛选、浸出规律和机理的掌握,有助于典型固体废物中金属资源的绿色高效回收,可为我国“双碳”目标作出贡献。本文综述了从典型固体废物中浸出金属的各类微生物,分析了冶金微生物的作用机制,并展望了微生物冶金的应用前景,以期为微生物冶金技术在典型固体废物中的高效应用提供理论参考。  相似文献   

5.
Spent refinery processing catalyst is listed as a hazardous waste; the toxicity characteristic leaching procedure (TCLP) extracts of the catalyst are found to contain heavy metals at concentrations exceeding the regulated levels. In the present investigation, Aspergillus niger was adapted to single metal ions Ni, Mo or Al (at 100-2,000 mg/L in steps of 100mg/L) and then to a mixture of Ni, Mo and Al (at a mass ratio of 1:2:6, as approximately present in the spent catalyst). Adaptation experiments with single metals showed that the fungus could tolerate up to 1,000 mg/L Ni, 1,200 mg/L Mo and 2,000 mg/L Al. In the presence of a mixture of these metals, the fungus was able to tolerate up to 100mg/L Ni, 200mg/L Mo and 600 mg/L Al. One-step bioleaching experiments with 1 wt% spent catalyst (of particle size <37 microm) were carried out using un-adapted and various adapted fungal strains. In contrast to the adapted strains, the un-adapted strain showed no growth in the presence of the catalyst. Ni:Mo:Al-adapted strain was the most efficient in the leaching of metals from the catalyst (at 78.5% Ni, 82.3% Mo and 65.2% Al) over 30 days due to its tolerance to the toxic elements at 1 wt%. More importantly, the Ni:Mo:Al-adapted strain was capable of bioleaching up to 3 wt% spent catalyst. The TCLP extracts of the spent catalyst after bioleaching using the Ni:Mo:Al-adapted strain showed the concentrations of Ni and Mo were well within the regulated levels.  相似文献   

6.
The possibility of bioleaching Al, K, Na, Ca and Mg using microorganisms of the Thiobacillus thiooxidans group from industrial waste product (IWP) of copper ore flotation from the company MEDET was studied. The aim of the investigations was to establish the possible application of a combined method for processing IWP. The preliminary mechanical activation in combination with bioleaching resulted in a high extent of extraction of useful components. It was established that the removal of useful components from mechanically activated IWP is improved compared to non‐activated IWP. The effect of the concentration of Al‐containing waste product, of incubation time and time of preliminary mechanical activation on the extraction degree (α) [% w/w] of useful elements was investigated. The maximum degree of extraction of Al was achieved on Day 28 and its value reached 71% for industrial waste product mechanically activated for 4 hours. The maximum degrees of extraction of K and Na in the case of industrial waste product mechanically activated for 4 hours were achieved on Day 7 of the incubation period and their values were 78% and 91%, respectively. Under the conditions of bioleaching only Si had a low degree of extraction, accounting for 2.5%. The ability of microorganisms to leach aluminium could be used for the extraction of metals from nonbauxite raw materials and Al‐containing waste product not treatable by means of the BAYER method.  相似文献   

7.
极端嗜酸硫杆菌属微生物在生物冶金、生物脱硫以及固体废弃物的处置中扮演重要作用,但该类微生物在培养过程中细胞浓度很低,限制了该类微生物的广泛应用。高密度培养是提高微生物生产效率的有效手段。高密度培养技术在嗜酸微生物中的应用能够显著减少微生物培养的生成成本,缩短生产周期,极端嗜酸硫杆菌微生物菌剂的输出速率。本文从菌种选育、培养条件、培养方式综述了极端嗜酸硫杆菌高密度培养的研究现状。  相似文献   

