首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erbium doped waveguide amplifiers can be used in optical integrated circuits to compensate for signal losses. Such amplifiers use stimulated emission from the first excited state (4 I 13/2) to the ground state (4 I 15/2) of Er3+ at 1.53 μm, the standard wavelength for optical communication. Since the intra-f transitions are parity forbidden for free Er3+ ions, the absorption and the emission cross sections are quite small for such doped amplifiers. To enhance the absorption, Si nanoclusters can be embedded in silica matrix. Here we investigate the effect of the Si nanocluster on the Er3+ emission using ab initio theory for the first time. We combine multi-reference configuration interaction with one-electron spin-orbit Hamiltonian and relativistic effective core potentials. Our calculations show that the presence of a polarizable Be atom at 5Ǻ from the Er3+ ion in a crystalline environment can lead to an enhancement in the emission by a factor of three. The implications of this effect in designing more efficient optical gain materials are discussed.  相似文献   

2.
Gernot Renger  Philipp Kühn 《BBA》2007,1767(6):458-471
This mini review is an attempt to briefly summarize our current knowledge on light driven oxidative water splitting in photosynthesis. The reaction leading to molecular oxygen and four protons via photosynthesis comprises thermodynamic and kinetic constraints that require a balanced fine tuning of the reaction coordinates. The mode of coupling between electron (ET) and proton transfer (PT) reactions is shown to be of key mechanistic relevance for the redox turnover of YZ and the reactions within the WOC. The WOC is characterized by peculiar energetics of its oxidation steps in the WOC. In all oxygen evolving photosynthetic organisms the redox state S1 is thermodynamically most stable and therefore this general feature is assumed to be of physiological relevance. Available information on the Gibbs energy differences between the individual redox states Si+1 and Si and on the activation energies of their oxidative transitions are used to construct a general reaction coordinate of oxidative water splitting in photosystem II (PS II). Finally, an attempt is presented to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and the active role of the protein environment in tuning the local proton activity that depends on time and redox state Si. The O-O linkage is assumed to take place within a multistate equilibrium at the redox level of S3, comprising both redox isomerism and proton tautomerism. It is proposed that one state, S3(P), attains an electronic configuration and nuclear geometry that corresponds with a hydrogen bonded peroxide which acts as the entatic state for the generation of complexed molecular oxygen through S3(P) oxidation by YZox.  相似文献   

3.
The static magnetic susceptibilities of different ferric high spin and low spin compounds of myoglobin (Mb(H2O), Mb(H2O) frozen under high pressure, MbF, MbCN) were measured in the temperature region between 4.2 K and 130 K. Mössbauer absorption experiments on Mb(H2O) and MbF were perormed at different temperatures between 4.2 K and 180 K and in small magnetizing fields H1 kOe. The evaluation of our experimental data was performed with a Hamiltonian describing the 3d 5-configuration of the ferric iron by taking into account the Coulomb repulsion of the five electrons within the 3d-shell, the crystal electric field of -symmetry, and the spin-orbit coupling. The Hamiltonian contains the splitting energies of the five antibonding d-orbitals (d xy , d xz , d yz , d x 2y 2, d z 2) as parameters. The values of these energies were obtained by a least squares fitting procedure using our magnetic susceptibility data together with the g-factors taken from the literature. In the case of MbF the energy difference between the two lowest Kramers doublets was also determined from present Mössbauer data. The results of the susceptibility and the Mössbauer data are in good agreement.The splitting energies of the 3d-orbitals can be correlated to the distances between the iron and its nearest neighbours. The different positions of the iron in the compounds investigated are discussed.  相似文献   

4.
The low-lying electronic states of the ferrous high-spin heme in deoxy-myoglobin (deoxy-Mb) and deoxy-hemoglobin (deoxy-Hb) were probed by multi-frequency electron paramagnetic resonance (MFEPR) spectroscopy. An unexpected broad EPR signal was measured at the zero magnetic field using cavity resonators at 34-122 GHz that could not be simulated using any parameter sets for the S = 2 spin Hamiltonian assuming spin quintet states in the 5B2 ground state. Furthermore, we have observed novel, broad EPR signals measured at 70-220 GHz and 1.5 K using a single pass transmission probe. These signals are attributed to the ferrous high-spin heme in deoxy-Mb and deoxy-Hb. The resonant peaks shifted to a higher magnetic field with increasing frequency. The energy level separation between the ground singlet and the first excited state at the zero magnetic field was directly estimated to be 3.5 cm− 1 for deoxy-Hb. For deoxy-Mb, the first two excited singlet states are separated by 3.3 cm− 1 and 6.5 cm− 1, respectively, from the ground state. The energy gap at the zero magnetic field is directly derived from our MFEPR for deoxy-Mb and deoxy-Hb and strongly supports the theoretical analyses based on the Mössbauer and magnetic circular dichroism experiments.  相似文献   

