首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Docetaxel (Doc) and adriamycin (Adr) are two of the most effective chemotherapeutic agents in the treatment of breast cancer. However, their efficacy is often limited by the emergence of multidrug resistance (MDR). The purpose of this study was to investigate MDR mechanisms through analyzing systematically the expression changes of genes related to MDR in the induction process of isogenic drug resistant MCF-7 cell lines. Isogenic resistant sublines selected at 100 and 200 nM Doc (MCF-7/100 nM Doc and MCF-7/200 nM Doc) or at 500 and 1,500 nM Adr (MCF-7/500 nM Adr and MCF-7/1,500 nM) were developed from human breast cancer parental cell line MCF-7, by exposing MCF-7 to gradually increasing concentrations of Doc or Adr in vitro. Cell growth curve, flow cytometry and MTT cytotoxicity assay were preformed to evaluate the MDR characteristics developed in the sublines. Some key genes on the pathways related to drug resistance (including drug-transporters: MDR1, MRP1 and BCRP; drug metabolizing-enzymes: CYP3A4 and glutathione S-transferases (GST) pi; target genes: topoisomerase II (TopoIIα) and Tubb3; apoptosis genes: Bcl-2 and Bax) were analyzed at RNA and protein expression levels by real time RT-qPCR and western blot, respectively. Compared to MCF-7/S (30.6 h), cell doubling time of MCF-7/Doc (41.6 h) and MCF-7/Adr (33.8 h) were both prolonged, and the cell proportion of resistant sublines in G1/G2 phase increased while that in S-phase decreased. MCF-7/100 nM Doc and MCF-7/200 nM Doc was 22- and 37-fold resistant to Doc, 18- and 32-fold to Adr, respectively. MCF-7/500 nM Adr and MCF-7/1,500 nM Adr was 61- and 274-fold resistant to Adr, three and 12-fold to Doc, respectively. Meantime, they also showed cross-resistance to the other anticancer drugs in different degrees. Compared to MCF-7/S, RT-qPCR and Western blot results revealed that the expression of MDR1, MRP1, BCRP, Tubb3 and Bcl-2 were elevated in both MCF-7/Doc and MCF-7/Adr, and TopoIIα, Bax were down-regulated in both the sublines, while CYP3A4, GST pi were increased only in MCF-7/Doc and MCF-7/Adr respectively. Furthermore, the changes above were dose-dependent. The established MCF-7/Doc or MCF-7/Adr has the typical MDR characteristics, which can be used as the models for resistance mechanism study. The acquired process of MCF-7/S resistance to Doc or Adr is gradual, and is complicated with the various pathways involved in. There are some common resistant mechanisms as well as own drug-specific changes between both the sublines.  相似文献   

2.
Raloxifene (RLX) has been strongly recommended for postmenopausal women at high risk of invasive breast cancer and for prevention of osteoporosis. However, low aqueous solubility and reduced bioavailability hinder its clinical application. The objective of this study was to explore the potential of RLX loaded mixed micelles (RLX-MM) using Pluronic F68 and Gelucire 44/14 for enhanced bioavailability and improved anticancer activity on human breast cancer cell line (MCF-7). RLX-MM were prepared by solvent evaporation method and optimized using 32 factorial design. The average size, entrapment efficiency and zeta potential of the optimized formulation were found to be 190?±?3.3 nm, 79?±?1.3%, 13?±?0.8 mV, respectively. In vitro study demonstrated 74.68% drug release from RLX-MM in comparison to 42.49% drug release from RLX dispersion. According to the in vitro cytotoxicity assay, GI50 values on MCF-7 breast cancer cell line for RLX-MM and free RLX were found to be 22.5 and 94.71 μg/mL, respectively. Significant improvement (P?<?0.05) in the anticancer activity on MCF-7 cell line was observed in RLX-MM over RLX pure drug. Additionally, oral bioavailability of RLX-MM was improved by 1.5-fold over free RLX when administered in female Wistar rats. Incorporation of RLX in the hydrophobic core and improved solubility of the drug due to hydrophilic shell attributed to the enhanced cytotoxicity and bioavailability of RLX-MM. This research establishes the potential of RLX loaded mixed micelles of Pluronic F68 and Gelucire 44/14 for improved bioavailability and anticancer activity on MCF-7 cell line.  相似文献   

