首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Large herbivores may modify the ecosystem in a way that affects habitat quality and resource availability for other fauna. The increase in wild ungulate abundance in many areas may therefore lead to ecosystem changes, affecting distribution and reproduction of other species. Moose (Alces alces) in Scandinavia is a good example of a herbivore that has recently increased in abundance and has the potential to affect the ecosystem. In this study, we investigated how different levels of moose winter activity around supplementary feeding stations for moose affect reproduction in two insectivorous passerines: great tits (Parus major) and pied flycatchers (Ficedula hypoleuca). The two bird species showed contrasting responses to high moose activity at feeding stations. Great tits avoided habitats with high moose activity, where fledging success and feeding frequency was lower than at low moose activity habitats. Flycatchers nested more often at high moose activity habitats where fledging weight and feeding frequency were higher than at low moose activity habitats. Filming of nest boxes with great tits showed an increase in adult Lepidoptera in the diet at supplementary feeding stations for moose, and a smaller size of caterpillar prey at intermediate moose activity. The results support the hypothesis that herbivores may affect insectivorous passerines through changed arthropod food availability.  相似文献   

2.
Riparian zones in agricultural landscapes provide linear non-crop habitats for a variety of plant and mammal species, and hence are an important component of biodiversity. To date, variable responses of abundance, species richness, and species diversity of small mammals have been recorded in riparian and upland habitats. To address this variability, we provide a detailed analysis of seasonal changes in abundance and diversity of terrestrial small-mammal communities over a 7-year period within an agricultural landscape in south-central British Columbia, Canada. We tested the hypotheses (H) that abundance, species richness, and species diversity of communities of small mammals (H1), and demographic parameters of reproduction, recruitment, and survival of the major species: deer mouse (Peromyscus maniculatus) and montane vole (Microtus montanus) (H2), would be higher in riparian than upland habitats. Mean total abundance of small mammals was higher in summer and winter, and species richness higher in summer, in riparian than hedgerow habitats. Winter population data supported the total and species abundance patterns for small mammals, but species richness was similar, and diversity lower, in riparian than hedgerow sites during winter periods. Deer mice were the dominant species in terms of abundance and reproductive output for pregnancies and recruitment, but not survival, in riparian sites. Montane voles were similar in abundance and demographic parameters in the two habitats. House mice (Mus musculus) preferred hedgerows and wandering shrews (Sorex vagrans) riparian sites. Demographic parameters for deer mice and montane voles indicated that both riparian and hedgerow sites were “source” rather than “sink” habitats, and likely contribute to maintenance of mammal diversity in agricultural landscapes.  相似文献   

3.
ABSTRACT The practice of feeding cervids in winter, either as a supplement to enhance nutritional status or to divert animals away from roads, railways, or vulnerable habitats, is rising noticeably. Moose (Alces alces) densities in Scandinavia are currently at historically high levels, resulting in amplified damage to economically important young Scots pine (Pinus sylvestris) forest stands. Nevertheless, there is limited information as to how diversionary feeding affects herbivore space use and habitat selection. We followed 32 female moose marked with Global Positioning System collars to evaluate 1) if feeding stations serve as attraction points to the extent that habitat-selection patterns resemble those of central-place foragers (i.e., high usage and more uniform selection close to the attraction point), and 2) if moose using feeding sites select young pine stands less than those not using feeding sites. Moose that used diversionary forage concentrated their space use around feeding stations and selected habitats as predicted for a central-place forager with a decreasing probability of using areas away from feeding sites and a low degree of habitat selectivity close to feeding sites. However, moose that used feeding sites continued to select young pine stands to the same extent as moose that did not use feeding sites. Feeding sites were, therefore, not successful in diverting moose away from valuable natural browse, so we recommend wildlife managers establish feeding sites in sacrifice areas where moose browsing is permissible and, if possible, >1 km from young pine plantations.  相似文献   