8.
广州市固体废物管理与处置现状及对策   总被引:3,自引:0,他引:3  
黄小平  胡迪琴 《生态科学》2002,21(2):141-146
分析广州市工业固体废物、危险废物、生活垃圾、余泥渣土等管理与处置现状,揭示广州市现有固体废物管理处置存在的主要问题,并提出对策建议。分析表明,近年广州市工业固体废物年产生量呈上升趋势,工业固体废物排放量有所回升;1999年危险废物实现零排放,医疗垃圾的集中处置率达100%;居民生活垃圾清运处置率达100%。生活垃圾分类收集率为26%,加快了垃圾填埋场的改造和建设;余泥渣土的管理逐步规范化,市区余泥渣土排放工地申领排放证率保持100%。存在问题包括管理上欠长远规划、处置技术落后、二次污染、资源回收率低、资金匮乏等,尤其缺乏对危险废物、废旧电池的集中处置机构。  相似文献   

9.
The use of the fungus Aspergillus niger for the bioleaching of heavy metals from spent catalyst was investigated, with fluid catalytic cracking (FCC) catalyst as a model. Bioleaching was examined in batch cultures with the spent catalysts at various pulp densities (1-12%). Chemical leaching was also performed using mineral acids (sulphuric and nitric acids) and organic acids (citric, oxalic and gluconic acids), as well as a mixture of organic acids at the same concentrations as that biogenically produced. It was shown that bioleaching realised higher metal extraction than chemical leaching, with A. niger mobilizing Ni (9%), Fe (23%), Al (30%), V (36%) and Sb (64%) at 1% pulp density. Extraction efficiency generally decreased with increased pulp density. Compared with abiotic controls, bioleaching gave rise to higher metal extractions than leaching using fresh medium and cell-free spent medium. pH decreased during bioleaching, but remained relatively constant in both leaching using fresh medium and cell-free spent medium, thus indicating that the fungus played a role in effecting metal extraction from the spent catalyst.  相似文献   

10.
我国铜铅锌有色冶炼固废种类多、存量大,富含多种环境毒害元素如镉铬汞砷等,而目前固废末端处置方式单一,对其所含的大量铜铅锌银镍等有价金属组分也未能有效分离,固废污染防控与高效资源化利用问题突出,已成为制约产业绿色可持续发展的关键因素。以长江经济带典型铜铅锌综合冶炼基地为例,设置直接处理(情景1)、内部循环(情景2)和协同利用(情景3)三种锌冶炼固废处置情景模式,结合物质投入产出法、层次分析法与熵值法,构建资源能耗、环境风险、物质循环与经济效益的多维生态效率指标核算方法体系,对三种情景模式开展生态效率综合评估分析。结果表明,情景3因加强了锌冶炼固废在铜、铅冶炼系统间的协同转化,其生态效率综合评价指数最高,为0.2246,较情景1和情景2分别高出313.6%和25.5%;从资源能耗角度来看,情景2单位产品能耗最高,达0.3086;而从物质循环和经济效益角度来看,情景3固废综合利用率最高,达97.6%,铜铅锌三种有价金属回收率达97.2%,利润总额达48131.3万元;但在环境风险方面,尽管情景3固废中重金属污染排放减少1470.4 t/a,但废气中铅砷镉汞等重金属污染排放却比情景1增加了3倍...  相似文献   

11.
The effects of pH and ferrous iron concentration in cultural medium on the bioleaching of copper-zinc concentrate by mesophilic and moderately thermophilic acidophilic microorganisms were studied. It was revealed that the optimum pH for bioleaching in presence of 5 g/L of ferrous iron was 1.4–1.5. It was shown that bioleaching under optimal conditions led to an increase in the copper content in solid phase from 10.1 to 14% and a decrease in the zinc content from 7.4 to 1.4%. The results of the present work demonstrate that acidophilic microorganisms can be used for treatment of complex sulfide concentrates containing copper and zinc.  相似文献   