5.
Extraction conditions have been found which result in the retention of managanese to the 33–34 kDa protein, first isolated as an apoprotein by Kuwabara and Murata (Kuwabara, T. and Murata, N. (1979) Biochim. Biophys Acta 581, 228–236). By maintaining an oxidizing-solution potential, with hydrophilic and lipophilic redox buffers during protein extraction of spinach grana-thylakoid membranes, the 33–34 kDa protein is observed to bind a maximum of 2 Mn/protein which are not released by extended dialysis versus buffer. This manganese is a part of the pool of 4 Mn/Photosystem II normally associated with the oxygen-evolving complex. The mechanism for retention of Mn to the protein during isolation appears to be by suppression of chemical reduction of natively bound, high-valent Mn to the labile Mn(II) oxidation state. This protein is also present in stoichiometric levels in highly active, O2-evolving, detergent-extracted PS-II particles which contain 4–5 Mn/PS II. Conditions which result in the loss of Mn and O2 evolution activity from functional membranes, such as incubation in 1.5 mM NH2OH or in ascorbate plus dithionite, also release Mn from the protein. The protein exists as a monomer of 33 kDa by gel filtration and 34 kDa by gel electrophoresis, with an isoelectric point of 5.1 ± 0.1. The protein exhibits an EPR spectrum only below 12 K which extends over at least 2000 G centered at g = 2 consisting of non-uniformly separated hyperfine transitions with average splitting of 45–55 G. The magnitude of this splitting is nominally one-half the splitting observed in monomeric manganese complexes having O or N donor ligands. This is apparently due to electronic coupling of the two 55Mn nuclei in a presumed binuclear site. Either a ferromagnetically coupled binuclear Mn2(III,III) site or an antiferromagnetically coupled mixed-valence Mn2(II,III) site are considered as possible oxidation states to account for the EPR spectrum. Qualitatively similar hyperfine structure splittings are observed in ferromagnetically coupled binuclear Mn complexes having even-spin ground states. The extreme temperature dependence suggests the population of low-lying excited spin states such as are present in weakly coupled dimers and higher clusters of Mn ions, or, possibly, from efficient spin relaxation such as occurs in the Mn(III) oxidation state. Either 1.5 mM NH2OH or incubation with reducing agents abolishes the low temperature EPR signal and releases two Mn(II) ions to solution. This is consistent with the presence of Mn(III) in the isolated protein. The intrinsically unstable Mn2(II,III) oxidation state observed in model compounds favors the assignment of the stable protein oxidation state to the Mn2(III,III) formulation. This protein exhibits characteristics consistent with an identification with the long-sought Mn site for photosynthetic O2 evolution. An EPR spectrum having qualitatively similar features is observable in dark-adapted intact, photosynthetic membranes (Dismukes, G.C., Abramowicz, D.A., Ferris, F.K., Mathur, P., Upadrashta, B. and Watnick, P. (1983) in The Oxygen-Evolving System of Plant Photosynthesis (Inoue, Y., ed.), pp. 145–158, Academic Press, Tokyo) and in detergent-extracted, O2-evolving Photosystem-II particles (Abramowicz, D.A., Raab, T.K. and Dismukes, G.C. (1984) Proceedings of the Sixth International Congress on Photosynthesis (Sybesma, C., ed.), Vol. I, pp. 349–354, Martinus Nijhoff/Dr. W. Junk Publishers, The Hague, The Netherlands), thus establishing a direct link with the O2 evolving complex.  相似文献   