4.
Vole–vegetation interactions in a predation‐free taiga environment of northern Fennoscandia were studied by transferring vegetation from natural Microtus habitats into a greenhouse, where three habitat islands of about 30 m2 were created. The ‘islands’ were subjected to simulated summer conditions and a paired female field vole, Microtusagrestis, was introduced to each ‘island’. The development of the female and her young was followed by recurrent live trapping. The development of the vegetation was followed by recurrent marking and censusing of plant shoots at intervals of five days. In the next growing season, two ‘islands’ were subjected to a new grazing treatment to study the impacts of repeated grazing on the vegetation and on the growth and reproduction of voles. Plant biomasses were harvested at the end of each trial. In all trials, the biomasses of graminoids and non‐toxic herbs other than ferns, fireweeds and rosaceous plants were profoundly decimated. Even the biomass of a toxic herb Aconitum lycoctonum decreased largely at pace with the palatable herbs. The least preferred plant categories maintained their biomasses at control levels. Their neutral collective response was created by opposite species‐level trends. Species typical for moist and nutrient‐rich forests suffered from vole grazing, whereas the biomass of species adapted to disturbed habitats increased. In spite of the dramatic changes in the vegetation, the introduced female voles survived throughout the trials and reproduced normally. The young of their first litters survived well and reached the final weights typical for individuals starting to winter as immatures. We conclude that most of the plant biomass found on productive boreal forest floors is potential food for field voles and remains palatable for them even when subjected to recurrent, severe grazing. If nothing else than summer resources were limiting the growth of the field vole populations, the plants currently dominating moist and nutrient‐rich taiga floors could not survive in this habitat.  相似文献   

5.
Large herbivores have a significant impact on boreal forest ecosystems. The modification of resources through their feeding induces changes in trophic dynamics and affects the direction of interactions in a community. Moose Alces alces may decrease the available plant biomass for herbivorous insects on one of their main winter forage species in Fennoscandia, Scots pine Pinus sylvestris, and indirectly alter the abundance of invertebrates through exploitative competition. Moose browsing can also induce chemical, morphological, and phenological changes in plants, changing their nutritive value to insect herbivores such as aphids. Habitat productivity may further modify the responses of aphids to moose browsing. We studied the responses of the gray pine aphid Schizolachnus pineti to different moose densities, and their relations to habitat productivity by sampling pine branches and measuring the number of aphids on pine needles. The experimental setup consisted of 8 exclosures along a productivity gradient, where the feeding, defecation, and urination of 4 densities of moose had been simulated for 7 yr. We here show that high levels of simulated browsing decrease the amount of gray pine aphids in areas with high productivity. In areas with low productivity, however, simulated browsing had no such effect. Habitat productivity should therefore be considered as an important factor that may determine the strength of an areas buffering capacity to high moose densities. Low resource environments appear to be favourable to specialist conifer aphids on pines under high browsing pressure, but the performance of generalist insect herbivores might be lowered.  相似文献   

6.
Summary We investigated how far competitive interactions influence the use of habitats and relative abundance of two species of Microtus in the southwestern Yukon. We worked in the ecotone between alpine tundra and subalpine shrub tundra where populations of singing voles (Microtus miurus) and tundra voles (M. oeconomus) overlap little.We removed tundra voles from shrub tundra on one live-trapping area to look at the effect on the contiguous population of singing voles in alpine tundra. The removal of tundra voles did not affect the distribution or relative abundance of singing voles. The spatial distribution of these species and their movements within habitats suggest that they have a strong habitat preference.Populations of small mammals in the area are extremely dynamic and the relative importance of competitive interactions may change as density varies. At present we have no evidence that competition affects habitat use in M. miurus.  相似文献   

7.
We studied the diet composition and behavioural responses to variable food conditions in Tengmalm’s Owls (Aegolius funereus). The abundance of main prey (voles and mice) of owls was higher in the Ore Mountains, Czech Republic, than in the Kauhava region, Finland. We monitored nests continuously by a camera system to estimate the feeding frequency and to identify prey items provided to nestlings. We recorded 990 prey deliveries at six nests in the Ore Mountains and 1,679 prey deliveries at nine nests in the Kauhava region. Mice (Apodemus) and voles (Microtus and Clethrionomys) were the main foods of owls in the Ore Mountains, whereas voles (Clethrionomys and Microtus) and shrews (Sorex) were the main foods in the Kauhava region. In consequence, on average smaller prey items were brought to nestlings at the Finnish site. However, both absolute and relative (per one nestling) feeding frequency was higher in the Kauhava region, and the biomass available to individual nestlings did not differ between the two areas. Moreover, the Finnish and Czech pairs produced about the same number of fledglings. Our results suggest that male owls are able to maintain the amount of food required for chicks by switching to alternative prey, and to increase their prey delivery rates under conditions of reduced abundance of main food.  相似文献   

