首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Chemoattractants are thought to be the first mediators generated at sites of bacterial infection. We hypothesized that signaling through G protein-coupled chemoattractant receptors may stimulate cytokine production. To test this hypothesis, a human mast cell line (HMC-1) that normally expresses receptors for complement components C3a and C5a at low levels was stably transfected to express physiologic levels of fMLP receptors. We found that fMLP, but not C3a or C5a, induced macrophage inflammatory protein (MIP)-1ss (CCL4) and monocyte chemoattractant protein-1 (CCL2) mRNA and protein. Although fMLP stimulated both sustained Ca(2+) mobilization and phosphorylation of extracellular signal-regulated kinase (ERK), these responses to C3a or C5a were transient. However, transient expression of C3a receptors in HMC-1 cells rendered the cells responsive to C3a for sustained Ca(2+) mobilization and MIP-1ss production. The fMLP-induced chemokine production was blocked by pertussis toxin, PD98059, and cyclosporin A, which respectively inhibit G(i)alpha activation, mitgen-activated protein kinase kinase-mediated ERK phosphorylation, and calcineurin-mediated activation of NFAT. Furthermore, fMLP, but not C5a, stimulated NFAT activation in HMC-1 cells. These data indicate that chemoattractant receptors induce chemokine production in HMC-1 cells with a selectivity that depends on the level of receptor expression, the length of their signaling time, and the synergistic interaction of multiple signaling pathways, including extracellular signal-regulated kinase phosphorylation, sustained Ca(2+) mobilization and NFAT activation.  相似文献   

4.

Background

The multi-step process of carcinogenesis can be more fully understood by characterizing gene expression changes induced in cells by carcinogens. In this study, expression microarrays were used to monitor the activity of 18,224 cDNA clones in MCF-7 and HepG2 cells exposed to the carcinogen benzo(a)pyrene (BaP) or its non-carcinogenic isomer benzo(e)pyrene (BeP). Time and concentration gene expression effects of BaP exposure have been assessed and linked to other measures of cellular stress to aid in the identification of novel genes/pathways involved in the cellular response to genotoxic carcinogens.

Results

BaP (0.25–5.0 μM; 6–48 h exposure) modulated 202 clones in MCF-7 cells and 127 in HepG2 cells, including 27 that were altered in both. In contrast, BeP did not induce consistent gene expression changes at the same concentrations. Significant time- and concentration-dependent responses to BaP were seen in both cell lines. Expression changes observed in both cell lines included genes involved in xenobiotic metabolism (e.g., CYP1B1, NQO1, MGST1, AKR1C1, AKR1C3,CPM), cell cycle regulation (e.g., CDKN1A), apoptosis/anti-apoptosis (e.g., BAX, IER3), chromatin assembly (e.g., histone genes), and oxidative stress response (e.g., TXNRD1). RTqPCR was used to validate microarray data. Phenotypic anchoring of the expression data to DNA adduct levels detected by 32P-postlabelling, cell cycle data and p53 protein expression identified a number of genes that are linked to these biological outcomes, thereby strengthening the identification of target genes. The overall response to BaP consisted of up-regulation of tumour suppressor genes and down-regulation of oncogenes promoting cell cycle arrest and apoptosis. Anti-apoptotic signalling that may increase cell survival and promote tumourigenesis was also evident.

Conclusion

This study has further characterised the gene expression response of human cells after genotoxic insult, induced after exposure to concentrations of BaP that result in minimal cytotoxiCity. We have demonstrated that investigating the time and concentration effect of a carcinogen on gene expression related to other biological end-points gives greater insight into cellular responses to such compounds and strengthens the identification of target genes.  相似文献   

5.
Overexpression of protein kinase C-alpha and protein kinase C-delta has been shown to modulate a number of biological effects, including the cell growth and differentiation. We hypothesized that heparin, a potent antimitogenic drug, could affect the cell proliferation by inhibiting the expression of specific protein kinase C genes. Heparin, markedly but not completely, inhibited the serum-stimulated protein kinase C-alpha and -delta mRNA expression. Protein kinase C inhibition or down-regulation significantly decreased the serum-induced protein kinase C isoenzyme gene expression. Heparin failed to inhibit the residual effect of serum that was resistant to the above-mentioned treatments. Phorbol 12-myristate 13-acetate elicited an increase of protein kinase C isoenzyme gene expression that was completely prevented by protein kinase C inhibition or down-regulation. Heparin dose-dependently counteracted and ultimately abolished the increase in the protein kinase C isoenzyme gene expression elicited by phorbol 12-myristate 13-acetate. These results suggest that the inhibition of an autoregulatory role wielded by protein kinase C on the protein kinase C-alpha and -delta gene expression might represent a possible mechanism by which glycosaminoglycans modulate the cell growth.  相似文献   