6.
The first excited singlet state (S1) of carotenoids (also termed 2Ag) plays a key role in photosynthetic excitation energy transfer due to its close proximity to the S1 (Qy) level of chlorophylls. The determination of carotenoid 2Ag energies by optical techniques is difficult; transitions from the ground state (S0, 1Ag) to the 2Ag state are forbidden (“optically dark”) due to parity (g ← //→ g) as well as pseudo-parity selection rules (− ← //→ −). Of particular interest are S1 energies of the so-called xanthophyll-cycle pigments (violaxanthin, antheraxanthin and zeaxanthin) due to their involvement in photoprotection in plants. Previous determinations of S1 energies of violaxanthin and zeaxanthin by different spectroscopic techniques vary considerably. Here we present an alternative approach towards elucidation of the optically dark states of xanthophylls by near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The indication of at least one π* energy level (about 0.5 eV below the lowest 1Bu+ vibronic sublevel) has been found for zeaxanthin. Present limitations and future improvements of NEXAFS to study optically dark states of carotenoids are discussed. NEXAFS combined with simultaneous optical pumping will further aid the investigation of these otherwise hardly accessible states.  相似文献   

7.
《BBA》1985,807(1):35-43
EPR study of reduced ground and photoexcited triplet state of Photosystem I reaction center in the thermophylic cyanobacterium Mastigocladus laminosus at 8 K is reported. In the reduced ground state preparation, the iron-sulfur EPR spectra are found to be similar to that of Photosystem I reaction center of higher plants. Two types of transient photoexcited triplets are observed and are correlated to the reduction state of the iron-sulfur centers. When electrons can be transferred freely through the acceptors chain, a polarized triplet spectrum is observed, typical of spin-orbit intersystem crossing mechanism with lifetime of approx. 2 ms and is attributed to chlorophyll a, either at the antenna or at A1 in the electron-transport chain. When the iron-sulfur centers are reduced the triplet spectrum is typical of a radical-pair intersystem crossing mechanism with triplet lifetime shorter than 1 ms, and is attributed to P-700. Both species have similar spectroscopic zero field splitting parameters identifying both as chlorophyll a.  相似文献   

8.
Differential scanning calorimetry has been used to study several structural transitions of the human erythrocyte membrane. Earlier studies have shown that one of these transitions (the A transition) is due to the thermal unfolding of spectrin on the membrane. In this paper, it is shown that two of the other transitions (B and C) exhibit a high sensitivity to a local anesthetic, benzyl alcohol. Increasing the ionic strength of the suspending medium results in a splitting of the B transition into two independent transitions (B1 and B2). It is found that one of these (B2) is associated with titrating groups, since the midpoint for the transitions shifts by about 20°C, with an apparent pK near 7.5. Extensive bilateral proteolysis by papain causes a drastic decrease in the size of all transitions except the C transition, which remains unaltered. On the other hand, treatment with phospholipase A2 largely affects the C transition, causing its disappearance. Because of the lack of sensitivity to proteolysis and the high sensitivity to phospholipase, it appears that the C transition has a large extent of ‘lipid involvement’. It might result from the melting of a small fraction of phospholipid which exists in a crystalline state under physiological conditions. Alternatively, the C transition could arise from changes in protein-lipid interactions or from lipid-dependent changes in protein-protein interactions, providing one assumes that only protease-resistant portions of membrane proteins are participating.  相似文献   

9.
This minireview is an attempt to summarize our current knowledge on oxidative water splitting in photosynthesis. Based on the extended Kok model (Kok, Forbush, McGloin (1970) Photochem Photobiol 11:457–476) as a framework, the energetics and kinetics of two different types of reactions comprising the overall process are discussed: (i) P680+• reduction by the redox active tyrosine YZ of polypeptide D1 and (ii) Yzox induced oxidation of the four step sequence in the water oxidizing complex (WOC) leading to the formation of molecular oxygen. The mode of coupling between electron transport (ET) and proton transfer (PT) is of key mechanistic relevance for the redox turnover of YZ and the reactions within the WOC. The peculiar energetics of the oxidation steps in the WOC assure that redox state S1 is thermodynamically most stable. This is a general feature in all oxygen evolving photosynthetic organisms and assumed to be of physiological relevance. The reaction coordinate of oxidative water splitting is discussed on the basis of the available information about the Gibbs energy differences between the individual redox states S i+1 and S i and the data reported for the activation energies of the individual oxidation steps in the WOC. Finally, an attempt is made to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O–O bond and on the active role of the protein in tuning the local proton activity that depends on time and redox state S i . The O–O linkage is assumed to take place at the level of a complexed peroxide.  相似文献   

