首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the available tools for mapping the geographical distribution and potential suitable habitats is species distribution models. These techniques are very helpful for finding poorly known distributions of species in poorly sampled areas, such as the tropics. Maximum Entropy (MaxEnt) is a recently developed modeling method that can be successfully calibrated using a relatively small number of records. In this research, the MaxEnt model was applied to describe the distribution and identify the key factors shaping the potential distribution of the vulnerable Malayan Sun Bear (Helarctos malayanus) in one of the main remaining habitats in Peninsular Malaysia. MaxEnt results showed that even though Malaysian sun bear habitat is tied with tropical evergreen forests, it lives in a marginal threshold of bio-climatic variables. On the other hand, current protected area networks within Peninsular Malaysia do not cover most of the sun bears potential suitable habitats. Assuming that the predicted suitability map covers sun bears actual distribution, future climate change, forest degradation and illegal hunting could potentially severely affect the sun bear’s population.  相似文献   

2.
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.  相似文献   

3.
The fishing cat Prionailurus viverrinus is a wetland specialist species endemic to South and Southeast Asia. Nepal represents the northern limit of its biogeographic range, but comprehensive information on fishing cat distribution in Nepal is lacking. To assess their distribution, we compiled fishing cat occurrence records (n = 154) from Nepal, available in published literature and unpublished data (2009–2020). Bioclimatic and environmental variables associated with their occurrence were used to predict the fishing cat habitat suitability using MaxEnt modeling. Fishing cat habitat suitability was associated with elevation (152–302 m), precipitation of the warmest quarter, i.e., April–June (668–1014 mm), precipitation of the driest month (4–7 mm), and land cover (forest/grassland and wetland). The model predicted an area of 4.4% (6679 km2) of Nepal as potential habitat for the fishing cat. About two‐thirds of the predicted potentially suitable habitat lies outside protected areas; however, a large part of the highly suitable habitat (67%) falls within protected areas. The predicted habitat suitability map serves as a reference for future investigation into fishing cat distribution as well as formulating and implementing effective conservation programs in Nepal. Fishing cat conservation initiatives should include habitats inside and outside the protected areas to ensure long‐term survival. We recommend conservation of wetland sites, surveys of fishing cats in the identified potential habitats, and studying their genetic connectivity and population status.  相似文献   

4.
高惠  滕丽微  汪洋  王继飞  刘振生 《生态学报》2017,37(11):3926-3931
阿拉善马鹿(Cervus alashanicus)目前仅分布于贺兰山地区,对该物种进行生境适宜性的评价和分析是物种有效保护的前提和基础。2013—2014年通过样线调查及巡山资料查询,确定阿拉善马鹿出现位点86个,结合13种环境变量数据,利用最大熵(maximum entropy,MaxEnt)模型,并根据最大约登指数划定适宜与不适宜生境区,对贺兰山地区阿拉善马鹿的生境适宜性进行评价。ROC曲线(receiver operating characteristic curve)检测证明模型预测精度较高,研究结果表明:阿拉善马鹿主要分布于贺兰山东坡的中部和南部,以及西坡的中北部,适宜生境面积为667.87 km~2,占研究区域面积的18.2%;矿区、坡度和海拔是影响阿拉善马鹿分布的最主要环境变量,矿区对阿拉善马鹿的影响最大,建议管理部门加大对此人为干扰的管控力度,控制和减少现有矿区的规模,以促进该种群的发展。  相似文献   

5.
野生马麝(Moschus chrysogaster)是珍稀濒危资源动物,分布于我国青藏高原及周边地区。甘肃兴隆山国家级自然保护区是野生马麝最重要的分布区之一,深入了解保护区的生境结构、质量及分布是对区域内野生马麝进行成功保护的前提和基础,但迄今缺乏大尺度的马麝生境适宜性研究。利用实地调查得到的兴隆山保护区的野生马麝夏季分布点数据,采用最大熵(MaxEnt)模型,结合地形、归一化植被指数、距河流距离、距道路距离等环境变量数据,进行野生马麝的夏季生境适宜性分析。结果表明:影响野生马麝夏季生境适宜性的主要生态因子是海拔、坡向、植被和河流,其贡献率分别达40.3%,23.4%,18.6%和10.9%;兴隆山保护区野生马麝的夏季潜在适宜生境分布面积为123.34 km2,占整个保护区的41.11%,占保护区林地的61.92%;野生马麝夏季潜在适宜生境主要集中在保护区的中部和西部,其中高适宜性生境约为保护区的4.47%,各适宜区间及适宜区之内均存在一定程度的不连续分布。为加强对兴隆山保护区野生马麝种群及生境的就地保护,建议通过生境保育措施,提高野生马麝潜在分布区的生境适宜性,...  相似文献   

