首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses.  相似文献   

2.
<正>Type 2 diabetes mellitus is a metabolic disorder that is characterized by high blood glucose due to either insulin resistance or insulin deficiency[1].A direct correlation between D-glucose and diabetic complications has long been established,and is the focus of most research in this field.In contrast,D-Ribose has been overlooked so far as a potential risk player in the development of diabetes.  相似文献   

3.
Sphingolipids, including sphingosine-1-phosphate (S1P), have been shown to function as signaling mediators to regulate diverse aspects of plant growth, development, and stress response. In this study, we performed functional analysis of a rice (Oryza sativa) S1P lyase gene OsSPL1 in transgenic tobacco plants and explored its possible involvement in abiotic stress response. Overexpression of OsSPL1 in transgenic tobacco resulted in enhanced sensitivity to exogenous abscisic acid (ABA), and decreased tolerance to salt and oxidative stress, when compared with the wild type. Furthermore, the expression levels of some selected stress-related genes in OsSPL1-overexpressing plants were reduced after application of salt or oxidative stress, indicating that the altered responsiveness of stress-related genes may be responsible for the reduced tolerance in OsSPL1-overexpressing tobacco plants under salt and oxidative stress. Our results suggest that rice OsSPL1 plays an important role in abiotic stress responses.  相似文献   

4.
Dehwah MA  Xu A  Huang Q 《遗传学报》2012,39(1):11-18
MicroRNAs belong to a newly identified class of small non-coding RNAs that have been widely implicated in the fine-tuning of many physiological processes such as the pathogenesis of type 2 diabetes(T2D) and obesity.Microarray studies have highlighted an altered profile of miRNA expression in insulin target tissues in diabetic and obese models.Emerging evidences suggest that miRNAs play significant roles in insulin production,secretion and actions,as well as in diverse aspects of glucose homeostasis and adipocyte differentiation. The identification of tissue-specific miRNAs implicated in T2D and obesity might be useful for the future development of effective strategies for early diagnosis and therapeutic intervention of obesity-related medical complications.  相似文献   

5.
6.
Reactive oxygen species(ROS) are produced during normal physiologic processes with the consumption of oxygen. While ROS play signaling roles, when they are produced in excess beyond normal antioxidative capacity this can cause pathogenic damage to cells. The majority of such oxidation occurs in polyunsaturated fatty acids and sulfhydryl group in proteins, resulting in lipid peroxidation and protein misfolding, respectively. The accumulation of misfolded proteins in the endoplasmic reticulum(ER) is enhanced under conditions of oxidative stress and results in ER stress, which, together, leads to the malfunction of cellular homeostasis. Multiple types of defensive machinery are activated in unfolded protein response under ER stress to resolve this unfavorable situation. ER stress triggers the malfunction of protein secretion and is associated with a variety of pathogenic conditions including defective insulin secretion from pancreatic β-cells and accelerated lipid droplet formation in hepatocytes. Herein we use nonalcoholic fatty liver disease(NAFLD) as an illustration of such pathological liver conditions that result from ER stress in association with oxidative stress. Protecting the ER by eliminating excessive ROS viathe administration of antioxidants or by enhancing lipidmetabolizing capacity via the activation of peroxisome proliferator-activated receptors represent promising therapeutics for NAFLD.  相似文献   

7.
One of the main causes leading to mortality in diabetes is myocardial disease. Using streptozotocin (STZ)-induced diabetic animals, it has been possible to characterize diabetes-induced myocardial abnormalities. Interstitial and microvascular disorders are known to be a characteristic part of the diabetic cardiomyopathy and partly resist insulin therapy. Because diabetic damage is partly attributed to oxidative stress, antioxidant treatment may be able to reduce this damage. The aim of this study was to investigate the cardioprotective effect of sodium selenite, known as an antioxidant agent. The diabetes was induced by ip injection of 50 mg/kg body wt STZ. The duration of diabetes was 5 wk. The protected group received (ip) 5 μmol/kg body wt/d sodium selenite (Na2SeO3) over 4 wk following diabetes induction. Electron and light microscopic morphometry of heart samples revealed typical diabetic alterations consisting in an increase in collagen content, vacuolation, diminishing of the cardiomyocyte diameter, alteration in myofilaments and Z-lines of myofibers, and myofibrillary degeneration. Sodium selenite treatment could prevent the loss of myofibrills and reduction of myocyte diameter. In the sodium-selenite-treated diabetic rat heart, alterations of the discus intercalaris and nucleus were corrected, and degenerations seen in myofilaments and Z-lines were reversed by this treatment. Under these findings, one can suggest that sodium selenite treatment may alleviate late diabetic complications when it is used under control conditions.  相似文献   