6.
MKK7 is a recently discovered mitogen-activated protein kinase (MAPK) kinase that is unique in that it specifically activates only the c-JUN NH(2)-terminal protein kinase (JNK) family of enzymes. Very little is known about the biological role of MKK7. We generated inducible cell lines from the human embryonal kidney carcinoma cell line, HEK293, by stable transfection with a constitutively active mutant of MKK7, MKK7(3E), fused to green fluorescent protein (GFP), under the control of an ecdysone-inducible promoter. Treatment of cells with the synthetic ecdysone analog ponasterone A induced expression of GFP-MKK7(3E) and resulted in sustained activation of endogenous JNK, but neither of the other endogenous MAPKs, ERK or p38. Red and green fluorescing cDNA copies of mRNA extracted from cells obtained before and after induction of GFP-MKK7(3E) were hybridized to microarrays containing more than 6,000 cDNAs in eight independent experiments. By selection criteria, 23 genes were differentially regulated after 24 h of induction of GFP-MKK7(3E) and 16 after 48 h. The expression of 9 genes was consistently changed after both 24 and 48 h of induction. These changes included down-regulation of three genes, c-myc, angiopoietin-2, and glucose-regulated protein 58, and up-regulation of 6 genes, tissue factor pathway inhibitor-2, GRP78, autotaxin, PPP1R7, the DKFZ cDNA p434D0818, and 1 unknown gene. Consistent with previously described roles of several of the altered genes, MKK7(3E) inhibited cell proliferation. These data implicate active MKK7 in the negative regulation of cell proliferation and provide evidence for a new role for this kinase in the regulation of a distinct, hitherto unrecognized set of genes.  相似文献   

7.
8.
9.
10.
11.
Changes in gene/protein expression markedly outlast the transient changes in behavior evoked by a single dose of a psychostimulant. These changes in gene expression are thought to underlie and/or trigger enduring changes in neuroplasticity that lead to drug addiction. We used cDNA arrays to gain a more complete picture of changes in striatal gene expression 1 and 3 h after an acute injection of amphetamine. Consistent, reliable gene expression changes were detected when criteria of at least a 1.5-fold difference and three replicate hybridizations using independent samples were performed. Using these criteria, the mRNA for three immediate early genes (IEGs), coding for activity-regulated cytoskeletal-associated protein (Arc), nerve growth factor-induced protein A (NGFI-A; early growth response protein 1) and nerve growth factor-induced protein B (NGFI-B), were upregulated 1 and 3 h after amphetamine as previously described. Novel genes, RL/IF-1 (coding for I kappa B alpha chain) and serum/glucocorticoid-regulated serine/threonine protein kinase (SGK) also were increased throughout the striatum, at 1 but not 3 h. Conversely, amphetamine increased the mRNA coding for the secretogranin II precursor (chromogranin C) only at the 3 h time point when a specific decrease in regulator of G-protein signaling 4 (RGS4) mRNA was also observed. Gene changes and unique patterns of expression were verified by in situ hybridization, providing valuable information about changes in gene expression in response to acute amphetamine.  相似文献   

12.
V E Valge  J G Wong  B M Datlof  A J Sinskey  A Rao 《Cell》1988,55(1):101-112
We have tested the role of protein kinase C in mRNA expression and T cell proliferation mediated through the T cell receptor and through the interleukin-2 (IL-2) receptor. Chronic treatment of a mouse T cell clone with phorbol esters caused a complete loss of protein kinase C activity and a concomitant loss of proliferation to T cell receptor ligands (antigen, lectins, antireceptor antibodies). In contrast, kinase C-depleted T cells retained the ability to proliferate to IL-2. Loss of the T cell receptor response was not due to decreased cell surface expression of receptor or impairment of early receptor function (phosphatidylinositol turnover, calcium mobilization). Kinase C-depleted T cells showed no induction of mRNAs for activation-associated genes on exposure to the T cell receptor ligand Concanavalin A; expression of a subset of the same mRNAs in response to IL-2 was unaffected. We conclude that kinase C is required for mRNA expression and subsequent proliferation mediated through the T cell receptor pathway but is not involved in mRNA expression and proliferation in response to IL-2.  相似文献   

