首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Tiger Panthera tigris populations have declined dramatically in the Terai Arc Landscape (TAL; India and Nepal), and remaining populations are highly fragmented and endangered. As part of a research program to aid tiger management by identifying critical areas for conservation, we aimed to 1) identify the factors which affect the distribution of tigers in the TAL; 2) explore the role of spatial scale in habitat selection; 3) map potentially suitable habitats; and 4) assess the quality of potential corridors linking suitable habitats. We used an approach based on presence and pseudo‐absence data, combining ecological niche factor analysis and generalized linear models. We used an information‐theoretic approach to compare our data on tiger presence with different hypotheses on tiger habitat selection (i.e. protective habitat, prey species, human disturbance), and spatial scales. All hypotheses yielded models with high prediction accuracy (>79%). The most parsimonious model included variables characterizing habitat suitability of the 2 main prey species. More detailed assessment of potentially suitable areas using an extended source‐sink approach suggested that most of the habitats outside the protected areas were attractive sink‐like habitats (i.e. they suffered high levels of human disturbance in otherwise good habitats). Overall, 24% (ca 18 500 km2) of the study area was predicted as suitable (probability cut‐off p>0.5), approximately 7% of which is under protection. Our models showed that protecting the remaining concentrations of tigers requires focusing management efforts on specific areas outside the currently protected areas. These are characterized by good natural suitability; however, they suffer from a high level of human disturbance. Our models underscore the importance of minimizing human disturbances in these areas to avoid that they act as attractive sinks but act as corridors between existing subpopulations.  相似文献   

5.

The unusually high floral and faunal similarity between the different regions of the Afromontane archipelago has been noted by biogeographers since the late 1800s. A possible explanation for this similarity is the spread of montane habitat into the intervening lowlands during the glacial periods of the Pleistocene, allowing biotic exchange between mountain ranges. In this study, we sought to infer the existence and most likely positions of these potential habitat corridors. We focused on sixteen Afromontane endemic tree, shrub, and bird species in the Cameroon Volcanic Line, East African Rift and Great Escarpment. Species were chosen based on distribution above 1200–1500 m in at least two of the major Afromontane regions. Ecological niche models were developed for each species in the present and projected to the mid-Holocene and the last glacial maximum (LGM). Models were thresholded to create binary maps of presence/absence and then summed across taxa to estimate potential LGM and mid-Holocene distributions. We found widespread climatic suitability for our montane taxa throughout the lowlands of Central Africa during the LGM, connecting all regions of the Afromontane archipelago except the Ethiopian Highlands and the Dahomey Gap. During the mid-Holocene, we noted more limited climatic suitability for fewer species in lowland areas. Although we set out to test predictions derived from alternatively hypothesized corridors, we instead found widespread climatic suitability connecting Afromontane regions across the entire Congo Basin for all species.

  相似文献   

6.
Positive abundance-occupancy relationships (a relationship between the number of sites a species occupies and the average density of individuals in occupied sites) are widespread through a range of taxa. The simplest model for this is the "vital rates" model, which proposes that habitat suitability varies spatially; increasing average habitat quality thus leads to simultaneous increases in average densities within occupied areas, as well as the total area that is habitable. This model has not been tested. We develop a general analytical version of this model and show that it predicts that the skewness of population size or aggregation of individuals within sites should vary systematically with density and occupancy, depending on the distribution of habitat suitability, and that the variance in occupancy should be highest at low densities. We compare these predictions with data from the British Trust for Ornithology's Common Birds Census, and we find systematic changes in both variance and skewness of density, both intra- and interspecifically.  相似文献   