8.
9.
Reproduction is the highest energy demand period for small mammals, during which both energy intake and expenditure are increased to cope with elevated energy requirements of offspring growth and somatic protection. Oxidative stress life history theory proposed that reactive oxygen species(ROS) were produced in direct proportion to metabolic rate, resulting in oxidative stress and damage to macromolecules. In the present study, several markers of oxidative stress and antioxidants activities were examined in brain, liver, kidneys, skeletal muscle and small intestine in non-lactating(Non-Lac) and lactating(Lac) KM mice. Uncoupling protein(ucps) gene expression was examined in brain, liver and muscle. During peak lactation, gross energy intake was 254% higher in Lac mice than in Non-Lac mice. Levels of H2O2 of Lac mice were 17.7% higher in brain(P<0.05), but 21.1%(P<0.01) and 14.5%(P<0.05) lower in liver and small intestine than that of Non-Lac mice. Malonadialdehyde(MDA) levels of Lac mice were significantly higher in brain, but lower in liver, kidneys, muscle and small intestine than that of Non-Lac mice. Activity of glutathione peroxidase(GSH-PX) was significantly decreased in brain and liver in the Lac group compared with that in the Non-Lac group. Total antioxidant capacity(TAOC) activity of Lac mice was significantly higher in muscle, but lower in kidneys than Non-Lac mice. Ucp4 and ucp5 gene expression of brain was 394% and 577% higher in Lac mice than in Non-Lac mice. These findings suggest that KM mice show tissuedependent changes in both oxidative stress and antioxidants. Activities of antioxidants may be regulated physiologically in response to the elevated ROS production in several tissues during peak lactation. Regulations of brain ucp4 and ucp5 gene expression may be involved in the prevention of oxidative damage to the tissue.  相似文献   

10.
The benefits of estrogen in cardiovascular system include a reduction in low-density lipoprotein cholesterol (LDL-C), decrease in LDL oxidation, and enhancement of vascular function [1]. Estrogen replacement therapy, however, has been linked to an increased risk of tissue-specific side effects including breast cancer and uterine cancer [2]. These issues have led to the development of hormone replacement therapy (HRT) which combines estrogen and progestin. Progestin can reverse endometrial hyperplasia induced by estrogen. The most commonly used progestin in HRT is medroxyprogesterone acetate (MPA), a synthetic progestin, although there is some evidence that the administration of MPA is not as beneficial as natural progesterone [3]. Findings from randomized placebo-controlled trials have demonstrated that the combination of estrogen and MPA does not confer cardiac protection and may increase the risk of coronary heart disease among healthy postmenopausal women, especially in the first year after initiation of hormone therapy. Furthermore, an increase in the risk of breast cancer was also found with this therapy [4]. Although the role of progestin remains poorly defined, it is possible that the coadministration of progestin could counteract the cardioprotective effects of estrogen .  相似文献   

11.
Hypertension is a major problem worldwide. There is much evidence to suggest that reactive oxygen species (ROS) radical may play a role in the development of organ damage associated with cardiovascular disease and hypertension. ( - )Epicatechin, a member of tea catechins belonging to flavonoid group, is known to be a potent anti-oxidant. The study has been undertaken to evaluate the effect of ( - )epicatechin on markers of oxidative stress: reduced glutathione (GSH) and membrane sulfhydryl ( — SH) groups in erythrocytes from hypertensive patients. The effect of ( - )epicatechin was also compared with a known anti-oxidant L-ascorbic acid. The erythrocyte intracellular GSH content and membrane — SH group content were significantly (P<0.01) decreased in hypertensive subjects. In vitro incubation with ( - )epicatechin caused an increase in GSH and — SH content, the effect was more pronounced in hypertensive erythrocytes. Similar results were obtained with L-ascorbic acid. The observed decrease in the level of GSH and — SH groups in hypertension is an indicator of oxidative stress condition. Observation of an increase in red cell GSH content and the protection of membrane — SH group oxidation by ( - )epicatechin in hypertensive subjects is a convincing reason to suggest that high dietary intake of foods rich in catechins may help to reduce oxidative stress and concomitant free radical damage in hypertensive patients.  相似文献   

12.
The mechanism and function of active DNA demethylation in plants   总被引:1,自引:0,他引:1  
DNA methylation is a conserved and important epigenetic mark in both mammals and plants.DNA methylation can be dynamically established,maintained,and removed through different pathways.In plants,active DNA demethylation is initiated by the RELEASE OF SILENCING 1(ROS1)family of bifunctional DNA glycosylases/lyases.Accumulating evidence suggests that DNA demethylation is important in many processes in plants.In this review,we summarize recent studies on the enzymes and regulatory factors that have been identified in the DNA demethylation pathway.We also review the functions of active DNA demethylation in plant development as well as biotic and abiotic stress responses.Finally,we highlight those aspects of DNA demethylation that require additional research.  相似文献   

13.
Mechanical stress was one of stresses with whichplants often met. With the development of fruit andvegetable finish machining in food industry, artificialinjury also appeared. As response to other stresses,plants have evolved with some adaptive mechanismsto cope with wounding[1]. Jasmonic acid (JA) andmethyl jasmonate (MeJA), as important signal mole-cules in plant response to wounding, have attracted agreat deal of attention. The studies on some crops, suchas potato[2], rice[3], and tomato[…  相似文献   

