首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Antimicrobial peptides are part of the innate immune system of vertebrates and invertebrates. They are active against gram-negative and gram-positive bacteria, fungi, and protozoa. Currently, most antimicrobial peptides are extracted from host organisms or produced by solid-phase peptide synthesis. Recombinant protein expression in Escherichia coli is a tool for greater production yields at a decreased cost and reduces the use of hazardous materials. We have constructed a concatamer of indolicidin and successfully expressed a fusion product with thioredoxin in E. coli BL21DE3. Codons for methionine residues flanking individual indolicidin genes were incorporated for cyanogen bromide cleavage of the fusion protein and liberation of active monomeric indolicidin. Peptide yields of 150 μg/l monomeric indolicidin were achieved in this first report of recombinant production of indolicidin with demonstrated antimicrobial activity.  相似文献   

2.
In this study, a novel heterozygous antimicrobial peptide MLH was synthesized, expressed, purified, and characterized. The peptide Md-cec-LL-37_Hp (MLH) was selected through bioinformatic analysis using musca domestica antimicrobial peptide (Cec-Med), human antimicrobial peptide LL-37, and helicobacter pylori antimicrobial peptide (Hp) as parent peptides. The target gene was synthesized by overlap extension PCR (SOE-PCR) and connected to the expression vector pET-32a (+), and the recombinant plasmid pET-32a-MLH was transformed to Escherichia coli for constructing pET-32a-MLH/BL21 (DE3). Isopropyl β-D-thiogalactoside (IPTG) was used to induce protein expression, and SDS-PAGE and western blot were adopted to test the target protein. And fermentation condition was optimized to get the mass expression of the fusion protein. The Ni2+ affinity chromatographic column was used to purify. Active heterozygous peptide was obtained after renaturation. Finally, the activity of the heterozygous antimicrobial peptide was identified. The fusion peptide showed significant antimicrobial effect on both E. coli and Staphylococcus aureus.  相似文献   

3.
Marine environments are the greatest fronts of biodiversity, representing a resource of unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, antimicrobial peptides (AMPs) have received great attention recently due to their applications as food preservatives and therapeutic agents. A new marine soil isolate producing an AMP was identified as Bacillus sonorensis based on 16S rRNA gene sequence analysis. It produced an AMP that showed a broad spectrum of activity against both Gram-positive and Gram-negative bacteria. The peptide, named sonorensin, was purified to homogeneity using a combination of chromatographic techniques. The intact molecular mass of the purified peptide, 6,274 Da, as revealed by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF), was in agreement with Tricine-SDS-PAGE analysis. A PCR array of primers was used to identify AMP structural genes, which allowed the successful amplification of the related genes from strain MT93. The putative open reading frame of sonorensin was amplified, cloned into the pET-32a(+) vector, expressed as a thioredoxin (Trx) fusion protein in Escherichia coli, and then purified. Sequence alignment analysis revealed that the bacteriocin being reported could belong to new subfamily of bacteriocins, heterocycloanthracin. The peptide indicated its potential as a biocontrol agent or food antimicrobial agent, due to its antimicrobial activity against bacteria such as Listeria monocytogenes and Staphylococcus aureus. This is the first report of the production, purification, and characterization of wild-type and recombinant bacteriocin by B. sonorensis and the first bacteriocin of the heterocycloanthracin subfamily to be characterized.  相似文献   

4.
The coding sequence, which corresponds to the mature antimicrobial peptide ranalexin from the frog Rana catesbeiana, was chemically synthesized with preferred codons for expression in Escherichia coli. It was cloned into the vector pET32c (+) to express a thioredoxin-ranalexin fusion protein which was produced in soluble form in E. coli BL21 (DE3) induced under optimized conditions. After two purification steps through affinity chromatography, about 1 mg of the recombinant ranalexin was obtained from 1 L of culture. Mass spectrometrical analysis of the purified recombinant ranalexin demonstrated its identity with ranalexin. The purified recombinant ranalexin is biologically active. It showed antibacterial activities similar to those of the native peptide against Staphylococcus aureus, Streptococcus pyogenes, E. coli, and multidrug-resistant strains of S. aureus with minimum inhibitory concentration values between 8 and 128 μg/ml. The recombinant ranalexin is also cytotoxic in HeLa and COS7 human cancer cells (IC50?=?13–15 μg/ml).  相似文献   