3.
Melatonin has antitumor activity via several mechanisms including its anti-proliferative and pro-apoptotic effects. Moreover, it has been proven that melatonin in combination with chemotherapeutic agents enhances chemotherapy-triggered apoptosis in several types of cancer. Therefore, this study was intended to evaluate whether melatonin is able to strengthen the anti-cancer potential of different chemotherapeutic drugs in human colorectal adenocarcinoma HT–29 cells. We found that treatment with 20 µM cisplatin (CIS) or 1 mM 5-fluorouracil (5-FU) for 72 h induced a decrease in HT-29 cell viability. Furthermore, 1 mM melatonin significantly (P < 0.05) increased the cytotoxic effects of 5-FU. Likewise, simultaneous stimulation with 1 mM melatonin and 1 mM 5-FU significantly (P < 0.05) enhanced the ratio of cells with an overproduction of intracellular reactive oxygen species and substantially augmented the population of apoptotic cells compared to the treatment with 5-FU alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in CIS-treated HT-29 cells, as suggested by a slight increment in the fraction of early apoptotic cells that was observed only after 48 h. Consistently, co-stimulation of HT-29 cells with 20 µM CIS or 1 mM 5-FU in the presence of 1 mM melatonin further increased caspase-3 activation. Apart from this, the cytostatic activity displayed by CIS due to S phase arrest was not affected by concomitant stimulation with melatonin. Overall, our results indicate that melatonin increases the sensitivity of HT-29 cells to 5-FU treatment and, consequently, the indolamine could be potentially applied to colorectal adenocarcinoma treatment as a potent chemosensitizing agent.  相似文献   

4.
The purposes of this study were to elucidate the effects of ARHI (aplysia ras homolog I) on several biological features of lung cancer cells, including growth, proliferation and invasion, to collect experimental evidence for the future biological treatment of human lung cancer. The eukaryotic expression vector, pcDNA3.1–ARHI, was constructed and transfected into the human lung cancer cell line SK-MES-1. The biological properties of the resulting ARHI-expressing lung cancer cell line were evaluated using methyl thiazolyl tetrazolium assay, flow cytometry, and a Transwell invasion assay. Additionally, the influence of ARHI on the gene expression levels of cyclin D1, p27KIP1, death-associated protein kinase 1 (DAPK1), and matrix metalloproteinases1/2 (MMP-1/2) was determined. Compared to the non-transfected SK-MES-1 cells and the cells transfected with the empty pcDNA3.1 plasmid, the ARHI-transfected cells displayed significantly reduced growth rates and decreased viability (P < 0.05). The ARHI-transfected cells also displayed a significantly higher percentage of cells in G1 phase (P < 0.05) and a lower percentage of cells in S phase (P < 0.05); a higher percentage of apoptosis (P < 0.05); and finally, a notable reduction in the basement membrane-penetration rate in the Transwell invasion assay (P < 0.05). Furthermore, it was determined that ARHI is capable of inhibiting the expression of cyclin D1, MMP-1, and MMP-2; however, ARHI promotes the expression of both p27KIP1 and DAPK1 in SK-MES-1 cells. In conclusion, overexpression of ARHI gene might be associated with the inhibition of lung cancer cell growth, proliferation and invasion, and the promotion of apoptosis.  相似文献   

5.
sp2-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4), cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.  相似文献   