8.
Understanding animal movements across heterogeneous landscapes is of great interest because it helps explain the dynamic processes influencing the distribution of individuals in space. Research on how animals move relative to short‐range environmental characteristics are scarce. Our objective was to determine the variables influencing movement of a large ungulate, the moose Alces alces, ranging across a boreal landscape, and to link movement behaviour with limiting factors at a fine scale. We assessed 7 candidate models composed of vegetation, solar energy, and topography variables using step selection functions (SSF) for male and female moose across daily and annual periods. We selected and weighted models using the Bayesian Information Criterion. Variables influencing small‐scale movements of moose differed among periods and between sexes, likely in response to corresponding changes in the importance of limiting factors. Best models often combined many types of variables, although simpler models composed of only vegetation or topography variables explained male's movements during rut and early winter. Moose steps were observed in good feeding stands from summer to early winter for females and from spring to early winter for males, supporting other studies of moose habitat selection. From summer to early winter, females alternatively selected and avoided cover stands during day and night, respectively. Solar energy reaching the ground was important, particularly during late winter and spring, likely due to its effect on snow cover, air temperature, or plant phenology. Moose generally moved in gentle slopes and variable elevation, which may have increased their chances of finding high quality forage, or improved their search of suitable calving sites or mates. Our study revealed the great complexity and dynamic aspects of animal movements in a heterogeneous landscape. Analysis of animal movement provides complementary information to more static habitat selection analyses and helps understanding the spatial variations in the distribution of individuals through time.  相似文献   

9.
Many food webs are affected by bottom‐up nutrient addition, as additional biomass or productivity at a given trophic level can support more consumers. In turn, when prey are abundant, predators may converge on the same diets rather than partitioning food resources. Here, we examine the diets and habitat use of predatory and omnivorous birds in response to biosolids amendment of northern grasslands used as grazing range for cattle in British Columbia, Canada. From an ecosystem management perspective, we test whether dietary convergence occurred and whether birds preferentially used the pastures with biosolids. Biosolids treatments increased Orthoptera densities and our work occurred during a vole (Microtus spp.) population peak, so both types of prey were abundant. American Kestrels (Falco sparverius) consumed both small mammals and Orthoptera. Short‐eared Owls (Asio flammeus) and Long‐eared owls (Asio otus) primarily ate voles (>97% of biomass consumed) as did Northern Harriers (Circus hudsonius, 88% vole biomass). Despite high dietary overlap, these species had minimal spatial overlap, and Short‐eared Owls strongly preferred pastures amended with biosolids. Common Ravens (Corvus corax), Black‐billed Magpies (Pica hudsonia), and American Crows (Corvus brachyrhynchos) consumed Orthoptera, Coleoptera, vegetation, and only a few small mammals; crows avoided pastures with biosolids. Thus, when both insect and mammalian prey were abundant, corvids maintained omnivorous diets, whereas owls and Harriers specialized on voles. Spatial patterns were more complex, as birds were likely responding to prey abundance, vegetation structure, and other birds in this consumer guild.  相似文献   

10.
Based on a long-term dataset (1999–2010), we investigated how the availability of main prey affects the breeding density and food ecology of the Tengmalm’s owl (Aegolius funereus) in the Czech Republic. In particular, we assessed the role of Microtus voles and Apodemus mice in the diet, based on the main predictions of the optimal diet theory that the diet composition depends on the availability of the main prey. We found that (i) the Tengmalm’s owl exhibited no numerical response to the availability of Microtus voles and Apodemus mice in the field; (ii) the availability of Apodemus mice in the field positively affected their proportion in the diet (26 %), and despite a high proportion of Microtus voles in the owls’ diet (47 %), no relationship was found between their availability in the field and proportion in the diet; (iii) the proportion of Apodemus mice was negatively correlated to the proportion of Microtus voles, Sorex shrews and birds in the diet, but no similar relationship was detected for Microtus voles; (iv) the reproductive output of Tengmalm’s owls was positively correlated to the proportion of Apodemus mice in the diet, as well as to Apodemus mice and Microtus vole availability in the field; and (v) diet diversity and diet overlap were not significantly affected by the abundance of Apodemus mice and Microtus voles. Therefore, the validity of these main optimal diet theory predictions was not confirmed, especially for Microtus vole prey, due to an opportunistic choice between Apodemus mice and Microtus voles. We suggest that the reproductive output of nocturnal raptors in Central Europe may be less dependent on Microtus vole supply than that of their northern counterparts.  相似文献   