5.
Human cathelicidin-derived LL-37 is a 37-residue cationic, amphipathic α-helical peptide. It is an active component of mammalian innate immunity. LL-37 has several biological functions including a broad spectrum of antimicrobial activities and LPS-neutralizing activity. In order to determine the high-resolution three-dimensional structure of LL-37 using NMR spectroscopy, it is important to obtain the peptide with isotopic labels such as 15N, 13C and/or 2H. Since it is less expensive to obtain such a peptide biologically, in this study, we report for the first time a method to express in E. coli and purify LL-37 using Glutathione S-transferase (GST) fusion system. LL-37 gene was inserted into vector pGEX-4T3 and expressed as a GST-LL-37 fusion protein in BL21(DE3) strain. The recombinant GST-LL-37 protein was purified with a yield of 8 mg/l by affinity chromatography and analyzed its biochemical and spectroscopic properties. Factor Xa was used to cleave a 4.5-kDa LL-37 from the GST-LL-37 fusion protein and the peptide was purified using a reverse-phase HPLC on a Vydac C18 column with a final yield of 0.3 mg/l. The protein purified using reverse-phase HPLC was confirmed to be LL-37 by the analyses of Western blot and MALDI-TOF-Mass spectrometry. E. coli cells harboring the expression vector pGEX-4T3-LL-37 were grown in the presence of the 15N-labeled M9 minimal medium and culture conditions were optimized to obtain uniform 15N enrichment in the constitutively expressed LL-37 peptide. These results suggest that our production method will be useful in obtaining a large quantity of recombinant LL-37 peptide for NMR studies.  相似文献   

6.
Antimicrobial peptides are small molecule polypeptides with biological activity, which can avoid the drug resistance. Magainin and thanatin are antimicrobial peptides with a broad spectrum of inhibitory microbes, and the core sequence of magainin is linked to a core sequence of thanatin. Here, the hybrid magainin–thanatin (MT) antimicrobial peptide was designed through bioinformatics analysis. The recombinant MT antimicrobial peptide was successfully expressed and purified in Escherichia coli BL21 (DE3). The molecular weight of the hybrid MT antimicrobial peptide was about 3.35?kDa. Moreover, the target protein indeed has an inhibitory effect on Staphylococcus aureus, E. coli DH5α, and Bacillus subtilis, with the minimum inhibitory concentrations 16.5, 20, and 9?μM, respectively. The rational designed hybrid MT antimicrobial peptide will hopefully provide large-scale fermentable antimicrobial peptides in the industrial production in the future.  相似文献   

7.
Antimicrobial peptides (AMPs) have been paid considerable attention owing to their broad-spectrum antimicrobial activity and have great potential as novel antimicrobials. In this study, a novel hybrid peptide LF15-CA8 was designed on the basis of bovine lactoferricin (LfcinB) and cecropin A. The gene segment encoding LF15-CA8 was synthesized and cloned into pGEX-4T-BH to form pGEX-4T-LC1 containing one copy of the LF15-CA8 coding region. A series of recombinant vectors containing up to six multiple-copy LF15-CA8 coding regions, i.e., pGEX-4T-LCn (n = 1–6), were subsequently constructed, and used for transformation in Escherichia coli BL21(DE3). After induction with IPTG, pGEX-4T-LC1 and pGEX-4T-LC2 transformants successfully expressed fusion proteins GST-LF15-CA8 and GST-(LF15-CA8)2 in the form of inclusion bodies, respectively. The inclusion bodies were dissolved and the peptide was successfully released in 70 % formic acid in a single step. After purification, about 10.0 mg of the recombinant peptide LF15-CA8 with purity more than 97 % was obtained from 1 l of bacteria culture of pGEX-4T-LC2 transformants. LF15-CA8 caused an increase in antibacterial activity against Gram-positive bacterium (Staphylococcus aureus ATCC 25923) compared with the parent peptides and did not show obvious hemolytic activity against human erythrocytes in the range of effective antibacterial concentration. These results suggest that the peptide LF15-CA8 could be a promising candidate for therapeutic applications, and may lead to a cost-effective solution for the large-scale production of AMPs.  相似文献   

8.
Small ubiquitin-related modifier (SUMO) technology has been widely used in Escherichia coli expression systems to produce antimicrobial peptides. However, E. coli is a pathogenic bacterium that produces endotoxins and can secrete proteins into the periplasm, forming inclusion bodies. In our work, cathelicidin-BF (CBF), an antimicrobial peptide purified from Bungarus fasciatus venom, was produced in a Bacillus subtilis expression system using SUMO technology. The chimeric genes his-SUMO-CBF and his-SUMO protease 1 were ligated into vector pHT43 and expressed in B. subtilis WB800N. Approximately 22 mg of recombinant fusion protein SUMO-CBF and 1 mg of SUMO protease 1 were purified per liter of culture supernatant. Purified SUMO protease 1 was highly active and cleaved his-SUMO-CBF with an enzyme-to-substrate ratio of 1:40. Following cleavage, recombinant CBF was further purified by affinity and cation exchange chromatography. Peptide yields of ~3 mg/l endotoxin-free CBF were achieved, and the peptide demonstrated antimicrobial activity. This is the first report of the production of an endotoxin-free antimicrobial peptide, CBF, by recombinant DNA technology, as well as the first time purified SUMO protease 1 with high activity has been produced from B. subtilis. This work has expanded the application of SUMO fusion technology and may represent a safe and efficient way to generate peptides and proteins in B. subtilis.  相似文献   