6.
Protein kinase C (PKC) has been considered for a potential target of anticancer chemotherapy. PKC-alpha has been associated with growth and metastasis of some cancer cells. However, the role of PKC-alpha in human breast cancer cell proliferation and anticancer chemotherapy remains unclear. In this study, we examined whether alterations of PKC-alpha by phorbol esters and PKC inhibitors could affect proliferation of human breast cancer MCF-7 cells and the cytotoxic effect of chemotherapeutic agents. Exposure for 24 h to doxorubicin (DOX) and vinblastine (VIN) caused a concentration-dependent reduction in proliferation of MCF-7 cells. However, these two anticancer drugs altered cellular morphology and growth pattern in distinct manners. Phorbol 12,13-dibutyrate (PDBu, 100 nM), which enhanced activities of PKC-alpha, increased cancer cell proliferation and attenuated VIN (1 microM)-induced cytotoxicity. These effects were not affected in the presence of 10 nM staurosporine. Phorbol myristate acetate (PMA, 100 nM) that completely depleted PKC-alpha also enhanced cancer cell proliferation and attenuated VIN-induced cytotoxicity. Three potent PKC inhibitors, staurosporine (10 nM), chelerythrine (5 microM) and bisindolylmaleimide-I (100 nM), had no significant effect on MCF-7 cell proliferation; staurosporine and chelerythrine, but not bisindolylmaleimide-I, attenuated VIN-induced cytotoxicity. Moreover, neither phorbol esters nor PKC inhibitors had an effect on cytotoxic effects of DOX (1 microM) on MCF-7 cell proliferation. Thus, these data suggest that MCF-7 cell proliferation or the anti-cancer action of DOX and VIN on breast cancer cells is independent of PKC-alpha.  相似文献   

7.
Quercetin, the plant-derived phenolic compounds, plays a pivotal role in controlling hemostasis, by having potent antioxidant and free-radical scavenging properties. This flavonoid in combination with chemotherapeutic drugs improves the efficacy of these agents in induction of apoptosis in cancer cells. This study investigated the role of nano-quercetin (phytosome) in doxorubicin-induced apoptosis. Nanoparticles were characterized for particle size, zeta potential, scanning electron microscopy (SEM) and differential scanning calorimetric assessments. Anti-proliferative effect of formulations was evaluated by MTT assay. mRNA expression levels of target genes were measured by real time RT-PCR. The mean size of nanoparticles was 85 ± 2 nm with nearly narrow size distribution which was confirmed by SEM analysis. Our results showed that co-treatment of MCF-7 breast cancer cells with nano-quercetin and doxorubicin increased the percentage of apoptosis from 40.11 ± 7.72–58 ± 7.13 (p < 0.05). Furthermore, mRNA expression levels for downstream genes including NQO1 and MRP1 showed a marked decrease (p < 0.05). Taken together, our results suggest that phytosome technology can elevate the efficacy of chemotherapeutics by increasing the permeability of tumor cells to chemical agents. Our findings introduce a novel phytosome-dependent strategy to improve delivery of doxorubicin to the breast cancerous tissues.  相似文献   

8.
Spondias pinnata, a commonly distributed tree in India, previously proven for various pharmacological properties and also reported for efficient anti-oxidant, free radical scavenging and iron chelating activity, continuing this, the present study is aimed to investigate the role of 70 % methanolic extract of S. pinnata bark (SPME) in promoting apoptosis in human lung adenocarcinoma cell line (A549) and human breast adenocarcinoma cell line (MCF-7). These two malignant cell lines and a normal cell line were treated with increasing concentrations of SPME and cell viability is calculated. SPME showed significant cytotoxicity to both A549 and MCF-7 cells with an IC50 value of 147.84 ± 3.74 and 149.34 ± 13.30 μg/ml, respectively, whereas, comparatively no cytotoxicity was found in normal human lung fibroblast cell line (WI-38): IC50 932.38 ± 84.44 μg/ml. Flow cytometric analysis and confocal microscopic studies confirmed that SPME is able to induce apoptosis in both malignant cell lines. Furthermore, immunoblot result proposed the pathway of apoptosis induction by increasing Bax/Bcl-2 ratio in both cell types, which results in the activation of the caspase-cascade and ultimately leads to the cleavage of Poly adeno ribose polymerase. For the first time this study proved the anticancer potential of SPME against human lung and breast cancer by inducing apoptosis through the modulation of Bcl-2 family proteins. This might take S. pinnata in light to investigate it for further development as therapeutic anticancer source.  相似文献   