10.
Anaerobically reduced samples of cytochrome P-450 from Pseudomonas putida were studied by M?ssbauer spectroscopy. In the presence of an applied magnetic field the high-spin ferrous heme iron showed an intricate pattern of electric and magnetic hyperfine interactions which could be parametrized successfully in terms of a spin Hamiltonian formalism. The results imply a very low (triclinic) symmetry of the heme iron. The effects of the ligand environment and of spin-orbit coupling result in a large zero-field splitting of the electronic ground state. The electronic ground state. The electric-field gradient tensor is characterized by a large asymmetry parameter, and its principal axes are rotated substantially from the frame that defines the zero-field splitting. This study shows that high-field M?ssbauer spectroscopy provides a unique tool for structural investigations of high-spin ferrous compounds and can substitute, under suitable conditions, for magnetic susceptibility measurements. The present paper focuses on the methodology and data analysis; in the subsequent paper the data obtained for P-450 are compared with new results obtained for hemoglobin, chloroperoxidase, and horseradish peroxidase.  相似文献   

11.
The d5-‘low-spin’ Tc(II) complexes tribromonitrosyl-bis(dimethylphenylphosphine)technetium(II) and tribromo-thionitrosyl-bis(dimethylphenylphosphine)technetium(II) were prepared by ligand exchange starting from the analogous chloro compounds. The complexes were characterized chemically and IR, UVVis and EPR spectroscopically.In the room temperature EPR spectra a well-resolved 99Tc hyperfine splitting is observed inidicating a ground state of the unpaired electron which is well separated from the other orbit states. The general features of the spectra at low temperatures are characteristic for an axially symmetric spin Hamiltonian. Analysis of the 99Tc and 31P hfs (hfs = hyperfine splittings) shows a marked covalency of the Tcligand bonds. A comparison is given between the chloro and bromo, as well as between the nitrosyl and thionitrosyl complexes.  相似文献   

12.
A Theoretical study on the mechanism of the reactions of CF2ClC(O)OCH3 with the OH radical and Cl atom is presented. Geometry optimization and frequency calculations have been performed at the MPWB1K/6-31+G(d,p) level of theory and energetic information is further refined by calculating the energy of the species using G2(MP2) theory. Transition states are searched on the potential energy surface involved during the reaction channels and each of the transition states are characterized by presence of only one imaginary frequency. The existence of transition states on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation. Theoretically calculated rate constants at 298 K and atmospheric pressure using the canonical transition state theory (CTST) are found to be in good agreement with the experimentally measured ones. Using group-balanced isodesmic reactions as working chemical reactions, the standard enthalpies of formation for CF2ClC(O)OCH3, CF2ClC(O)OCH2 and CF3C(O)OCH3 are also reported for the first time.  相似文献   

13.
Triplet exciton formation in neat 7,7‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′] dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c][1,2,5]thiadiazole) (p‐DTS(FBTTh2)2) and blends with [6,6]‐Phenyl C70 butyric acid methyl ester (PC70BM), with and without the selective solvent additive 1,8‐diiodooctane, is investigated by means of spin sensitive photoluminescence measurements. For all three material systems, a significant amount of long living triplet excitons is detected, situated on the p‐DTS(FBTTh2)2 molecules. The characteristic zero‐field splitting parameters for this state are identified to be D = 42 mT (1177 MHz) and E = 5 mT (140 MHz). However, no triplet excitons located on PC70BM are detectable. Using electrically detected spin resonance, the presence of these triplet excitons is confirmed even at room temperature, highlighting that triplet excitons form during solar cell operation and influence the photocurrent and photovoltage. Surprisingly, the superior performing blend is found to have the largest triplet population. It is concluded, that the formation of triplet excitons from charge transfer states via electron back transfer has no crucial impact on device performance in p‐DTS(FBTTh2)2:PC70BM based solar cells.  相似文献   