11.
Large herbivores often have key functions in their ecosystems, and may affect ecosystem processes with cascading effects on other animals. The mechanisms often involve relocations of resources of various kinds, including reduction in resource availability following foraging and increase in resources from animal excreta. As large herbivore populations in Europe generally are intensely managed, management activities may interact with the activities of the herbivores themselves in the effect on other ecosystem components. We investigated the effects of moose (Alces alces) winter browsing, together with the effect of net nutrient input via supplementary winter feeding of moose on functional composition and species richness of birds in a boreal forest. Supplementary feeding stations for moose had a net zero effect on bird species richness and abundance, because negative effects of moose browsing were balanced by positive effects of nutrient input. Sites with a similar browsing intensity as at feeding stations but without nutrient input had lower abundance and species richness than feeding stations. Functional groups of bird species showed differing responses: birds nesting at or below browsing height were negatively affected by moose browsing, whereas species nesting above the browsing zone were positively affected by moose browsing. Insect-eating species responded negatively to moose browsing on birch but positively to nutrient input at feeding stations, whereas seed-eating species responded positively to birch browsing and negatively to feeding stations. This study showed that both high levels of cervid activity and human management interventions influence bird communities.  相似文献   

12.
Management of post-harvest woody debris structures (e.g., piles and windrows) may help conserve mammal diversity in commercial forest landscapes. A windrow (continuous woody debris) provides a linear habitat to connect patches and reserves of uncut forest and riparian areas to maintain forest-floor small mammals and allow some of their avian and mammalian predators to access and traverse clearcut openings. However, most post-harvest residues are arranged in independent piles of woody debris (separated by 20–30 m, on average) and we asked if a linear configuration of piles would provide similar habitat conditions for small mammals as that achieved by a windrow of continuous woody debris. We tested two hypotheses (H) that piles of woody debris arranged in a linear configuration, on newly clearcut sites, would (H1) enhance (a) abundance of the major small mammal species (Myodes gapperi and Microtus spp.), and (b) total abundance, species richness, and species diversity of the forest-floor small mammal community; compared with dispersed (conventional) treatment of woody debris. H2 predicted that, because of the continuity of habitat, responses of small mammals in windrows would be greater than those in piles of woody debris. Three study areas were monitored in southern British Columbia, Canada, and each had three treatments of woody debris: dispersed, in a linear set of piles, and as a windrow. Forest-floor small mammals were sampled by live-trapping in spring and fall periods from 2010 to 2012. Woody debris in a linear configuration of piles and in windrows enhanced mean abundance of the southern red-backed vole (M. gapperi), total voles, and total abundance of small mammals compared with the dispersed treatment. Small mammal responses were variable between spring and fall periods, but overall mean values ± 95% CIs indicated that abundance of M. gapperi, total voles, and total small mammals were reasonably similar in piles and windrows.  相似文献   

13.
Climate instability strongly affects overwintering conditions in organisms living in a strongly seasonal environment and consequently their survival and population dynamics. Food, predation and density effects are also strong during winter, but the effect of fragmentation of ground vegetation on ground-dwelling small mammals is unknown. Here, we report the results of a winter experiment on the effects of habitat fragmentation and food on experimental overwintering populations of bank voles Myodes glareolus. The study was conducted in large outdoor enclosures containing one large, two medium-sized or four small habitat patches or the total enclosure area covered with protective tall-grass habitat. During the stable snow cover of midwinter, only food affected the overwintering success, body condition, trappability and earlier onset of breeding in bank voles. However, after the snow thaw in spring, habitat fragmentation gained importance again, and breeding activities increased the movements of voles in the most fragmented habitat. The use of an open, risky matrix area increased along the habitat fragmentation. Our experiment showed that long-lasting stable snow cover protects overwintering individuals in otherwise exposed and risky ground habitats. We conclude that a stable winter climate and snow cover should even out habitat fragmentation effects on small mammals. However, along prolonged snow-free early winter and in an earlier spring thaw, this means loss of protection by snow cover both in terms of thermoregulation and predation. Thus, habitat cover is important for the survival of small ground-dwelling boreal mammals also during the non-breeding season.  相似文献   