9.
Although mesenchymal stem cells (MSCs) promote lung cancer growth in vivo, in vitro studies indicate that they inhibit the proliferation of lung cancer cells. Because malignant tumors contain a heterogeneous cell population with variable capacity for self-renewal, the aim of this study was to determine whether the inconsistencies between in vitro and in vivo studies are a result of differential effects of MSCs on the heterogeneous cell population within lung cancer cell lines. Human MSCs were isolated from the bone marrow, and their cell surface antigen expression and multi-lineage differentiation capacity was examined at passage 10. CD133+ cells were isolated from A549 and H446 cell lines using immunomagnetic separation. The effects of MSCs on the growth and microsphere formation of heterogeneous cell populations within two lung cancer cell lines (A549 and H446) were compared. MSCs inhibited the in vitro proliferation of both cell lines, but significantly accelerated tumor formation and stimulated tumor growth in vivo (P < 0.05). In CD133+ cells isolated from both A549 and H446 cells, co-culture with MSCs for 1–3 days significantly increased their proliferation (P < 0.05). MSCs also significantly increased microsphere formation in both cell lines (P < 0.05). Selective stimulation of CD133+ cell growth may account for the discrepant effects of MSCs on lung cancer progression.  相似文献   

10.
《Phytomedicine》2015,22(9):820-828
BackgroundBreast cancer is the leading cause of cancer-related death among women worldwide. For treating breast cancer, numerous natural products have been considered as chemotherapeutic drugs.Hypothesis/purposeThe present study aims to investigate the apoptotic effect of Saxifragifolin A (Saxi A) isolated from Androsace umbellata in two different human breast cancer cells which are ER-positive MCF-7 cells and ER-negative MDA-MB-231 cells, and examine the molecular basis for its anticancer actions.Study designThe inhibitory effects of Saxi A on cell survival were examined in MCF-7 cells and MDA-MB-231 cells in vitro.MethodsMTT assays, Annexin V/PI staining analysis, ROS production assay, Hoechst33342 staining and Western blot analysis were performed.ResultsOur results showed that MDA-MB-231 cells were more sensitive to Saxi A-induced apoptosis than MCF-7 cells. Saxi A induced apoptosis in MDA-MB-231 cells through ROS-mediated and caspase-dependent pathways, whereas treatment with Saxi A induced apoptosis in MCF-7 cells in a caspase-independent manner. In spite of Saxi A-induced activation of MAPKs in both breast cancer cell lines, only p38 MAPK and JNK mediated Saxi A-induced apoptosis. In addition, cell survival of shERα-transfected MCF-7 cells was decreased, while MDA-MB-231 cells that overexpress ERα remained viable.ConclusionSaxi A inhibits cell survival in MCF-7 cells and MDA-MB-231 cells through different regulatory pathway, and ERα status appears to be important for regulating Saxi A-induced apoptosis in breast cancer cells. Thus, Saxi A may have a potential therapeutic use for treating breast cancer.  相似文献   