13.
AimsThis study aims to identify by a molecular genetic approach potential targets in mast cells at which 1,4-benzodiazepines may cause their inhibitory effect on mast cell activity.Main methodsGene expression analyses with microarray gene chip and/or quantitative PCR were performed using 1,4-benzodiazepine-treated human mast cell leukemia HMC-1.2 cells, promyelocytic leukemia HL-60 cells and human mast cells from healthy volunteers and patients with mast cell activation disease (MCAD). Pathway analysis was applied to search for enriched biological functions and canonical pathways within differentially regulated genes.Key findingsBoth neoplastic and normal human mast cells express several GABAA receptor subunits at the mRNA level. In mast cells from MCAD patients expression of some GABAA receptor subunits and expression of the translocator protein TSPO are increased compared with those from healthy controls. Expression of the protein tyrosine kinases Lyn, Fgr and Yes1 was increased in HMC-1.2 cells as compared with the ontogenetically related HL60 cells. Differences in gene regulation in HMC-1.2 cells after treatment with the 1,4-benzodiazepines clonazepam, flunitrazepam and 4-chlorodiazepam suggested that signaling and gene expression induced by clonazepam was similar to that of flunitrazepam but different from that of 4-chlorodiazepam. This conclusion is supported by the results of the pathway analysis.SignificanceA novel type of GABAA receptors on mast cells appears to be involved in the inhibition of mast cell activity by 1,4-benzodiazepines. These receptors seem to be composed without γ subunits suggesting unique pharmacological properties. An action at Src-kinases, or at TSPO located in the plasma membrane may also be involved.  相似文献   

14.
15.
The generation of inorganic phosphate by alkaline phosphatase during osteoblast differentiation represents an important signaling event, although the molecular and cellular consequences are currently undefined. We have previously described osteopontin as a gene regulated by an increase in inorganic phosphate not only in osteoblasts but also in other cell types. We describe here the identification of specific signaling pathways required for the stimulation of osteopontin expression by inorganic phosphate. We have determined that phosphate selectively activates the extracellular signal-regulated kinase (ERK1/2) signaling pathway but does not activate the other mitogen-activated protein kinase signaling proteins, p38, or the c-Jun N-terminal kinase. In addition, our results suggest that cellular exposure to 10 mm inorganic phosphate causes a biphasic ERK1/2 activation. The second ERK1/2 activation is required for osteopontin regulation, whereas the first is not sufficient. Analysis of common protein kinase families has revealed that phosphate-induced osteopontin expression specifically uses a protein kinase C-dependent signaling pathway. In addition, our results suggest that protein kinase C and ERK1/2 are not part of the same pathway but constitute two distinct pathways. Finally, we have determined that the proteasomal activity is required not only for phosphate-induced expression of osteopontin but also for the induction of osteopontin in response to 12-O-tetradecanoylphorbol 13-acetate and okadaic acid. The data presented here define for the first time the ability of increased inorganic phosphate to stimulate specific signaling pathways resulting in functionally significant changes in gene expression and identify three important signaling pathways in the regulation of osteopontin.  相似文献   