6.
The natural populations of Dactylorhiza hatagirea have been greatly affected due to incessant exploitation. As such, studies on its population attributes together with habitat suitability and environmental factors affecting its distribution are needed to be undertaken for its conservation in nature. Present study aimed at accessing an impact of anthropogenic pressure on population structure and locate suitable habitats for the conservation of this critically endangered orchid. Considerable changes in the phytosociological attributes were observed on account of the changing magnitude and extent of anthropogenic threat in their natural abode. The distribution pattern of species indicated that more than 90% of the populations exhibit substantially aggregated spatial distribution. Maximum Entropy (MaxEnt) distribution modelling algorithm was used to predict suitable habitat and potential area for its cultivation and reintroduction. Twenty-seven occurrence records, nineteen bioclimatic variables, altitude, and slope were used. MaxEnt map output gave the habitat suitability for this species and predicted its distribution in the North-Western Himalayas of India for approximately 616 km2. Jackknifing indicated that maximum temperature of warmest month, annual mean temperature, mean temperature of the driest quarter, and mean temperature of the wettest quarter were the governing factors for its distribution and hence, presented a higher gain with respect to other variables. According to permutation importance, precipitation seasonality and mean temperature of wettest quarter shows the prominent impact on the habitat distribution. Results of AUC (area under curve) were statistically significant (0.940) and the line of predicted omission falls very close to an omission on training samples, validating a better run of the model. Response curves revealed a probable increase in the occurrence of D. hatagirea with an increase in mean temperature of the wettest quarter and maximum temperature of the warmest month contributed more than 50% to predicted habitat suitability. Direct field observations concurrent with predicted habitat suitability and google-earth images represent greater model thresholds for successful inception of the species. Together, the study proposes that the species can be conserved in or near its present-day natural habitats and is equally effective in determining the possible habitats for its cultivation and reintroduction.  相似文献   

7.
Economic and biological consequences are associated with exotic ambrosia beetles and their fungal associates. Despite this, knowledge of ambrosia beetles and their ecological interactions remain poorly understood, especially in the oak-hickory forest region. We examined how forest stand and site characteristics influenced ambrosia beetle habitat use as evaluated by species richness and abundance of ambrosia beetles, both the native component and individual exotic species. We documented the species composition of the ambrosia beetle community, flight activity, and habitat use over a 2-yr period by placing flight traps in regenerating clearcuts and older oak-hickory forest stands differing in topographic aspect. The ambrosia beetle community consisted of 20 species with exotic ambrosia beetle species dominating the community. Similar percentages of exotic ambrosia beetles occurred among the four forest habitats despite differences in stand age and aspect. Stand characteristics, such as stand age and forest structure, influenced ambrosia beetle richness and the abundances of a few exotic ambrosia beetle species and the native ambrosia beetle component. Topographic aspect had little influence on ambrosia beetle abundance or species richness. Older forests typically have more host material than younger forests and our results may be related to the amount of dead wood present. Different forms of forest management may not alter the percent contribution of exotic ambrosia beetles to the ambrosia beetle community.  相似文献   