7.
Detailed large-scale information on mammal distribution has often been lacking, hindering conservation efforts. We used the information from the 2009 IUCN Red List of Threatened Species as a baseline for developing habitat suitability models for 5027 out of 5330 known terrestrial mammal species, based on their habitat relationships. We focused on the following environmental variables: land cover, elevation and hydrological features. Models were developed at 300 m resolution and limited to within species' known geographical ranges. A subset of the models was validated using points of known species occurrence. We conducted a global, fine-scale analysis of patterns of species richness. The richness of mammal species estimated by the overlap of their suitable habitat is on average one-third less than that estimated by the overlap of their geographical ranges. The highest absolute difference is found in tropical and subtropical regions in South America, Africa and Southeast Asia that are not covered by dense forest. The proportion of suitable habitat within mammal geographical ranges correlates with the IUCN Red List category to which they have been assigned, decreasing monotonically from Least Concern to Endangered. These results demonstrate the importance of fine-resolution distribution data for the development of global conservation strategies for mammals.  相似文献   

8.
Accurate evaluation of habitat availability for wildlife is relevant for ecological applications. Researchers have frequently used models to simulate habitats thermally suitable for reptiles, but these results have limited application for species highly selective for habitat humidity. Here, we use the biophysical Niche Mapper™ model to investigate impacts of vegetation cover on the habitat quality of a high-elevation forest skink, Sphenomorphus taiwanensis, and to predict changes in habitat suitability in a future warmer climate (3 °C increase in air temperature). We assess habitat suitability with different densities of canopy cover in our study areas using two ecologically relevant estimates for lizards: maximum activity time and evaporative water loss (EWL) during the activity season. We measured preferred body temperature and EWL of this species for model parameterization, and behavioral response to EWL to supplement habitat quality assessment. The results indicated that this species is sensitive to EWL and reduces its activity when dehydrated. The model predicted that denser canopy levels increase microclimate cooling and humidity, and that most canopy levels are thermally suitable for this species, as the lizard can thermoregulate to manage adverse temperatures. Nevertheless, increasing canopy density could significantly decrease EWL during activity. In the warmer climate scenario, simulated maximum activity time and EWL changed little because of thermoregulation behavior. Our results suggest that habitat preference of this species is a consequence of water and energy requirements, and we note that combining EWL and maximum activity time data can enhance model accuracy of lizards’ habitat quality in a warmer climate.  相似文献   

9.
10.
In temperate mangrove forests in New South Wales, Australia, the limpet Patelloida mimula Iredale lives on the oyster Saccostrea commercialis Iredale and Roughley, which, along with mangrove trees, provide the only hard substrata in a habitat otherwise dominated by soft-sediment. The objective of this study was to ascertain the degree of association between the limpet and the oyster by examining their patterns of co-occurrence in the forest and the relationship between individual pairs of limpets and oysters. Sampling of the distribution and abundance of limpets and oysters throughout the mangrove forest revealed that limpets were rarely present on substrata other than oysters. Patterns of abundance of limpets were, however, not directly related to the amount of habitat provided by the oysters. For example, there was a dramatic decline in the abundance of oysters from seaward to landward in the mangrove forest which was not reflected in the densities of limpets. Consequently, oysters appear to set the limits of distribution of limpets, but other factors modify their broad-scale patterns of distribution and abundance within these bounds. Limpets leave scars on oysters which might be home sites. About 98% of oysters with limpets had only one limpet per surface of oyster, and the distribution of limpets was overdispersed or repulsed. Moreover, in some areas of the forest, the lengths of limpets were directly related to lengths of oysters. Tracking of individual limpets for 13 days revealed that > 70% remained on the same scar of an oyster. This evidence suggests that for some limpets there is a strong association with particular oysters. Factors determining the distribution, abundance, and sizes of oysters are likely to be important sources of variation to the structure of populations of P. mimula in temperate mangrove forests.  相似文献   

11.
The Madagascar plover Charadrius thoracicus is a shorebird endemic to western Madagascar, currently classified as globally vulnerable. It is restricted to specialized wetland habitats that are increasingly threatened by humans. To inform future conservation measures for this poorly known species, we develop a predictive habitat suitability map and use this map to estimate the size of the Madagascar plover population. We integrate spatially referenced presence-only observations of Madagascar plovers with Landsat data, elevation data and measures of distance to settlements and the coast to produce a habitat suitability model using ecological niche factor analysis. Validation of this model using a receiver operating characteristic plot suggests that it is at least 84% accurate in predicting suitable sites. We then use our estimate of total area of suitable habitat above a critical suitability threshold and data on Madagascar plover density in suitable sites to estimate the total population size to derive a total population estimate of 3100±396 standard error individuals. Finally, we explore the conservation applications of our model.  相似文献   