12.
Recent advances in microbial mining   总被引:2,自引:0,他引:2  
Microbial mining of copper sulphide ores, has been practiced on an industrial scale since the late 1950s. Since then, advances in microbial mining and the role of microorganisms involved in solubilization of metals have assumed commerical importance. The fact that bioleaching processes save energy, have a minimum pollution potential and are able to yield value-added by-products make these processes invaluable. The metal extraction processes using microorganisms, which are currently in active use, concern copper and uranium bioleaching. Biobeneficiation is also applied at an industrial scale for recovery of gold from arsenopyrites. The developments in these processes during the last 15 years, with particular reference to developing nations, are reviewed. Information gathered on molecular genetics of these microorganisms should lead to a better understanding and control of microbial leaching processes. Areas still needing research to sustain economic expansion of microbial mining techniques are indicated.The author is with the Agharkar Research Institute, Agarkar Road, Pune 411 004, India  相似文献   

13.
廖金凤 《生态科学》2000,19(2):84-87
环境问题在程度上是由工业发展引起的。以广东省顺德市为例。环境问题如江河、大气、土壤环境污染等与工业三废排放、工业类型、工类布局、工业能耗等有密切关系。解决对策是实施可持志发展战略,调整优化工业结构,工业合理布局规模经营,推行清洁生产、进行污染治理等。  相似文献   

14.
Genomics, metagenomics and proteomics in biomining microorganisms   总被引:1,自引:0,他引:1  
The use of acidophilic, chemolithotrophic microorganisms capable of oxidizing iron and sulfur in industrial processes to recover metals from minerals containing copper, gold and uranium is a well established biotechnology with distinctive advantages over traditional mining. A consortium of different microorganisms participates in the oxidative reactions resulting in the extraction of dissolved metal values from ores. Considerable effort has been spent in the last years to understand the biochemistry of iron and sulfur compounds oxidation, bacteria-mineral interactions (chemotaxis, quorum sensing, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. All of these are considered key phenomena for understanding the process of biomining. The use of genomics, metagenomics and high throughput proteomics to study the global regulatory responses that the biomining community uses to adapt to their changing environment is just beginning to emerge in the last years. These powerful approaches are reviewed here since they offer the possibility of exciting new findings that will allow analyzing the community as a microbial system, determining the extent to which each of the individual participants contributes to the process, how they evolve in time to keep the conglomerate healthy and therefore efficient during the entire process of bioleaching.  相似文献   

15.
Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.  相似文献   

16.
The present study was undertaken to investigate the potential of enriched indigenous sulfur-and-iron-oxidizing microorganisms in the bioleaching of Cu, Ni, Zn and Fe from textile sludges by using elemental sulfur and ferrous sulfate (FS), respectively, as an energy source under batch conditions. The experiments were performed with three different textile sludges (S1, S2 and S3) at initial neutral pH of the sludges procured from different parts of the country i.e., UP, Haryana and Punjab. The three sludges used were not only procured from different parts of the country but also differ in physiochemical characteristics. The extent of heavy metals solubilization in each sludge was found to be different using sulfur- and iron-oxidizing microorganisms. The results of the study indicate that sulfur-oxidizing microorganisms were found more efficient in the bioleaching process, irrespective of any sludge. The use of sulfur-oxidizing microorganisms led to higher solubilization of heavy metals and after 7 days of bioleaching about 84–96% Cu, 64–78% Ni, 81–92% Zn and 74–88% Fe were removed compared to 62–73% Cu, 62–66% Ni, 74–78% Zn and 70–78% Fe using iron-oxidizing microorganisms. This study had shown the feasibility of applying the bioleaching process to textile sludge contaminated with heavy metals. The results of the present study indicate that the bioleached sludge would be safer for land application.  相似文献   