8.
Yellow fever virus (YFV) has a long history of impacting human health in South America. Mayaro virus (MAYV) is an emerging arbovirus of public health concern in the Neotropics and its full impact is yet unknown. Both YFV and MAYV are primarily maintained via a sylvatic transmission cycle but can be opportunistically transmitted to humans by the bites of infected forest dwelling Haemagogus janthinomys Dyar, 1921. To better understand the potential risk of YFV and MAYV transmission to humans, a more detailed understanding of this vector species’ distribution is critical. This study compiled a comprehensive database of 177 unique Hg. janthinomys collection sites retrieved from the published literature, digitized museum specimens and publicly accessible mosquito surveillance data. Covariate analysis was performed to optimize a selection of environmental (topographic and bioclimatic) variables associated with predicting habitat suitability, and species distributions modelled across South America using a maximum entropy (MaxEnt) approach. Our results indicate that suitable habitat for Hg. janthinomys can be found across forested regions of South America including the Atlantic forests and interior Amazon.  相似文献   

9.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   

10.
The coral species Paragorgia arborea and Primnoa resedaeformis are abundant and widely distributed gorgonians in North Atlantic waters. Both species add significant habitat complexity to the benthic environment, and support a host of invertebrate species. Mapping their distribution is an essential step in conservation and resource management, but challenging as a result of their remoteness. In this study, three predictive models — Ecological Niche Factor Analysis, Genetic Algorithm for Rule-set Production and Maximum Entropy modeling (MaxEnt) were applied to predict the distribution of species' suitable habitat across a region of Røst Reef (Norwegian margin) based on multiscale terrain variables.All three models were successful in predicting the habitat suitability for both gorgonian species across the study area, and the MaxEnt predictions were shown to outperform other predictions. All three models predicted the most suitable habitats for both species to mainly occur along the ridges and on the upper section of the large slide, suggesting both species preferentially colonize topographic highs. Jackknife tests for MaxEnt predictions highlighted the seabed aspect in relation to P. arborea distribution, and the seabed relative position (curvature) in relation to the distribution of both species. Given the vulnerability of deep-water corals to anthropogenic impacts, further comparative study over a wider study area would be particularly beneficial for the management of the species.  相似文献   

11.
Habitat conservation for restricted-range species should also consider adjacent areas, but the analytical approaches for such assessments (particularly for a future perspective) are constrained by currently observed habitat relationships. We used two conceptually different habitat modelling approaches for analysing habitat distribution for the isolated Estonian population of a species of European conservation concern, the Siberian flying squirrel (Pteromys volans (Linnaeus, 1758)). We expected that the correlative (statistical) approaches based on current location data will increasingly deviate along with the distance from the current range, compared with a mechanistic approach based on limiting factors for the species. For conservation planning, we also investigated how the current protected area network covers quality habitats around the current range. We constructed three alternative correlative models (MaxEnt; Random forest; Generalized Boosted Regression) utilizing remote-sensing (Sentinel-2; LiDAR) and forest inventory data for 1299 occurrences in the currently occupied ca. 1400 km2 range. A mechanistic model was constructed as a decision tree that distinguished 11 quality classes of forest land based on the ecological prioritization of limiting factors: site type; forest cover; abundance of key tree species; stand age; patch size; and layer structure. Supporting our expectation, an overall good accordance of habitat predictions of all the correlative models and the mechanistic model (at 30 × 30 m pixel size) declined with the distance from the current range. The MaxEnt model most closely followed the full range of habitat quality classes of the mechanistic model, while the other correlative models emphasized the highest habitat-quality class. Within the current range, both MaxEnt and the mechanistic model similarly revealed habitat quality differences between occupied and unoccupied species protection areas. Delineation of habitat aggregations all over the country based on the mechanistic model revealed habitat loss both within and adjacent to the current range, which sets limits to local population recovery. For analysing wider options, we recommend complementing statistical spatial modelling of current conditions with ecologically sound mechanistic approaches. Based on our specific case, we outline how such model predictions can be assessed for management planning beyond current range.  相似文献   