12.
Recent research shows that density dependence should result in predictable movements between habitats of different suitability, depending on whether population densities are increasing or decreasing. When population densities are increasing, habitats become filled in order of their suitability, resulting in a net flow from high suitability to low suitability. When populations decrease in density, the reverse can happen. These patterns suggest that genetic information can be used to infer habitat suitability since individual-based genetic assignment tests permit high resolution assessments of migration. We used replicated landscapes to study fishers ( Martes pennanti ) during a population increase and predicted that there should be a net flow of individuals from areas of shallow to deep snow, since snow depth has previously been linked to fisher fitness. A total of 769 fishers were sampled from 35 different landscapes and profiled at 16 microsatellite loci. From assignment tests, we inferred five genetic populations. By assigning each of the 35 landscapes to one of these five populations, we were able to determine the proportion of immigrants to each. Consistent with our prediction, there was a positive relationship between the proportion of immigrants and snow depth. The best model of fisher habitat suitability was one with both snow depth and the proportion of coniferous forest in landscapes. Our findings suggest that where population trend is known, genetic information can be used to measure habitat suitability.  相似文献   

13.
The task of replacing species after cutting is being solved; i.e., in what proportions (in area or composition) can available species regenerate themselves from the place where a particular mature species was destroyed (cut)? Formally, this is about finding elements of the so-called regeneration matrix, which has N 2 elements at N species. Appropriate balance equations are derived, where the number of unknowns (N 2) is more than the number of equations (N); therefore, the task can be solved only with the adoption of additional (formal or expert) limits; a probable variant for formal limits is proposed. As a result, the universal analytical algorithm occurs to make solutions possible with any number of involving species. The required initial data are areas occupied the mature and juvenile stands (for each species). The supposed approach can be adapted to solving an analogous task in the case of a stand destroyed in a fire.  相似文献   

14.
Understanding the potential spread of invasive species is essential for land managers to prevent their establishment and restore impacted habitat. Habitat suitability modeling provides a tool for researchers and managers to understand the potential extent of invasive species spread. Our goal was to use habitat suitability modeling to map potential habitat of the riparian plant invader, Russian olive (Elaeagnus angustifolia). Russian olive has invaded riparian habitat across North America and is continuing to expand its range. We compiled 11 disparate datasets for Russian olive presence locations (n = 1,051 points and 139 polygons) in the western US and used Maximum entropy (Maxent) modeling to develop two habitat suitability maps for Russian olive in the western United States: one with coarse-scale water data and one with fine-scale water data. Our models were able to accurately predict current suitable Russian olive habitat (Coarse model: training AUC = 0.938, test AUC = 0.907; Fine model: training AUC = 0.923, test AUC = 0.885). Distance to water was the most important predictor for Russian olive presence in our coarse-scale water model, but it was only the fifth most important variable in the fine-scale model, suggesting that when water bodies are considered on a fine scale, Russian olive does not necessarily rely on water. Our model predicted that Russian olive has suitable habitat further west from its current distribution, expanding into the west coast and central North America. Our methodology proves useful for identifying potential future areas of invasion. Model results may be influenced by locations of cultivated individuals and sampling bias. Further study is needed to examine the potential for Russian olive to invade beyond its current range. Habitat suitability modeling provides an essential tool for enhancing our understanding of invasive species spread.  相似文献   