14.
Understanding the interacting role of climate and habitat in shaping wildlife population dynamics can help to reveal synergistic pathways that drive population resilience or decline across variable and changing environments. Moose (Alces alces) is a pan-boreal herbivore experiencing population declines across large portions of North America; however, the species has shown variable response to climate across its distribution. We investigated moose demographic response to climate and evaluated the interacting role of habitat across 36 years and along a biogeographic gradient in Ontario, Canada that has experienced decadal changes to climate and habitat quality. Moose density exhibited a nonlinear trend that initially increased and then decreased over the study timeframe and was negatively affected by regional and local patterns of winter severity and later frost onset. Recruitment exhibited a monotonic decline and was positively affected by spring heat and deciduous forest cover, while also exhibiting density-dependent effects. The negative response of moose density to winter severity was reduced in Wildlife Management Units (WMUs) with higher proportions of dense canopy cover, supporting expectations that this habitat type improves moose winter mobility and predator avoidance. The negative effect of later frost onset was greater in WMUs with more regenerating forest, and both variables are associated with higher exposure to parasites and predators. Further, density-dependent effects on recruitment were suppressed by warmer springs that support vegetation productivity and in WMUs with higher proportions of dense canopy cover that can provide concealment from predators. Our study illustrates the important role habitat conditions can have to mitigate, or exacerbate, climate-change effects for a wide-spread herbivore occupying variable environments by potentially altering pathways relevant to energetic balance, predation, and parasite transmission. In this system, moose occupying sparse or regenerating forests are more susceptible to adverse climatic effects and should be managed accordingly.  相似文献   

15.
The diet of the red fox Vulpes vulpes was investigated in five regions of northeastern Poland by stomach content analysis of 224 foxes collected from hunters. The red fox is expected to show the opportunistic feeding habits. Our study showed that foxes preyed mainly on wild prey, with strong domination of Microtus rodents, regardless of sex, age, month and habitat. Voles Microtus spp. were found in 73% of stomachs and constituted 47% of food volume consumed. Other food items were ungulate carrion (27% of volume), other mammals (11%), birds (9%), and plant material (4%). Sex- and age-specific differences in dietary diversity were found. Adult males and juvenile foxes had larger food niche breadths than adult females and their diets highly overlapped. Proportion of Microtus voles increased from autumn to late winter. Significant habitat differences between studied regions were found. There was a tendency among foxes to decrease consumption of voles with increasing percentage of forest cover. Based on our findings, red foxes in northeastern Poland can be recognized as a generalist predators, consuming easily accessible and abundant prey. However, high percentage of voles consumed regardless of age, sex, month, or habitats may indicate red fox specialization in preying on Microtus rodents.  相似文献   

16.
Scandinavian moose (Alces alces) eat Scots pine (Pinus sylvestris) in winter. Although North American moose are known to eat conifers such as true firs (Abies spp.) in winter, substantial consumption of pine by moose in North America has not been documented. Here, we document short-term winter preferences of human-habituated northwestern moose (Alces alces andersoni) for branches of mature North American and European conifer species as determined by a cafeteria-style feeding trial. Moose selected for species such as Douglas fir (Pseudotsuga menziesii; from which they took the smallest bite diameters) while avoiding species such as lodgepole pine (Pinus contorta; from which they took the largest bites) and hybrid white spruce (Picea glauca × engelmanii). The amount of species-specific biomass consumed by moose was negatively correlated with bite diameters taken from branches of those species and did not appear to be significantly influenced by differences in twig morphology between species. Our trial suggests that northwestern moose readily consume conifers in winter and, from the species we tested, prefer Douglas fir. While no clear preference existed between Scots pine and lodgepole pine, moose avoided lodgepole pine, but not Scots pine, relative to Douglas fir. Our trial suggests that northwestern moose are more likely to feed on the branches of Douglas fir than pine, which may be of interest to foresters managing conifers within the North American range of moose, particularly where Scots pine are being considered for planting.  相似文献   

17.
Although competition and predation are considered to be among the most important biotic processes influencing the distribution and abundance of species in space and time, the relative and interactive roles of these processes in communities comprised of cyclically fluctuating populations of small mammals are not well known. We examined these processes in and among populations of field voles, sibling voles, bank voles and common shrews in western Finland, using spatially replicated trapping data collected four times a year during two vole cycles (1987–1990 and 1997–1999). Populations of the four species exhibited relatively strong interspecific temporal synchrony in their multiannual fluctuations. During peak phases, we observed slight deviations from close temporal synchrony: field vole densities peaked at least two months earlier than those of either sibling voles or bank voles, while densities of common shrews peaked even earlier. The growth rates of all four coexisting small mammal species were best explained by their own current densities. The growth rate of bank vole populations was negatively related to increasing densities of field voles in the increase phase of the vole cycle. Apart from this, no negative effects of interspecific density, direct or delayed, were observed among the vole species. The growth rates of common shrew populations were negatively related to increasing total rodent (including water voles and harvest mice) densities in the peak phase of the vole cycle. Sibling voles appeared not to be competitively superior to field voles on a population level, as neither of these Microtus voles increased disproportionately in abundance as total rodent density increased. We suggest that interspecific competition among the vole species may occur, but only briefly, during the autumn of peak years, when the total available amount of rodent habitat becomes markedly reduced following agricultural practices. Our results nonetheless indicate that interspecific competition is not a strong determinant of the structure of communities comprised of species exhibiting cyclic dynamics. We suggest that external factors, namely predation and shortage of food, limit densities of vole populations below levels where interspecific competition occurs. Common shrews, however, appear to suffer from asymmetric space competition with rodents at peak densities of voles; this may be viewed as a synchronizing effect.  相似文献   