9.
Zhang H  Zhang W  Wang X  Zhou Y  Wang N  Zhou J 《Peptides》2011,32(3):441-446
The presence of an effective immune response in the hemocoel of ticks is crucial for survival, as it prevents the invasion of pathogens throughout the animal's body. Antimicrobial peptides (AMPs) play an important role in this response by rapidly killing invading microorganisms. In this study, a subtraction hybridization cDNA library was constructed from the salivary glands of the unfed and fed female tick Rhipicephalus haemaphysaloides, and a novel cysteine-rich AMP designated Rhamp (R. haemaphysaloides antimicrobial peptide) was isolated and identified. The Rhamp was encoded by a gene with an open reading frame of 303 bp which encoded a mature peptide with 8 kDa molecular weight. No identity was found by BLAST search to any database entries. The sequence encoding the Rhamp was subcloned into the pGEX-4T vector and expressed in Escherichia coli. The recombinant protein of Rhamp showed chymotrypsin and elastase-inhibitory activity and markedly inhibited the growth of Gram-negative bacteria, including Pseudomonas aeruginosa, Salmonella typhimurium, and E. coli. Moreover, the recombinant protein also exerted low hemolytic activity. These results indicate the Rhamp is a novel antimicrobial peptide with proteinase activity from the tick R. haemaphysaloides.  相似文献   

10.
Musca domestica (Diptera: Muscidae), the housefly, exhibits unique immune defences and can produce antimicrobial peptides upon stimulation with bacteria. Based on the cDNA library constructed using the suppression subtractive hybridization (SSH) method, a 198-bp antimicrobial peptide gene, which we named MDAP-2, was amplified by rapid amplification of cDNA ends (RACE) from M. domestica larvae stimulated with Salmonella pullorum (Enterobacteriaceae: Salmonella). In the present study, the full-length MDAP-2 gene was cloned and inserted into a His-tagged Escherichia coli prokaryotic expression system to enable production of the recombinant peptide. The recombinant MDAP-2 peptide was purified using Ni-NTA HisTrap FF crude column chromatography. The bacteriostatic activity of the recombinant purified MDAP-2 protein was assessed. The results indicated that MDAP-2 had in vitro antibacterial activity against all of the tested Gram − bacteria from clinical isolates, including E. coli (Enterobacteriaceae: Escherichia), one strain of S. pullorum (Enterobacteriaceae: Salmonella), and one strain of Pasteurella multocida. DNA sequencing and BLAST analysis showed that the MDAP-2 antimicrobial peptide gene was not homologous to any other antimicrobial peptide genes in GenBank. The antibacterial mechanisms of the newly discovered MDAP-2 peptide warrant further study.  相似文献   

11.
Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs) in recombinant bacterial expression systems. However, some of these efforts have been limited by product toxicity to host cells, product proteolysis, low expression levels, poor recovery yields, and sometimes an absence of posttranslational modifications required for biological activity. For the present work, we investigated the use of the baculoviral polyhedrin (Polh) protein as a novel fusion partner for the production of a model AMP (halocidin 18-amino-acid subunit; Hal18) in Escherichia coli. The useful solubility properties of Polh as a fusion partner facilitated the expression of the Polh-Hal18 fusion protein (~33.6 kDa) by forming insoluble inclusion bodies in E. coli which could easily be purified by inclusion body isolation and affinity purification using the fused hexahistidine tag. The recombinant Hal18 AMP (~2 kDa) could then be cleaved with hydroxylamine from the fusion protein and easily recovered by simple dialysis and centrifugation. This was facilitated by the fact that Polh was soluble during the alkaline cleavage reaction but became insoluble during dialysis at a neutral pH. Reverse-phase high-performance liquid chromatography was used to further purify the separated recombinant Hal18, giving a final yield of 30% with >90% purity. Importantly, recombinant and synthetic Hal18 peptides showed nearly identical antimicrobial activities against E. coli and Staphylococcus aureus, which were used as representative gram-negative and gram-positive bacteria, respectively. These results demonstrate that baculoviral Polh can provide an efficient and facile platform for the production or functional study of target AMPs.  相似文献   