12.
《Acta Oecologica》2001,22(2):87-98
In this study, we compared the soil seed bank and current vegetation under coniferous plantations and adjacent native deciduous forests. The objective was to assess how much of the initial plant diversity is retained in such plantations, and the potential to restore this initial plant community from seed bank in case of reversion to broadleave stands. Four stands growing side by side and with different dominant species were selected at two locations (site of Haye: Quercus petraea, Pseudotsuga menziesii, Pinus sylvestris and Picea abies; site of La Petite-Pierre: Quercus petraea, Fagus sylvatica, Pinus sylvestris and Picea abies). In each stand, ground vegetation was surveyed and soil seed bank was sampled. Composition of ground flora and seed bank of stands were quite different: only 11 to 30 % of the species were in both the ground flora and the seed bank. Composition of the seed bank was mainly influenced by site location and sylvicultural practices such as the type of afforestation or the tree cover. Species richness of seed banks and vegetation were higher in the site of Haye than in the site of La Petite-Pierre. Seedling density strongly decreased with stand age. Whereas between 65 and 86 % of species found in the ground vegetation of native deciduous stand were also present in the understory or the seed bank of mature coniferous stands, this was only about 50 % in young coniferous stands. Species of deciduous stands which were absent from coniferous stands were typical of old forests. In contrast, species mainly found in the coniferous stands were often ruderal. In the studied areas, it would be possible to restore up to 86 % of the native deciduous forest vegetation, but some plant species typical of ancient forests may have disappeared during the coniferous stage.  相似文献   

13.
Isodar theory can help to unveil the fitness consequences of habitat disturbance for wildlife through an evaluation of adaptive habitat selection using patterns of animal abundance in adjacent habitats. By incorporating measures of disturbance intensity or variations in resource availability into fitness-density functions, we can evaluate the functional form of isodars expected under different disturbance-fitness relationships. Using this framework, we investigated how a gradient of forest harvesting disturbance and differences in resource availability influenced habitat quality for snowshoe hares (Lepus americanus) and red-backed voles (Myodes gapperi) using pairs of logged and uncut boreal forest. Isodars for both species had positive intercepts, indicating reductions to maximum potential fitness in logged stands. Habitat selection by hares depended on both conspecific density and differences in canopy cover between harvested and uncut stands. Fitness-density curves for hares in logged stands were predicted to shift from diverging to converging with those in uncut forest across a gradient of high to low disturbance intensity. Selection for uncut forests thus became less pronounced with increasing population size at low levels of logging disturbance. Voles responded to differences in moss cover between habitats which reflected moisture availability. Lower moss cover in harvested stands either reduced maximum potential fitness or increased the relative rate of decline in fitness with density. Differences in vole densities between harvested and uncut stands were predicted, however, to diminish as populations increased. Our findings underscore the importance of accounting for density-dependent behaviors when evaluating how changing habitat conditions influence animal distribution.  相似文献   

14.
In Croatia, there are three Satureja species groups (tSsg) within the Satureja L. genus that are most widely used as medicinal and melliferous plants: the Satureja montana complex, S. subspicata complex and S. cuneifolia. Due to the high melliferous and medicinal potential of these taxa, our objective was to comparatively assess the habitat suitability of the tSsg to estimate their cultivation potential in the eastern Adriatic region. In addition, we assessed their overlaps in geographic and environmental space and investigated the occurrence of the putative hybrid taxon S. × karstiana in the areas of overlap between the two parental taxa (S. montana and S. subspicata). Finally, the differences in the environmental preferences of these three related species groups were investigated. The species distribution models were built using the maximum entropy method (MaxEnt) based on the occurrences of the tSsg, obtained from our field research in 2018–2021 and partly from the Flora Croatica Database. Six environmental variables (three bioclimatic and three topographic) were selected as predictors. The potential habitat suitability of the tSsg under current conditions showed high predictive model performance, with AUC values ranging from 0.890 to 0.910 ± 0.025. The environmental predictors with the highest mean percent contributions to the models were annual temperature range (Bio 7) for S. montana (74.3%) and S. subspicata (65.9%) and downwards surface solar radiation (Srad) for S. cuneifolia (40%). Majority (>90%) of the known S. × karstiana hybrid occurrences were found within the areas of habitat suitability overlap between the two parental taxa, confirming the model accuracy and efficiency in the discovery of putative hybrids. Finally, the niche overlap in environmental space between the investigated taxa pairs was the highest between S. montana and S. subspicata, enabling their hybridization, and lowest between S. cuneifolia and S. subspicata. Due to the widest potential distribution and broadest environmental niche, our results suggest that S. montana has the highest potential for cultivation for medicinal and melliferous purposes in the eastern Adriatic, particularly in light of ongoing climate change.  相似文献   