18.
Logging in the boreal forest may benefit moose by increasing food availability. However, the influence of tree plantations on moose behavior, especially on moose spatial ecology, is poorly understood. We assessed the impacts of black spruce plantations on moose winter distribution at a landscape scale in the Bas-Saint-Laurent region (Québec, Canada). We used winter aerial surveys to examine relationships among plantation characteristics and other habitat variables known to affect moose distribution. The total area of plantations positively influenced moose abundance, but highly aggregated plantations resulted in fewer moose. Moose abundance was also positively associated with food availability and the density of edges between stands providing cover and stands offering high food availability, but moose abundance was negatively associated with road density. Although plantation characteristics were less influential than habitat variables related to foraging and predator avoidance, we demonstrate that the area of black spruce plantations and their configuration should be considered in moose management. We conclude that an integrated management strategy is needed to find a balance between overdeveloped road networks (needed to join homogeneously distributed plantations) and agglomerated plantations in order to mitigate impacts on moose winter distribution. © 2012 The Wildlife Society.  相似文献   

19.
Abstract Roads often negatively affect terrestrial wildlife, via habitat loss or fragmentation, noise, and direct mortality. We studied moose (Alces alces) behavior relative to a road network, in an area with a history of moose-vehicle accidents, to determine when moose were crossing roadways or using areas near roads and to investigate if environmental factors were involved in this behavior. We tracked 47 adult moose with Global Positioning System collars in a study area crossed by highways and forest roads. We hypothesized that moose would avoid crossing roads but would make occasional visits to roadsides to feed on sodium-rich vegetation and avoid biting insects. Further, we expected moose avoidance to be greater for highways than forest roads. We recorded 196,710 movement segments but only observed 328 highway and 1,172 forest-road crossings (16 and 10 times lower than expected by chance). Moose usually avoided road proximity up to ≥500 m on each side but 20% of collared moose made visits to areas within 50 m of highways, which might have resulted from moose searching for sodium in vegetation and roadside salt pools. In fact, vegetation along highways had higher sodium concentrations and was browsed in similar proportions to vegetation in adjacent forest, despite moose avoidance of these zones. Moose, however, did not use areas near roads more during periods of biting insect abundance. Our results supported the hypothesis of scale-dependent selection by moose; avoidance of highways at a coarse scale may confer long-term benefits, whereas selection of highway corridors at finer scales may be part of a strategy to overcome short-term limiting factors such as sodium deficiency. We found a positive relationship between home-range size and the proportion of road axes they contained, suggesting that moose either compensated for habitat loss or made specific movements along highways to gather sodium. The presence of sodium along highways likely increases moose-vehicle accident risks. Removal of salt pools or use of a de-icing salt other than sodium chloride should render highway surroundings less attractive to moose.  相似文献   

20.
《Mammalian Biology》2014,79(5):306-312
Northern small rodents are well known for their population cycles which represent a key process for the functioning of arctic and boreal ecosystems. Habitat use often changes in the course of the cycle. Higher densities can either lead to spill-over into secondary habitats or to increased habitat specificity because of interspecific competition. Here we investigate whether voles in the shrub tundra of southern Yamal exhibit density dependent habitat use. Voles were trapped at the Erkuta Tundra Monitoring Site (N 68.2°, E 69.2°) in three characteristic habitats over five years covering all phases of the population cycle. Our analyses focused on the two most numerous species Microtus gregalis (52% of individuals caught) and M. middendorffii (36%). A small-scale spill-over effect was observed for M. gregalis, which increasingly used the open habitat adjacent to their preferred willow thickets at high abundance. At a larger scale no such effect was observed for the two Microtus species – a result which is explained by the overall moderate densities of voles and the large spatial extent of the primary habitat of M. middendorffii: moist moss dwarf shrub tundra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号