14.
15.
Myostatin (GDF-8, MSTN) is a member of trans- forming growth factors (TGF-β) superfamily, which was first described by McPherron et al. in 1997[1]. Myostatin appears to act as a negative regulator of muscle development and controls not only fibre size but also fibre number[2,3]. Mutations in the third exon of the myostatin gene have been shown to cause dou- ble muscling in cattle[4]. By knocking out the gene of myostatin in mice, they were able to show that the transgenic mice developed …  相似文献   

16.
Autophagy as a novel therapeutic target can inhibit or increase treatment efficacy in various types of breast cancer in a cell-type-dependent manner [1,2].Several studies have revealed that the coordination between Akt and the glycolytic pathway plays an indispensable role in mediating autophagy and caspase-dependent apoptosis,suggesting that a new regulatory mechanism for the process [3,4].Protein arginine N-methyltransferases(PRMTs)are eukaryotic enzymes that catalyze the transfer of methyl groups from S-adenosylmethionine to arginine residues of numerous PRMT substrates [5,6].PRMT2(also known as HRMT1L1)belongs to the arginine methyltransferase family [7].PRMT2β is a novel PRMT2 splice variant isolated from breast cancer cell [8].It occurs at the 3′ end of the PRMT2,resulting in loss of exons 7–9 and downstream frame-shifting [9].PRMT2β possesses 83 new amino acids at the C-terminus and its size is 301 amino acids.Our previous study reported that PRMT2β has potential antitumor effect by suppressing cyclin D1 expression [10].However,little is known about whether PRMT2β could regulate autophagy and glycolysis of MCF-7 cells.  相似文献   

17.
In recent times,systemic coagulation,fibrinolysis,and cardio-pulmonary injury has been recognized in patients with COVID-19,the clinical disease state caused by infection of the novel coronavirus,SARS-CoV-2.While originally believed to be a primary lower respiratory infection,as more cases are identified,treated,and examined,hematologic complications are being identified as a significant driver of morbidity and mortality associated with the disease.Elevated D-dimer levels(>1μg/ml)on hospital admission have been identified as being associated with increased mortality[1],and levels greater than 2μg/ml predict fatal outcomes in patients[2].Alongside these results,there is also a greater risk of thrombotic events in COVID-19 patients,with risk increasing to as high as 31%[3],and pulmonary embolism risk increases proportionately alongside this[4].Whilst understanding of the pathophysiology is incomplete,there is clearly a component of coagulative disorder in these patients.D-dimer could prove a valuable tool to identify patients who are likely to have poorer outcomes and allow for prophylactic treatment and monitoring of secondary complications(Fig.1).  相似文献   

18.
Yu  Guangshun  Feng  Na  Zhao  Dan  Wang  Hao  Jin  Yi  Liu  Dandan  Li  Zhenhua  Yang  Xinjian  Ge  Kun  Zhang  Jinchao 《中国科学:生命科学英文版》2021,64(3):434-442
Excessive reactive oxygen species(ROS) would attack living cells and cause a series of oxidative stress related diseases, such as liver damage. Hydroxyl radicals(·OH) are currently known as one of the most toxic and harmful free radicals to organisms.Therefore, studies involving hydroxyl radicals have become important research topics in the fields of biology, biochemistry, and biomedicine. In addition, imaging of analytes using upconversion nanoparticles(UCNPs) possesses significant advantages over that using general fluorescent dyes or nanoparticles due to its high spatial resolution, reduced photodamage, and deep tissue penetration properties. Herein, we designed a highly selective and sensitive hydroxyl radical nanoprobe based on the luminescence resonance energy transfer between upconversion nanoparticles and methylene blue(MB). The concentration of ·OH could be determined by the fluorescence recovery of the UCNPs due to the oxidative damage of MB. Using this nanoprobe, the·OH in living cells or in liver tissues could be monitored with high sensitivity and selectivity.  相似文献   

19.
Humans are daily exposed to background radiation and various sources of oxidative stress. My research has focused in the last 12 years on the effects of ionizing radiation on DNA, which is considered as the key target of radiation in the cell. Ionizing radiation and endogenous cellular oxidative stress can also induce closely spaced oxidatively induced DNA lesions called "clusters" of DNA damage or locally multiply damage sites, as first introduced by John Ward. I am now interested in the repair mechanisms of clustered DNA damage, which is considered as the most difficult for the cell to repair. A main part of my research is devoted to evaluating the role of clustered DNA damage in the promotion of carcinogenesis in vitro and in vivo . Currently in my laboratory, there are two main ongoing projects. (1) Study of the role of BRCA1 and DNA-dependent protein kinase catalytic subunit repair proteins in the processing of clustered DNA damage in human cancer cells. For this project, we use several tumor cell lines, such as breast cancer cell lines MCF-7 and HCC1937 (BRCA1 deficient) and human glioblastoma cells MO59J/K; and (2) Possible use of DNA damage clusters as novel cancer biomarkers for prognostic and therapeutic applications related to modulation of oxidative stress. In this project human tumor and mice tissues are being used.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号