15.
Conservation of any species necessitates knowledge of its biology and natural history, as well as prospective locations or newer adaptive landscapes where the species can survive and thrive. This study presents habitat suitability and local conservation status of Taxus wallichiana and Abies pindrow in moist temperate forest of Hazara division, Pakistan. Data was collected through field surveys based on 363 samples from field, topographical and bioclimatic variables. In the present study, we employed the MaxEnt model exclusively for each tree species along with 23 independent or environment variables (19 bioclimatic and 4 topographic). The jackknife test was used to demonstrate the significance of variables with the highest gain, and it was found that overall tree cover, annual temperature range was the factors with the highest gain, while slope was amongst the least important. The MaxEnt model produced high accuracy for each tree species, with receiver operating characteristic (ROC), area under the curve (AUC), training mean testing values for Taxus wallichiana was 0.966 followed by 0.944 for Abies pindrow. Local conservation status of Taxus wallichiana and Abies pindrow was evaluated using IUCN criteria 2001. Taxus wallichiana was declared critically endangered locally as the population size reduced by 87%. In contrast, Abies pindrow was declared as endangered as population size reduced by 69% falling under endangered criteria A of IUCN. The decline in population size of Taxus wallichiana and Abies pindrow species were due to human cause anthropogenic activities such as exploitation and loss of habitat, the extent of occurrence, and slow regeneration of tree species. Results and field-based observation revealed that suitable habitat modeling showed unsuitable (0.0–0.2), less suitable (0.2–0.4), moderately (0.4–0.6), highly (0.6–0.7), and very highly (0.7–1.0) suitable habitat for Taxus wallichiana and Abies pindrow. Results also revealed that both species were distributed irregularly in the moist temperate forest of Hazara division. Habitat suitability of Taxus wallichiana and Abies pindrow can be considered one of most significant points toward conserving these tree species. Habitat loss is a major threat to their occurrence, which should be overcome by ensuring the protection of suitable habitat and conservation approaches. Considering the species ecological and economic value, it is essential to understand how the species distribution may vary as a result of climate change to establish effective conservation policies. This study also includes significant environmental elements that influence species distribution, which could help locate regions where the species could be planted. Forest tree species require effective, scientific, and long-term management and conservation techniques in the study area. Furthermore, the formulation and implementation of protective laws and policies are required to conserve and protect both the conifer species.  相似文献   

16.
黄喉貂(Martes flavigula aterrima)为典型的林栖兽类,对栖息地干扰和破碎化极为敏感,被视为森林生态系统的指示物种。为了科学有效保护该物种,于2020-2021年在黑龙江省老爷岭南部区域布设红外相机642台收集黄喉貂活动位点信息,利用最大熵(MaxEnt)建模方法开展黄喉貂栖息地适宜性研究,探究影响种群生存的关键环境因素,并利用最小成本路径方法构建潜在的种群扩散生态廊道,探讨研究区域黄喉貂种群的栖息地连通性。研究结果表明:(1)MaxEnt模型的受试者工作特征曲线(ROC曲线)评价结果的平均曲线下面积(AUC)值为0.861,能够较好的反映研究区域黄喉貂栖息地适宜性的实际分布情况;(2)本研究利用的13个变量中,距东北虎(Panthera tigris altaica)、东北豹(Panthera pardus orientalis)距离12 km黄喉貂出现概率最高,且贡献率达20.6%,是影响黄喉貂栖息地选择的关键变量,其次坡向(9.9%)、农田(9.5%)、草地(9.0%)、常绿针叶林(8.9%)、道路(7.0%)、河流(6.6%)、居民点(6.1%)和海拔(5.9%)是影响黄喉貂栖息地质量的次要变量;(3)研究区域黄喉貂适宜栖息地面积为793.54 km2,占研究区域总面积的21.4%,主要分布在黑龙江省绥阳林业有限公司的柳桥沟、青山和万宝湾林场。黄喉貂栖息地破碎化严重,因此通过栖息地适宜性分布图获得15块总面积为401.61 km2的核心栖息地,并构建14条生态廊道利于黄喉貂栖息地生态恢复管理。研究综合分析了黑龙江省老爷岭南部黄喉貂栖息地现状及连通性,促进黄喉貂扩散、栖息地的连通性和适宜性。  相似文献   