11.
A recent report showed that reversine treatment could induce murine myoblasts dedifferentiation into multipotent progenitor cells and inhibit proliferation of some tumors, and other reports showed that apoptosis of lung adenocarcinoma cells could be induced by aspirin. The aim of the present study was to evaluate the synergistic antitumor effects of reversine and aspirin on cervical cancer. The inhibition rate of reversine and aspirin on cervical cancer cell lines’ (HeLa and U14) was determined by MTT method, cell cycle of HeLa and U14 cells was analyzed by FACS, mitochondrial membrane potential of HeLa and U14 was detected using a JC-1 kit. HeLa and U14 colony formation was analyzed by soft agar colony formation assay. The expression of caspase-3, Bcl-2/Bax, cyclin D1 and p21 was detected by qRT-PCR and Western Blotting. Moreover, tumor weight and tumor volume was assessed using a murine model of cervical cancer with U14 cells subcutaneously (s.c.) administered into the neck, separately or combined with drug administration via the intraperitoneal (i.p.) route. The inhibition rate of cells in the combination group (10 μmol/L reversine, 10 mmol/L aspirin) increased significantly in comparison to that when the drugs were used alone (P < 0.05); moreover, this combination could synergistically inhibit the proliferation of five cervical cancer cell lines (HeLa, U14, Siha, Caski and C33A). In the therapeutic mouse model, tumor weight and tumor volume of cervical cancer bearing mice was more reduced when compared with the control agents (P < 0.05) in tumor-bearing mice. The combination of reversine and aspirin exerts synergistic growth inhibition and apoptosis induction on cervical cancers cells.  相似文献   

12.
BACKGROUND: MDM2 is a negative regulator of p53 and is upregulated in numerous human cancers. While different MDM2 splice variants have been observed in both normal tissues and malignant cells, their functions are poorly understood. METHODS: We evaluated the effect of MDM2 splice variants by overexpression in MCF-7 cells and analyses of expression of downstream genes (qPCR and Western blot), subcellular localization (immunofluorescence), cell cycle assays (Nucleocounter3000), apoptosis analysis (Annexin V detection), and induction of senescence (β-galactosidase analysis). RESULTS: In a screen for MDM2 splice variants in MCF-7 breast cancer cells, extended with data from healthy leukocytes, we found P2-MDM2-10 and MDM2-Δ5 to be the splice variants expressed at highest levels. Contrasting MDM2 full-length protein, we found normal tissue expression levels of P2-MDM2-10 and MDM2-Δ5 to be highest in individuals harboring the promoter SNP309TT genotype. While we detected no protein product coded for by MDM2-Δ5, the P2-MDM2-10 variant generated a protein markedly more stable than MDM2-FL. Both splice variants were significantly upregulated in stressed cells (P = 4.3 × 10?4 and P = 7.1 × 10?4, respectively). Notably, chemotherapy treatment and overexpression of P2-MDM2-10 or MDM2-Δ5 both lead to increased mRNA levels of the endogenous MDM2-FL (P = .039 and P = .070, respectively) but also the proapoptotic gene PUMA (P = .010 and P = .033, respectively), accompanied by induction of apoptosis and repression of senescence. CONCLUSION: We found P2-MDM2-10 and MDM2-Δ5 to have distinct biological functions in breast cancer cells. GENERAL SIGNIFICANCE: Alternative splicing may influence the oncogenic effects of the MDM2 gene.  相似文献   

13.
The present study was aimed to investigate the effect of intensity modulated radiotherapy (IMRT) followed by treatment with inhibitor for p38 MAPK, SB203580 on the rate of proliferation in drug resistant MCF-7 breast cancer cells. Interestingly, the results from immuno histochemistry and western blot assays revealed higher level of distribution of activated p38 MAPK in the drug resistant breast cancer tissues compared to the primary tissues. Treatment of the drug resistant MCF-7 cells with SB203580 led to a significant decrease in the phosphorylation of p38 MAPK. Exposure to IMRT caused a significant decrease in the rate of proliferation in drug resistant MCF-7breast cancer cells (P < 0.05). MCF-7 cells were subjected to IMRT for 45 min followed by treatment with SB203580 for 12 h. The results from MTT assay revealed inhibition in the rate of proliferation of MCF-7 cells more efficiently compared to the IMRT or SB203580 when used separately (P < 0.02). The effect of IMRT and SB203580 on inhibition of MCF-7 cell proliferation showed synergistic relation. Since MAPK signaling pathway plays an important role in the development of drug resistance, therefore, inhibition of p38 MAPK activation by the combination of IMRT followed by treatment with inhibitor for p38 MAPK can be a promising strategy for breast cancer treatment. Thus combination of IMRT exposure and treatment with SB203580 can be used for the inhibition of drug resistant breast cancer.  相似文献   

