首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of near-infrared irradiation on the photoconversion of Chenopodium album water-soluble chlorophyll-binding protein (CaWSCP) in the presence of sodium hydrosulfite and found a further photoconversion from CP742 to CP763, a novel form of CaWSCP. Interestingly, one-third of the absorption peak at 668 nm was recovered in CP763, but re-irradiation under oxidative conditions eliminated the photo convertibility of CaWSCP.  相似文献   

2.
Various plants possess hydrophilic chlorophyll (Chl) proteins known as water-soluble Chl-binding proteins (WSCPs). WSCPs exist in two forms: Class I and Class II, of which Class I alone exhibits unique photoconvertibility. Although numerous genes encoding Class II WSCPs have been identified and the molecular properties of their recombinant proteins have been well characterized, no Class I WSCP gene has been identified to date. In this study, we cloned the cDNA and a gene encoding the Class I WSCP of Chenopodium album (CaWSCP). Sequence analyses revealed that CaWSCP comprises a single exon corresponding to 585 bp of an open reading frame encoding 195 amino acid residues. The CaWSCP protein sequence possesses a signature of DUF538, a protein superfamily of unknown function found almost exclusively in Embryophyta. The recombinant CaWSCP was expressed in Escherichia coli as a hexa-histidine fusion protein (CaWSCP-His) that removes Chls from the thylakoid. Under visible light illumination, the reconstituted CaWSCP-His was successfully photoconverted into a different pigment with an absorption spectrum identical to that of native CaWSCP. Interestingly, while CaWSCP-His could bind both Chl a and Chl b, photoconversion occurred only in CaWSCP-His reconstituted with Chl a.  相似文献   

3.
Non‐photosynthetic and hydrophilic chlorophyll (Chl) proteins, called water‐soluble Chl‐binding proteins (WSCPs), are distributed in various species of Chenopodiaceae, Amaranthaceae, Polygonaceae and Brassicaceae. Based on their photoconvertibility, WSCPs are categorised into two classes: Class I (photoconvertible) and Class II (non‐photoconvertible). Chenopodium album WSCP (CaWSCP; Class I) is able to convert the chlorin skeleton of Chl a into a bacteriochlorin‐like skeleton under light in the presence of molecular oxygen. Potassium iodide (KI) is a strong inhibitor of the photoconversion. Because KI attacks tyrosine residues in proteins, tyrosine residues in CaWSCP are considered to be important amino acid residues for the photoconversion. Recently, we identified the gene encoding CaWSCP and found that the mature region of CaWSCP contained four tyrosine residues: Tyr13, Tyr14, Tyr87 and Tyr134. To gain insight into the effect of the tyrosine residues on the photoconversion, we constructed 15 mutant proteins (Y13A, Y14A, Y87A, Y134A, Y13‐14A, Y13‐87A, Y13‐134A, Y14‐87A, Y14‐134A, Y87‐134A, Y13‐14‐87A, Y13‐14‐134A, Y13‐87‐134A, Y14‐87‐134A and Y13‐14‐87‐134A) using site‐directed mutagenesis. Amazingly, all the mutant proteins retained not only chlorophyll‐binding activity, but also photoconvertibility. Furthermore, we found that KI strongly inhibited the photoconversion of Y13‐14‐87‐134A. These findings indicated that the four tyrosine residues are not essential for the photoconversion.  相似文献   

4.
Photoconvertible water-soluble chlorophyll-binding proteins, called Class I WSCPs, have been detected in Chenopodiaceae, Amaranthaceae and Polygonaceae plant species. To date, Chenopodium album WSCP (CaWSCP) is the only cloned gene encoding a Class I WSCP. In this study, we identified two cDNAs encoding Chenopodium ficifolium Class I WSCPs, CfWSCP1, and CfWSCP2. Sequence analyses revealed that the open reading frames of CfWSCP1 and CfWSCP2 were 585 and 588 bp, respectively. Furthermore, both CfWSCPs contain cystein2 and cystein30, which are essential for the chlorophyll-binding ability of CaWSCP. Recombinant CfWSCP1 and CfWSCP2, expressed in Escherichia coli as hexa-histidine fusion proteins (CfWSCP1-His and CfWSCP2-His), formed inclusion bodies; however, we were able to solubilize these using a buffer containing 8 M urea and then refold them by dialysis. The refolded CfWSCP1-His and CfWSCP2-His could bind chlorophylls and exhibited photoconvertibility, confirming that the cloned CfWSCPs are further examples of Class I WSCPs.  相似文献   