15.
We show that sapflow is a useful tool for studies of water fluxes in forest ecosystems, because (i) it gives access to the spatial variability within a forest stand, (ii) it can be used even on steep slopes, and (iii) when combined with eddy correlation measurements over forests, it allows separation of individual tree transpiration from the total water loss of the stand. Moreover, sapflow techniques are quite easy to implement. Four sapflow techniques currently coexist, all based on heat diffusion in the xylem. We found a good agreement between three of these techniques. Most results presented here were obtained using the radial flow meter (Granier 1985). Tree sapflow is computed as sap flux density times sapwood area. To scale up from trees to a stand, measurements have to be made on a representative sample of trees. Thus, a number of trees in each circumference class is selected according to the fraction of sapwood they represent in the total sapwood area of the stand. The variability of sap flux density among trees is usually low (CV. 10–15%) in close stands of temperate coniferous or deciduous forests, but is much higher (35–50%) in a tropical rain forest. It also increases after thinning or during a dry spell. A set of 5–10 sapflow sensors usually provides an accurate estimate of stand transpiration. Transpiration measured on two dense spruce stands in the Vosges mountains (France) and one Scot's pine plantation in the Rhine valley (Germany) showed that maximum rate was related to stand LAI and to local climate. Preliminary results comparing the sapflow of a stand of Pinus banksiana to the transpiration of large branches, as part of the BOREAS programme in Saskachewan, Canada showed a similar trend. For modelling purposes, tree canopy conductance (gc) was calculated from Penman-Monteith equation. In most experiments, calculated canopy conductance was dependent on global radiation (positive effect) and on vapour pressure deficit (negative effect) in the absence of other limiting factors. A comparison of the vapour pressure deficit response curves of gc for several tree species and sites showed only small differences among spruce, oak and pine forests when including understorey. Tropical rainforests exhibited a similar behaviour.  相似文献   

16.
应用GIS和最大熵模型分析秦岭冷杉潜在地理分布   总被引:2,自引:0,他引:2  
秦岭冷杉(Abies chensiensis)为松科常绿针叶乔木,属国家濒危野生物种。本文利用获取的秦岭冷杉地理分布记录和14个气候指标、3个土壤指标和3个地形指标,通过最大熵模型(Max Ent)和Arc GIS空间分析构建秦岭冷杉潜在分布区。结果表明,影响秦岭冷杉潜在生境适宜性的主要环境指标为6个气候指标(年平均气温、年极端最高气温、1月平均气温、≥0℃积温、年干燥度指数和年日照时数)、1个土壤指标(p H)和1个地形指标(海拔)。研究区秦岭冷杉生长的最适宜区面积为19498.87 km2,适宜区面积为32219.61 km2,边缘适宜区面积为51874.76 km2,不适宜区面积为106307.97 km2,秦岭冷杉适宜生长区域狭窄,其中最适宜区和适宜区主要集中在甘肃东南部、陕西中南部、四川东北部,湖北西北部和河南西北部,适宜区内次生植被丰富、地形复杂。研究表明,基于最大熵模型与GIS空间分析构建的秦岭冷杉潜在地理分布,可以对我国秦岭冷杉适宜生长区做出科学的区划,为秦岭冷杉资源的保护和管理提供科学依据。  相似文献   

17.
Currently, foliage biomass is estimated based on stem diameter or basal area. However, it is questionable whether the relations between foliage and stem observed from plantations of a single tree species can be applied to stands of different structure or species composition. In this paper, a procedure is presented to simulate foliage and branch biomass of tree crowns relative to crown size and light competition. Crowns are divided into layers and segments and each segment is divided into a foliated and an unfoliated fraction. Depending on the competitive status of the segment, leaf area density, specific leaf area and foliated branch fraction are determined. Based on this information, foliage biomass is calculated. The procedure requires a crown shape function and a measure to characterise competition for light and space of each individual segment within the canopy. Simple solutions are suggested for both requirements to enable an application with data that can be measured non-destructively in the field; these were stem position, tree height, crown base height, crown radii and some general crown shape information. The model was parameterised from single trees of Norway spruce and European beech and partly evaluated with independent data close to the investigation plot. Evaluations showed that the model can attribute the ecology of the different crown forms. Modelled foliage distribution for beech and spruce as well as total needle biomass of spruce agreed well with measurements but foliage biomass of beech was underestimated. The results are discussed in the context of a general model application in structured forests.  相似文献   