14.
Evaluation of antioxidant and anticancer activities were screened by various Saururus chinensis root extracts. Four solvents (ethyl acetate, methanol, ethanol, and water) extracts were investigated for their total flavonoids, phenol contents and their antioxidant activity of DPPH (2,2-diphenyl-1-picrylhydrazyl), NO (nitric oxide), H2O2 (hydrogen peroxide), ABTS 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid)diammonium assays, FRAP (ferric reducing ability of plasma) assays and anticancer activity. The total phenolic and flavonoid content of extracts were determined by using FC (Folin–Ciocalteu) and AlCl3 colorimetric assay method. Total flavonoid content in these plants ranged from 24.7 to 72.1 mg g?1 and amount of free phenolic compounds was between 11.2 and 67.1 mg g?1 extract. The all extracts have significant levels of phenolics and flavonoids content. Anticancer activity was screened for MCF-7 breast cancer cell line. Ethanol extract shows significant of antioxidant activity and water extract shows significant of anticancer activity compared with standard (BHT) butylated hydroxy toluene. These ethanol and water extracts could be considered as a natural source for using antioxidant, and anticancer agents compared to commercial available synthetic drugs.  相似文献   

15.
Norfloxacin is a fluoroquinolone antibiotic used in the treatment of bacterial infections. In this article, we studied the potential antitumoral action of a complex of Norfloxacin with Cu(II), Cu(Nor)2·5H2O on osteosarcoma cells (UMR106) and calvaria-derived cells (MC3T3-E1), evaluating its cytotoxicity and genitoxicity. We have also elucidated the more stable conformation of this complex under physiologic conditions by Molecular Dynamic simulations based on the model of the canonical ensemble and PM6 force field. When solvent effect was taken into account, the complex conformation with both carbonyl groups in opposite sides displayed lower energy. Cu(Nor)2·5H2O caused an inhibitory effect on the proliferation on both cell lines from 300 μM (P < 0.01). Nevertheless, the decline on cell proliferation of UMR106 cells was more pronounced (45 % vs basal) than in MC3T3-E1 cells (20 % vs basal) at 300 μM (P < 0.01). Cu(Nor)2·5H2O altered lysosomal metabolism (Neutral Red assay) in a dose-dependent manner from 300 μM (P < 0.001). Morphological studies showed important transformations that correlated with a decrease in the number of cells in a dose-dependent manner. Moreover, Cu(Nor)2·5H2O caused statistically significant genotoxic effects on both osteoblast cell lines in a lower range of concentrations (Micronucleus assay) (P < 0.05 at 10 μM, P < 0.001 from 25 to 50 μM). UMR106 cells displayed a dose-related genotoxic effect between 5 and 25 μM while the MC3T3-E1 cells showed a narrower concentration dependent range. Altogether, these results suggest that Cu(Nor)2·5H2O is a good candidate to be further evaluated for alternative therapeutics in cancer treatment.  相似文献   

16.
Recombinant human erythropoietin (rHuEPO) is the erythropoiesis-stimulating hormone that is being used concurrently with chemotherapeutic drugs in the treatment of anemia of cancer. The effect of rHuEPO on cancer cells in 3-dimensional (3D) cultures is not known. The objective of the study was to determine the effect of rHuEPO on the viability of MCF-7 breast cancer cells from 2-dimensional (2D) and 3D cell cultures. The monolayer MCF-7 cells from 2D culture and MCF-7 cell from 3D culture generated by ultra-low adhesive microplate technique, were treated with 0, 0.1, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The effects of rHuEPO on MCF-7 cell viability and proliferation were determined using the (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT), neutral red retention time (NRRT), trypan blue exclusion assay (TBE), DNA fragmentation, acridine orange/propidium iodide staining (AO/PI) assays. The MCF-7 cells for 3D culture were also subjected to caspase assays and cell cycle analysis using flow cytometry. rHuEPO appeared to have greater effect at lowering the viability of MCF-7 cells from 3D than 2D cultures.rHuEPO significantly (p < 0.05) decreased viability and down-regulated the caspase activities of 3D MCF-7 cells in dose- and time-dependent manner. The cell cycle analysis showed that rHuEPO caused MCF-7 cells to enter the subG0/G1 phase. Thus, the study suggests that rHuEPO has a cytostatic effect on the MCF-7 breast cancer cells from 3D culture.  相似文献   