14.
The synthesis and characterization of [In(pbx)3] (1) (Hpbx = 2-(2′-hydroxylphenyl)benzoxazole) are presented. The ground and low lying excited electronic states in 1 are studied using density functional theory level (DFT). The optimized geometry is compared to the experimentally observed structure. Time-dependent density functional theory level (TDDFT) is employed to investigate the excited singlet states. The calculated energies of the low lying singlet states in 1 are in considerable agreement with the experimental data. All the low lying transitions are categorized as π → π∗ ligand-to-ligand charge transfer transitions (LLCT) in nature. The emissive state of 1 is assigned as a singlet metal-perturbed π → π∗ ligand-to-ligand charge transfer transition (LLCT).  相似文献   

15.
Theoretical investigations are carried out on reaction mechanism of the reactions of CF3CH2NH2 (TFEA) with the OH radical by means of ab initio and DFT methods. The electronic structure information on the potential energy surface for each reaction is obtained at MPWB1K/6-31+G(d,p) level and energetic information is further refined by calculating the energy of the species with a Gaussian-2 method, G2(MP2). The existence of transition states on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation. Our calculation indicates that the H abstraction from –NH2 group is the dominant reaction channel because of lower energy barrier. The rate constants of the reaction calculated using canonical transition state theory (CTST) utilizing the ab initio data. The agreement between the theoretical and experimental rate constants is good at the measured temperature. From the comparison with CH3CH2NH2, it is shown that the fluorine substution decreases the reactivity of the C-H bond.  相似文献   

16.
The dynamic aspect of proteins is fundamental to understanding protein stability and function. One of the goals of NMR studies of side-chain dynamics in proteins is to relate spin relaxation rates to discrete conformational states and the timescales of interconversion between those states. Reported here is a physical analysis of side-chain dynamics that occur on a timescale commensurate with monitoring by 2H spin relaxation within methyl groups. Motivated by observations made from tens-of-nanoseconds long MD simulations on the small protein eglin c in explicit solvent, we propose a simple molecular mechanics-based model for the motions of side-chain methyl groups. By using a Boltzmann distribution within rotamers, and by considering the transitions between different rotamer states, the model semi-quantitatively correlates the population of rotamer states with ‘model-free’ order parameters typically fitted from NMR relaxation experiments. Two easy-to-use, analytical expressions are given for converting S2axis’ values (order parameter for C–CH3 bond) into side-chain rotamer populations. These predict that S2axis’ values below 0.8 result from population of more than one rotameric state. The relations are shown to predict rotameric sampling with reasonable accuracy on the ps–ns timescale for eglin c and are validated for longer timescales on ubiquitin, for which side-chain residual dipolar coupling (RDC) data have been collected.  相似文献   

17.
Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaea. It contains the nickel porphinoid F430, a prosthetic group that has been proposed to be directly involved in the catalytic cycle by the direct binding and subsequent reduction of the substrate methyl-coenzyme M. The active enzyme (MCRred1) can be generated in vivo and in vitro by reduction from MCRox1, which is an inactive form of the enzyme. Both the MCRred1 and MCRox1 forms have been proposed to contain F430 in the Ni(I) oxidation state on the basis of EPR and ENDOR data. In order to further address the oxidation state of the Ni center in F430, variable-temperature, variable-field magnetic circular dichroism (VTVH MCD), coupled with parallel absorption and EPR studies, have been used to compare the electronic and magnetic properties of MCRred1, MCRox1, and various EPR silent forms of MCR, with those of the isolated penta-methylated cofactor (F430M) in the +1, +2 and +3 oxidation states. The results confirm Ni(I) assignments for MCRred1 and MCRred2 forms of MCR and reveal charge transfer transitions involving the Ni d orbitals and the macrocycle orbitals that are unique to Ni(I) forms of F430. Ligand field transitions associated with S=1 Ni(II) centers are assigned in the near-IR MCD spectra of MCRox1-silent and MCR-silent, and the splitting in the lowest energy d–d transition is shown to correlate qualitatively with assessments of the zero-field splitting parameters determined by analysis of VTVH MCD saturation magnetization data. The MCD studies also support rationalization of MCRox1 as a tetragonally compressed Ni(III) center with an axial thiolate ligand or a coupled Ni(II)-thiyl radical species, with the reality probably lying between these two extremes. The reinterpretation of MCRox1 as a formal Ni(III) species rather than an Ni(I) species obviates the need to invoke a two-electron reduction of the F430 macrocyclic ligand on reductive activation of MCRox1 to yield MCRred1.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00775-004-0549-9Abbreviations F430 cofactor 430 - F430M penta-methylated form of cofactor 430 - Ni(I)F430M F430M with the nickel atom in the +1 oxidation state - Ni(II)F430M F430M with the nickel atom in the +2 oxidation state - Ni(III)F430M F430M with the nickel atom in the +3 oxidation state - MCR methyl-coenzyme M reductase - MCRox1 MCR exhibiting the MCR-ox1 EPR signal - MCRox1-silent EPR silent form of MCR obtained from the MCRox1 form - MCRred1 MCR exhibiting the EPR signals red1c and/or red1m - MCRred1c MCRred1 in the presence of coenzyme M - MCRred1m MCRred1 in the presence of methyl-coenzyme M - MCRred2 MCR exhibiting both the red1 and red2 EPR signals - MCRred1-silent EPR silent form of MCR obtained from the MCRred1 form - MCRsilent EPR silent form of MCR  相似文献   