17.
Caruso A  Rudolphi J  Rydin H 《PloS one》2011,6(11):e27936
Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality in matrix habitats bordering focal habitats should increase the probability of long-term persistence of habitat specialists.  相似文献   

18.
It is difficult to map and quantify biodiversity at landscape level in areas with low data availability, despite demand from decision-makers. We propose a methodology to determine potential biodiversity pattern using habitat suitability maps of the understory plant species with highest cover and occurrence frequency in the three different forests types of Tierra del Fuego (Argentina). We used a database of vascular plants from 535 surveys from which we identified 35 indicative species. We explored more than 50 potential explanatory variables to develop habitat suitability maps of the indicative species, which were combined to develop a map of the potential biodiversity. Correlation among environmental, topographic and forest landscape variables were discussed, as well as the marginality and the specialization of the indicative species. We detected differences in the niches of the species prevailing in the three forest types. The developed map of potential biodiversity uncovered hotspots of biodiversity in the ecotone of Nothofagus pumilio and N. antarctica as well as in the wettest part of the mixed N. pumilioN. betuloides forests. It allowed thus to identify forest areas with different conservation potential and can be readily used as a decision support system for conservation and management strategies at different scales including the identification of land-use conflicts (e.g. of biodiversity with timber production and livestock) and the development of a network of protected areas, which currently does not cover the forests of highest conservation value.  相似文献   

19.
Abstract In March 2000, Canada lynx (Lynx canadensis) were listed as a federally threatened species in 14 states at the southern periphery of their range, where lynx habitat is disjunct and snowshoe hare (Lepus americanus) densities are low. Forest conditions vary across lynx range; thus, region-specific data on the habitat requirements of lynx are needed. We studied lynx in northern Maine, USA, from 1999 to 2004 to assess quality and potential for forests in Maine to sustain lynx populations. We trapped and radiocollared 43 lynx (21 M, 22 F) during this period and evaluated diurnal habitat selection by 16 resident adult lynx (9 M, 7 F) monitored in 2002. We evaluated lynx selection of 8 habitats at multiple spatial scales, and related lynx habitat selection to snowshoe hare abundance. Lynx preferred conifer-dominated sapling stands, which supported the highest hare densities on our study site (x̄ = 2.4 hares/ha), over all other habitats. The habitats where lynx placed their home ranges did not differ by sex. However, within their home ranges, males not only preferred conifer-dominated sapling stands, but also preferred mature conifer, whereas females singularly preferred conifer-dominated sapling stands. Approximately one-third of Maine's spruce-fir forest and nearly 50% of our study area was regenerating conifer or mixed-sapling forest, resulting from a disease event and intensive forest management (e.g., large clear-cuts). Our findings suggest that current habitat conditions in Maine are better than western montane regions and approach conditions in boreal forests during periods of hare abundance. We recommend that forest landowners maintain a mosaic of different-aged conifer stands to ensure a component of regenerating conifer-dominated forest on the landscape.  相似文献   

20.
Observing vegetation dynamics and determining optimum conditions for tree species are important for the long-term habitat conservation. In this study we evaluate the environmental drivers that may explain the development and geographic distribution of Pistacia atlantica Desf. (wild pistachio) in Northeastern Iran. The study uses seven machine learning models to predict the habitats of P. atlantica: multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA), boosted regression tree (BRT), maximum entropy (MaxEnt), random forest (RF), support vector machine (SVM), generalized linear model (GLM), and their ensembles (ESMs). In total, 1477 P. atlantica sites were identified, described and mapped. The most relevant determinants of the species habitat were included as 28 bioclimatic, topographic, edaphic, and geologic components. While all the models returned high accuracies, the ESMs achieved the highest AUC, TSS, and Kappa values, suggesting a good predictive performance. The most important parameters explaining the species habitat were found to be the mean diurnal temperature range, annual precipitation and slope. These results support the higher performance of ESMs to predict the spatial distribution of P. atlantica. In turn, this model may support species conservation and decision-making at the regional and national levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号