17.
Brassinosteroids (BRs) are steroid plant hormones that are essential for many plant growth and developmental processes, including cell expansion, vascular differentiation and stress responses. Up to now the inhibitory effects of BRs on cell division of mammalian cells are unknown. To determine basic anticancer structure-activity relationships of natural BRs on human cells, several normal and cancer cell lines have been used. Several of the tested BRs were found to have high cytotoxic activity. Therefore, in our next series of experiments, we tested the effects of the most promising and readily available BR analogues with interesting anticancer properties, 28-homocastasterone (1) and 24-epibrassinolide (2), on the viability, proliferation, and cycling of hormone-sensitive/insensitive (MCF-7/MDA-MB-468) breast and (LNCaP/DU-145) prostate cancer cell lines to determine whether the discovered cytotoxic activity of BRs could be, at least partially, related to brassinosteroid-nuclear receptor interactions. Both BRs inhibited cell growth in a dose-dependent manner in the cancer cell lines. Flow cytometry analysis showed that BR treatment arrested MCF-7, MDA-MB-468 and LNCaP cells in G(1) phase of the cell cycle and induced apoptosis in MDA-MB-468, LNCaP, and slightly in the DU-145 cells. Our results provide the first evidence that natural BRs can inhibit the growth, at micromolar concentrations, of several human cancer cell lines without affecting the growth of normal cells. Therefore, these plant hormones are promising leads for potential anticancer drugs.  相似文献   

18.
A multitude of plants have been used extensively for the treatment of cancers throughout the world. The protein, α, β momorcharin has been extracted from the plant Momordica charantia (MC), and it possesses anti-cancer and anti-HIV properties similar to the crude water and methanol soluble extract of the plant. This study investigated the anti-cancer effects and the cellular mechanisms of action of α, β momocharin (200–800 μM) on 1321N1, Gos-3, U87-MG, Sk Mel, Corl-23 and Weri Rb-1 cancer cell lines compared to normal healthy L6 muscle cell line measuring cell viability using MTT assay kit, Caspase-3 and 9 activities, cytochrome c release and intracellular free calcium concentrations [Ca2+]i. The results show that α, β momorcharin can evoke significant dose-dependent (P < 0.05; Student’s t test) decreases in the viability (increases in cell death) of 1321N1, Gos-3, U87-MG, Sk Mel, Corl-23 and Weri Rb-1 cancer cell lines compared to healthy L6 muscle cell line and untreated glioma cells. α, β momorcharin (800 μM) also evoked significant (P < 0.05) increases in caspase-3 and 9 activities and cytochrome c release. Similarly, α, β momorcharin elicited significant (P < 0.05) time-dependent elevation in [Ca2+]i in all five glioma cell lines compared to untreated cells. Together, the results have demonstrated that α, β momorcharin can exert its anti-cancer effect on different cancer cell lines by intracellular processes involving an insult to the mitochondria resulting in cellular calcium over loading, apoptosis, cytochrome release and subsequently, cell death.  相似文献   