12.
Warnericin RK is a small cationic peptide produced by Staphylococcus warneri RK. This peptide has an antimicrobial spectrum of activity almost restricted to the Legionella genus. It is a membrane-active peptide with a proposed detergent-like mechanism of action at high concentration. Moreover, the fatty acids content of Legionella was shown to modulate the peptide activity. In order to decipher the mode of action in details using solid-state NMR spectroscopy, large amount of an isotopic labeled peptide is required. Since it is less expensive to obtain such a peptide biologically, we report here methods to express warnericin RK in Escherichia coli with or without a fusion partner and to purify resulting recombinant peptides. The cDNA fragment encoding warnericin RK was synthesized and ligated into three expression vectors. Two fusion peptides, carrying polyhistidine tag in N- or C-terminal and a native peptide, without tag, were expressed in E. coli cells. Fusion peptides were purified, with a yield of 3 mg/l, by affinity chromatography and reverse-phase HPLC. The recombinant native peptide was purified using a two-step purification method consisting of a hydrophobic chromatography followed by a reverse-phase HPLC step with a yield of 1.4 mg/l. However, the anti-Legionella activity was lower for both tagged peptide probably because of structural modifications. So, the native recombinant peptide was preferentially chosen for 15N-labeling experiments. Our results suggest that the developed production and purification procedures will be useful in obtaining a large quantity of recombinant isotope-labeled warnericin RK for further studies.  相似文献   

13.

Background

To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity.

Results

Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an in vivo recombination strategy. Each AMP was then expressed as an Npro fusion protein in Escherichia coli. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On in vitro refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against E. coli, Micrococcus luteus and S. cerevisia.

Conclusions

The method described in this report allows the fast synthesis of genes that are optimized for over-expression in E. coli and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.  相似文献   

14.
Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide–lactoferricin fusion gene. The monomeric acidic peptide–lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-β-d-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.  相似文献   

15.
Cyanophycin, a polyamide of cyanobacterial or noncyanobacterial origin consisting of aspartate, arginine, and lysine, was synthesized in different recombinant strains of Escherichia coli expressing cphA from Synechocystis sp. strain PCC 6308 or PCC 6803, Anabaena sp. strain PCC 7120, or Acinetobacter calcoaceticus ADP1. The molar aspartate/arginine/lysine ratio of the water-soluble form isolated from a recombinant strain expressing CphA6308 was 1:0.5:0.5, with a lysine content higher than any ever described before. The water-insoluble form consisted instead of mainly aspartate and arginine residues and had a lower proportion of lysine, amounting to a maximum of only 5 mol%. It could be confirmed that the synthesis of soluble cyanobacterial granule polypeptide (CGP) is independent of the origin of cphA. Soluble CGP isolated from all recombinant strains contained a least 17 mol% lysine. The total CGP portion of cell dry matter synthesized by CphA6308 from recombinant E. coli was about 30% (wt/wt), including 23% (wt/wt) soluble CGP, by using terrific broth complex medium for cultivation at 30°C for 72 h. Enhanced production of soluble CGP instead of its insoluble form is interesting for further application and makes recombinant E. coli more attractive as a suitable source for the production of polyaspartic acid or dipeptides. In addition, a new low-cost, time-saving, effective, and common isolation procedure for mainly soluble CGP, suitable for large-scale application, was established in this study.  相似文献   

16.
The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, evaluation of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve the expression level of ABP-dHC-cecropin A in E. coli, tandem repeats of the ABP-dHC-cecropin A gene were constructed and expressed as fusion proteins (SUMO-nABP-dHC-cecropin, n = 1, 2, 3, 4) via pSUMO-nABP-dHC-cecropin A vectors (n = 1, 2, 3, 4). Comparison of the expression levels of soluble SUMO-nABP-dHC-cecropin A fusion proteins (n = 1, 2, 3, 4) suggested that BL21 (DE3)/pSUMO-3ABP-dHC-cecropin A is an ideal recombinant strain for ABP-dHC-cecropin A production. Under the selected conditions of cultivation and isopropylthiogalactoside (IPTG) induction, the expression level of ABP-dHC-cecropin A was as high as 65 mg/L, with ∼21.3% of the fusion protein in soluble form. By large-scale fermentation, protein production reached nearly 300 mg/L, which is the highest yield of ABP-dHC-cecropin A reported to date. In antibacterial experiments, the efficacy was approximately the same as that of synthetic ABP-dHC-cecropin A. This method provides a novel and effective means of producing large amounts of ABP-dHC-cecropin A.  相似文献   