17.
Mineral resources have been counted as public assets with economic benefit since time immemorial. Due to the rising issue of decreasing mineral deposits, recovery of metals from several waste residues has become progressively more essential. Novel and efficient recycling processes have been on the rise globally. Manganese (Mn) as the fourth most industrially applicable metal generates an extensive quantity of metallic waste which not only leads to loss of precious metal but also results in environmental toxicity. Globally, around 7 million tons of high-grade ores are produced, whereas 8 million tons of Mn alloys are produced yearly. Therefore, it is of greater significance to recover and recycle Mn from various waste residues. Various physical and biological techniques have been developed for recycling Mn from waste residues. Traditional Mn extraction processes are costly and labor intensive in nature, on the contrary, bioleaching techniques using diverse microorganism’s, form the basis of an efficient, eco-friendly, and economically sustainable process of metal recovery. The quick progress in current methodologies to counteract the fast consumption of innate mineral resources involves the proper utilization of unused waste residues containing industrially important metals like Mn. This review focuses to enumerate diverse features of Mn recovery, efficient methodologies, bioleaching of Mn, merits of Mn bioleaching, and applications of recycled Mn along with the futuristic applications. Manganese recovery by means of bioleaching will play a major role in changing the present situation where innate assets are quickly diminishing and substitute for metal recovery methodologies are the demand of this time.  相似文献   

18.
Inoculating legumes with commercial rhizobial inoculants is a common agriculture practice. Generally, inoculants are sold in liquid or in solid forms (mixed with carrier). The production of inoculants involves a step in which a high number of cells are produced, followed by the product formulation. This process is largely governed by the cost related to the medium used for rhizobial growth and by the availability of a carrier source (peat) for production of solid inoculant. Some industrial and agricultural by-products (e.g. cheese whey, malt sprouts) contain growth factors such as nitrogen and carbon, which can support growth of rhizobia. Other agro-industrial wastes (e.g. plant compost, filtermud, fly-ash) can be used as a carrier for rhizobial inoculant. More recently, wastewater sludge, a worldwide recyclable waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge). Sludge usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals are usually below the recommended level. In some cases, growth conditions can be optimized by a sludge pre-treatment or by the addition of nutrients. Inoculants produced in wastewater sludge are efficient for nodulation and nitrogen fixation with legumes as compared to standard inoculants. This new approach described in this review offers a safe environmental alternative for both waste treatment/disposal and inoculant production.  相似文献   

19.
The global consumption of manganese is rising due to its growing industrial requirement while the natural reserves of manganese are diminishing at an alarming rate. Consequently, recovery of manganese from metal containing wastes has become highly crucial. Bioleaching of metal from wastes using microbes provides an adequate advantage over the traditional method of recovery. A molecular level understanding of microbial catalyzed manganese recovery is essential for the exploitation of novel microorganisms for similar applications. In current scenario, the application of bioleaching concentrates on cost effective and eco-friendly recovery of precious metals from mining and industrial wastes. This review encompasses the modern improvements in biomining, highlights the comprehensive factors that emphasize the selection of manganese recovery technique, shed insights into spectacular progress in developing molecular based technologies and also identifies the applicability of different models in metal bioremediation which will not only aid in pollution abatement but also in the prevention of occupational health disorder.  相似文献   

20.
The safety and acceptability of many widely used solid waste management practices are of serious concern from the public health point of view. Such concern stems from both distrust of policies and solutions proposed by all tiers of government for the management of solid waste and a perception that many solid waste management facilities use poor operating procedures. Waste management practice that currently encompasses disposal, treatment, reduction, recycling, segregation and modification has developed over the past 150 years. Before that and in numerous more recent situations, all wastes produced were handled by their producers using simple disposal methods, including terrestrial dumping, dumping into both fresh and marine waters and uncontrolled burning. In spite of ever-increasing industrialisation and urbanisation, the dumping of solid waste, particularly in landfills, remains a prominent means of disposal and implied treatment. Major developments have occurred with respect to landfill technology and in the legislative control of the categories of wastes that can be subject to disposal by landfilling. Even so, many landfills remain primitive in their operation. Alternative treatment technologies for solid waste management include incineration with heat recovery and waste gas cleaning and accelerated composting, but both of these technologies are subject to criticism either by environmentalists on the grounds of possible hazardous emissions, failure to eliminate pathogenic agents or failure to immobilise heavy metals, or by landfill operators and contractors on the basis of waste management economics, while key questions concerning the effects of the various practices on public health and environmental safety remain unanswered. The probable and relative effects on both public health and environmental safety of tradition and modern landfill technologies will be evaluated with respect to proposed alternative treatment technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号