19.
The upregulation or mutation of C-MYC has been observed in gastric, colon, breast, and lung tumors and in Burkitt’s lymphoma. However, little is known about the role C-MYC plays in gastric adenocarcinoma. In the present study, we intended to investigate the influence of C-MYC on the growth, proliferation, apoptosis, invasion, and cell cycle of the gastric cancer cell line SGC7901 and the gastric cell line HFE145. C-MYC cDNA was subcloned into a constitutive vector PCDNA3.1 followed by transfection in normal gastric cell line HFE145 by using liposome. Then stable transfectants were selected and appraised. Specific inhibition of C-MYC was achieved using a vector-based siRNA system which was transfected in gastric cancer cell line SGC7901. The apoptosis and cell cycles of these clones were analyzed by using flow cytometric assay. The growth and proliferation were analyzed by cell growth curves and colony-forming assay, respectively. The invasion of these clones was analyzed by using cell migration assay. The C-MYC stable expression clones (HFE-Myc) and C-MYC RNAi cells (SGC-MR) were detected and compared with their control groups, respectively. HFE-Myc grew faster than HFE145 and HFE-PC (HFE145 transfected with PCDNA3.1 vector). SGC-MR1, 2 grew slower than SGC7901 and SGC-MS1, 2 (SGC7901 transfected with scrambled control duplexes). The cell counts of HFE-Myc in the third, fourth, fifth, sixth, and seventh days were significantly more than those of control groups (P < 0.05). Those of SGC-MR1, 2 in the fourth, fifth, sixth, and seventh days were significantly fewer than those of control groups (P < 0.05). Cell cycle analysis showed that proportions of HFE-Myc and SGC-MR cells in G0–G1 and G2–M were different significantly with their control groups, respectively (P < 0.05). The apoptosis rate of HFE-Myc was significantly higher than those of control groups (P < 0.05). Results of colony-forming assay showed that the colony formation rate of HFE-Myc was higher than those of control groups; otherwise, the rate of SGC-MR was lower than those of their control groups (P < 0.05). The results of cell migration assay showed that there were no significant differences between experimental groups and control groups (P > 0.05). In conclusion, C-MYC can promote the growth and proliferation of normal gastric cells, and knockdown of C-MYC can restrain the growth and proliferation of gastric cancer cells. It can induce cell apoptosis and help tumor cell maintain malignant phenotype. But it can have not a detectable influence on the ability of invasion of gastric cancer cells.  相似文献   

20.
Accumulating evidence suggests that exposures to elevated levels of either endogenous estrogen or environmental estrogenic chemicals are associated with breast cancer development and progression. These natural or synthetic estrogens are known to produce reactive oxygen species (ROS) and increased ROS has been implicated in both cellular apoptosis and carcinogenesis. Though there are several studies on direct involvement of ROS in cellular apoptosis using short-term exposure model, there is no experimental evidence to directly implicate chronic exposure to ROS in increased growth and tumorigenicity of breast cancer cells. Therefore, the objective of this study was to evaluate the effects of chronic oxidative stress on growth, survival and tumorigenic potential of MCF-7 breast cancer cells. MCF-7 cells were exposed to exogenous hydrogen peroxide (H2O2) as a source of ROS at doses of 25 µM and 250 µM for acute (24 hours) and chronic period (3 months) and their effects on cell growth/survival and tumorigenic potential were evaluated. The results of cell count, MTT and cell cycle analysis showed that while acute exposure inhibits the growth of MCF-7 cells in a dose-dependent manner, the chronic exposure to H2O2-induced ROS leads to increased cell growth and survival of MCF-7 cells. This was further confirmed by gene expression analysis of cell cycle and cell survival related genes. Significant increase in number of soft agar colonies, up-regulation of pro-metastatic genes VEGF, WNT1 and CD44, whereas down-regulation of anti-metastatic gene E-Cadherin in H2O2 treated MCF-7 cells observed in this study further suggests that persistent exposure to oxidative stress increases tumorigenic and metastatic potential of MCF-7 cells. Since many chemotherapeutic drugs are known to induce their cytotoxicity by increasing ROS levels, the results of this study are also highly significant in understanding the mechanism for adaptation to ROS-induced toxicity leading to acquired chemotherapeutic resistance in breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号