17.
Using periplasmic penicillin amidase (PA) from Escherichia coli ATCC 11105 as a model recombinant protein, we reviewed the posttranslational bottlenecks in its overexpression and undertook attempts to enhance its production in different recombinant E. coli expression hosts. Intracellular proteolytic degradation of the newly synthesized PA precursor and translocation through the plasma membrane were determined to be the main posttranslational processes limiting enzyme production. Rate constants for both intracellular proteolytic breakdown (kd) and transport (kt) were used as quantitative tools for selection of the appropriate host system and cultivation medium. The production of mature active PA was increased up to 10-fold when the protease-deficient strain E. coli BL21(DE3) was cultivated in medium without a proteinaceous substrate, as confirmed by a decrease in the sum of the constants kd and kt. The original signal sequence of pre-pro-PA was exchanged with the OmpT signal peptide sequence in order to increase translocation efficiency; the effects of this change varied in the different E. coli host strains. Furthermore, we established that simultaneous coexpression of the OmpT pac gene with some proteins of the Sec export machinery of the cell resulted in up to threefold-enhanced PA production. In parallel, we made efforts to increase PA flux via coexpression with the kil gene (killing protein). The primary effects of the kil gene were the release of PA into the extracellular medium and an approximately threefold increase in the total amount of PA produced per liter of bacterial culture.  相似文献   

18.
The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the Gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic Gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMP is not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred.  相似文献   

19.

Background

Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine ??-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate across membranes by proteorhodopsin generate a proton motive force for ATP synthesis by ATPase. Excess protons can also be substrates for hydrogen (H2) production by hydrogenase in the periplasmic space. In the present work, we investigated the effect of the co-expression of proteorhodopsin and hydrogenase on H2 production yield under light conditions.

Results

Recombinant E. coli BL21(DE3) co-expressing proteorhodopsin and [NiFe]-hydrogenase from Hydrogenovibrio marinus produced ~1.3-fold more H2 in the presence of exogenous retinal than in the absence of retinal under light conditions (70 ??mole photon/(m2·s)). We also observed the synergistic effect of proteorhodopsin with endogenous retinal on H2 production (~1.3-fold more) with a dual plasmid system compared to the strain with a single plasmid for the sole expression of hydrogenase. The increase of light intensity from 70 to 130 ??mole photon/(m2·s) led to an increase (~1.8-fold) in H2 production from 287.3 to 525.7 mL H2/L-culture in the culture of recombinant E. coli co-expressing hydrogenase and proteorhodopsin in conjunction with endogenous retinal. The conversion efficiency of light energy to H2 achieved in this study was ~3.4%.

Conclusion

Here, we report for the first time the potential application of proteorhodopsin for the production of biohydrogen, a promising alternative fuel. We showed that H2 production was enhanced by the co-expression of proteorhodopsin and [NiFe]-hydrogenase in recombinant E. coli BL21(DE3) in a light intensity-dependent manner. These results demonstrate that E. coli can be applied as light-powered cell factories for biohydrogen production by introducing proteorhodopsin.  相似文献   

20.

Background

Protein transduction is safer than viral vector-mediated transduction for the delivery of a therapeutic protein into a cell. Fusion proteins with an arginine-rich cell-penetrating peptide have been produced in E. coli, but the low solubility of the fusion protein expressed in E. coli impedes the large-scale production of fusion proteins from E. coli.

Results

Expressed protein ligation is a semisynthetic method to ligate a bacterially expressed protein with a chemically synthesized peptide. In this study, we developed expressed protein ligation-based techniques to conjugate synthetic polyarginine peptides to Cre recombinase. The conjugation efficiency of this technique was higher than 80%. Using this method, we prepared semisynthetic Cre with poly-L-arginine (ssCre-R9), poly-D-arginine (ssCre-dR9) and biotin (ssCre-dR9-biotin). We found that ssCre-R9 was delivered to the cell to a comparable level or more efficiently compared with Cre-R11 and TAT-Cre expressed as recombinant fusion proteins in E. coli. We also found that the poly-D-arginine cell-penetrating peptide was more effective than the poly-L-arginine cell-penetrating peptide for the delivery of Cre into cell. We visualized the cell transduced with ssCre-dR9-biotin using avidin-FITC.

Conclusions

Collectively, the results demonstrate that expressed protein ligation is an excellent technique for the production of cell-permeable Cre recombinase with polyarginine cell-penetrating peptides. In addition, this approach will extend the use of cell-permeable proteins to more sophisticated applications, such as cell imaging.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0126-z) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号