16.
Exposure of MCF-7 human breast cancer cells to phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate (TPA) results in a dose-dependent inhibition of cell proliferation. One of the earliest biochemical events induced by TPA is the translocation of protein kinase C from the cytosolic to the particulate compartment. We have investigated the effects of permeant diacylglycerol 1,2-dioctanoyl-glycerol (diC8) on both protein kinase C activity and MCF-7 cell proliferation. DiC8 induces a discrete but significant translocation of protein kinase C within the first minutes of MCF-7 cell treatment (26 +/- 6%, mean +/- SD of 5 different experiments, upon 5 min incubation in the presence of 43 micrograms/ml diC8). However, this effect is only transient as the enzymatic activity returns to the control value after 60 min. DiC8 mimics the effect of TPA on MCF-7 cell proliferation. The dose-response curves for both protein kinase C translocation and cell growth inhibition show that diC8 exerts its effects on both parameters in the same range of concentrations, despite some discrepancies at the lowest doses. We also report that long-term treatment of the cells with diC8 does not lead to the protein kinase C disappearance observed during prolonged exposure to TPA. All together, our results reinforce the hypothesis of a negative modulatory role of protein kinase C in MCF-7 cell proliferation and suggest that the enzyme translocation but not its down-regulation could be a pre-requisite in the biological cell response.  相似文献   

17.
18.
Many heavy metals, including nickel (Ni), cadmium (Cd), and chromium (Cr) are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells.  相似文献   

19.
The capacities of eurythermal ectotherms to withstand wide ranges of temperature are based, in part, on abilities to modulate gene expression as body temperature changes, notably genes encoding proteins of the cellular stress response. Here, using a complementary DNA microarray, we investigated the sequence in which cellular stress response-linked genes are expressed during acute heat stress, to elucidate how severity of stress affects the categories of genes changing expression. We also studied how prior acclimation history affected gene expression in response to acute heat stress. Eurythermal goby fish (Gillichthys mirabilis) were acclimated to 9 ± 0.5, 19 ± 0.5, and 28 ± 0.5°C for 1 mo. Then fish were given an acute heat ramp (4°C/h), and gill tissues were sampled every +4°C to monitor gene expression. The average onset temperature for a significant change in expression during acute stress increased by ~2°C for each ~10°C increase in acclimation temperature. For some genes, warm acclimation appeared to obviate the need for expression change until the most extreme temperatures were reached. Sequential expression of different categories of genes reflected severity of stress. Regardless of acclimation temperature, the gene encoding heat shock protein 70 (HSP70) was upregulated strongly during mild stress; the gene encoding the proteolytic protein ubiquitin (UBIQ) was upregulated at slightly higher temperatures; and a gene encoding a protein involved in cell cycle arrest and apoptosis, cyclin-dependent kinase inhibitor 1B (CDKN1B), was upregulated only under extreme stress. The tiered, stress level-related expression patterns and the effects of acclimation on induction temperature yield new insights into the fundamental mechanisms of eurythermy.  相似文献   

20.
The KC gene is a cell cycle-dependent competence gene originally identified in platelet-derived growth factor-stimulated BALB/c-3T3 cells. This gene is also induced in murine peritoneal macrophages in response to activation stimuli. We have examined the expression of the KC gene in cultured porcine aortic endothelial cells following treatment with bacterial lipopolysaccharide (LPS) as a first step in defining the early molecular events involved in endothelial cell stimulation by physiologically relevant modulators. LPS markedly elevated the steady-state level of KC mRNA in confluent endothelial cells; maximum induction of KC occurred in the cells following exposure to 10 ng/ml LPS for 2 h. LPS did not increase the growth fraction of the cells, nor was the KC mRNA level changed in dense endothelial cells stimulated to enter the cell cycle with epidermal growth factor. However, KC mRNA expression was elevated by addition of serum to starved, subconfluent endothelial cell cultures. Treatment of endothelial cells with phorbol myristate acetate (PMA) and 1-oleoyl-2-acetyl-glycerol (OAG) also induced KC gene expression. A maximum response was obtained with 10 nM PMA, the effect decreasing with higher levels of the phorbol ester. The calcium ionophore A23187 exhibited little stimulatory activity alone; however, the ionophore did cause a doubling in the PMA-stimulated KC expression. The increased expression of KC induced by LPS and PMA was inhibited by the presence of 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H7), a protein kinase C inhibitor, but not by HA1004 (an H7 analogue with little protein kinase C inhibitory activity). No cytotoxicity was observed in inhibitor or LPS-treated endothelial cell cultures. These results demonstrate that KC gene expression is stimulated by LPS in vascular endothelial cells in a proliferation-independent process. Second, unlike LPS-induced KC expression in macrophages and platelet-derived growth factor-induced KC expression in 3T3 cells, LPS induction of KC in endothelial cells appears to require activation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号