18.
1D zinc ferrite (ZnFe2O4) photoanode is fabricated on an F‐doped tin oxide substrate at a low temperature by an all‐solution method. To activate the material for photoelectrochemical water splitting, the hybrid microwave annealing (HMA) is applied with graphite powder as a susceptor. Thus, HMA treatment of ZnFe2O4 photoanode synthesized at 550 °C increases the photocurrent density of water oxidation by 15 times. In contrast, the conventional thermal annealing at 800 °C brings only 1.7‐fold increase. The various physical characterizations and hole scavenger photooxidation experiments with H2O2 reveal that the post‐HMA treatment anneals the surface defect states and enhances the crystallinity. Hence, HMA treatment is effective to suppress charge‐carrier recombination both on the surface and in the bulk of ZnFe2O4 to bring out its latent solar water‐splitting activity.  相似文献   

19.
《Biophysical journal》2022,121(12):2380-2388
Members of the TREK family of two-pore domain potassium channels are highly sensitive to regulation by membrane lipids, including phosphatidylinositol-4,5-bisphosphate (PIP2). Previous studies have demonstrated that PIP2 increases TREK-1 channel activity; however, the mechanistic understanding of the conformational transitions induced by PIP2 remain unclear. Here, we used coarse-grained molecular dynamics and atomistic molecular dynamics simulations to model the PIP2-binding site on both the up and down state conformations of TREK-1. We also calculated the free energy of PIP2 binding relative to other anionic phospholipids in both conformational states using potential of mean force and free-energy-perturbation calculations. Our results identify state-dependent binding of PIP2 to sites involving the proximal C-terminus, and we show that PIP2 promotes a conformational transition from a down state toward an intermediate that resembles the up state. These results are consistent with functional data for PIP2 regulation, and together provide evidence for a structural mechanism of TREK-1 channel activation by phosphoinositides.  相似文献   

20.
We developed a computational model of mitochondrial energetics that includes Ca2+, proton, Na+, and phosphate dynamics. The model accounts for distinct respiratory fluxes from substrates of complex I and complex II, pH effects on equilibrium constants and enzyme kinetics, and the acid-base equilibrium distributions of energy intermediaries. We experimentally determined NADH and ΔΨm in guinea pig mitochondria during transitions from de-energized to energized, or during state 2/4 to state 3 respiration, or into hypoxia and uncoupling, and compared the results with those obtained in model simulations. The model quantitatively reproduces the experimentally observed magnitude of ΔΨm, the range of NADH levels, respiratory fluxes, and respiratory control ratio upon transitions elicited by sequential additions of substrate and ADP. Simulation results are also able to mimic the change in ΔΨm upon addition of phosphate to state 4 mitochondria, leading to matrix acidification and ΔΨm polarization. The steady-state behavior of the integrated mitochondrial model qualitatively simulates the dependence of respiration on the proton motive force, and the expected flux-force relationships existing between respiratory and ATP synthesis fluxes versus redox and phosphorylation potentials. This upgraded mitochondrial model provides what we believe are new opportunities for simulating mitochondrial physiological behavior during dysfunctional states involving changes in pH and ion dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号