18.
Isodar theory can help to unveil the fitness consequences of habitat disturbance for wildlife through an evaluation of adaptive habitat selection using patterns of animal abundance in adjacent habitats. By incorporating measures of disturbance intensity or variations in resource availability into fitness-density functions, we can evaluate the functional form of isodars expected under different disturbance-fitness relationships. Using this framework, we investigated how a gradient of forest harvesting disturbance and differences in resource availability influenced habitat quality for snowshoe hares (Lepus americanus) and red-backed voles (Myodes gapperi) using pairs of logged and uncut boreal forest. Isodars for both species had positive intercepts, indicating reductions to maximum potential fitness in logged stands. Habitat selection by hares depended on both conspecific density and differences in canopy cover between harvested and uncut stands. Fitness-density curves for hares in logged stands were predicted to shift from diverging to converging with those in uncut forest across a gradient of high to low disturbance intensity. Selection for uncut forests thus became less pronounced with increasing population size at low levels of logging disturbance. Voles responded to differences in moss cover between habitats which reflected moisture availability. Lower moss cover in harvested stands either reduced maximum potential fitness or increased the relative rate of decline in fitness with density. Differences in vole densities between harvested and uncut stands were predicted, however, to diminish as populations increased. Our findings underscore the importance of accounting for density-dependent behaviors when evaluating how changing habitat conditions influence animal distribution.  相似文献   

19.
In the UK, four out of 18 bat species are listed on the EU Habitats Directive, including the lesser horseshoe bat (Rhinolophus hipposideros), and their population status is closely monitored by visiting known roosts. R. hipposideros predominantly form maternity roosts in buildings, but roosts are impermanent features in the landscape and their distribution changes as bats form new roosts and abandon others. Locating new roosts requires intensive surveys which are challenging and inefficient. In this study, we provide a novel model-based strategy to identify potential R. hipposideros maternity roost sites that can be used to monitor bat populations. First, we model potential maternity roost habitat using record centre data on roost locations across Wales, Great Britain. We then constrain the area identified from modelling using record centre data on locations of bats in areas with no known roosts. We used two variable selection methods and three pseudo-absence data sets (random background points, random points in buildings and target group selection of mammal records) to produce six habitat suitability models. The three pseudo-absence data sets produced different habitat suitability maps, demonstrating the influence of pseudo-absence selection on species distribution models. The six models were combined using weighted mean average to produce an ensemble model that performed better than individual models and that indicated high levels of congruence in areas predicted to have high habitat suitability for maternity roosts. Our model revealed an extensive area (6523 km2; 31% of the area of Wales) containing 18,051 buildings in suitable habitat. Using record centre data on bat activity outside commuting range from known roosts reduced the potential survey area to 133 km2 (0.6% of the area of Wales) and 207 buildings. Our modelling outputs can be used to direct volunteers and bat surveyors in more targeted and efficient searches.  相似文献   

20.
We examined the relationship between the ability of bird species to persist in fragmented forests and their ability to colonize new forest habitat. Using a long-term data set on the colonization of a forest plantation, we tested the hypothesis that bird species tolerant to habitat fragmentation would detect and colonize the new habitat faster than intolerant species. The forest plantation under study is situated on an area of land reclaimed from the sea (a polder) in the central part of The Netherlands. We constructed an index of tolerance to habitat fragmentation and included it as a predictor variable in a set of three logistic regression models that compared the probability of colonization over four consecutive time periods. After controlling statistically for the effects of regional incidence, preferred habitat and life-history characteristics, there was a significant effect of tolerance to fragmentation on the ability of species to colonize the plantation, and a marginal effect on the timing of colonization. We then examined the effect of the same index of tolerance to fragmentation on colonization patterns over a larger spatial scale. Multivariate regression models showed that the proportion of three polders of different ages occupied by forest bird species was dependent upon the regional incidence of a species, its preferred habitat and its tolerance to fragmentation. The results support the hypothesis that species tolerant to habitat fragmentation detect and colonize new habitat faster than those intolerant to habitat fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号