5.
The reversible photoconversion of Chenopodium chlorophyll protein,CP668CP743, is strongly dependent on the pH of the solution.The photoconversion of CP668 was inhibited by a high pH, whereasa low pH inhibited the photoconversion of CP743. Transfer ofCP668 to an alkaline pH caused a red shift of the 277-nm bandin the UV absorption spectrum, whereas transfer of CP743 toan acidic pH caused a blue shift of the 280-nm band. The UVabsorption difference spectrum between the acidic and alkalinesolutions of CP668 showed a positive peak at 293 nm and a negativepeak at 272 nm. From the pH titration curve of CP668, the pKvalues of 9.4 and 11.1 were determined. The alkaline titrationcurve of the 293-nm band gave an inflection point at pH 11.2. S-S reagents, ß-mercaptoethanol and dithiothreitol,and KI were inhibitory to CP- 668 photoconversion, but SH reagents,N-ethylmaleimide and P-chloromercuribenzoic acid, were not.The chemical modification of tyrosine residues, and the destructionof S-S bridges in the apoprotein inhibited CP668 photoconversion. From these results we concluded that the reversible photoconversionis controlled by the conformation of the apoprotein in CP668. (Received June 28, 1975; )  相似文献   

6.
The neurite outgrowth of PC12 cells on collagen-coated glass plates under light emitting diode (LED) irradiation at several wavelengths (i.e., 455, 470, 525, 600, 630, 880 and 945 nm) was investigated. No neurite outgrowth was observed during cultivation under irradiation from the lamp of an inverted light microscope through filters (yielding mixed light at ca. 525 nm and more than 800 nm), whereas neurite outgrowth was observed during cultivation in the dark. When these cells were irradiated with monochromatic LED light, neurite outgrowth was slightly, but not completely, suppressed at 455, 525, 600, 630, 880 and 945 nm, as was observed in the case of mixed light. Long connected neuronal outgrowths (e.g., 3 mm length) were observed with LED light at 470 nm and 1.8 mW/cm2 intensity. No such outgrowths were observed at other LED light wavelengths (i.e., 455, 525, 600, 630, 880 and 945 nm). Irradiation at 470 nm may have caused specific responses to transductional signals in these cells that led to the connection of neuronal outgrowths between cells. Not only suppressed neurite outgrowth but also long connected neurite outgrowths were observed when PC12 cells were cultured under several different wavelengths of light.  相似文献   

7.
Different wavelengths of light were compared for melatonin suppression and phase shifting of the salivary melatonin rhythm. The wavelengths compared were 660 nm (red), 595 nm (amber), 525 nm (green), 497 nm (blue/green), and 470 nm (blue). They were administered with light-emitting diodes equated for irradiance of 130 μW/cm2. Fifteen volunteers participated in all five wavelength conditions and a no light control condition, with each condition conducted over two consecutive evenings. Half-hourly saliva samples were collected from 19:00 to 02:00 on night 1 and until 01:00 on night 2. Light was administered for the experimental conditions on the first night only from midnight to 02:00. Percentage melatonin suppression on night 1 and dim light melatonin onset (DLMO) for each night were calculated. The shorter wavelengths of 470, 497, and 525 nm showed the greatest melatonin suppression, 65% to 81%. The shorter wavelengths also showed the greatest DLMO delay on night 2, ranging from 27 to 36 min. The results were consistent with the involvement of a scotopic mechanism in the regulation of circadian phase. (Chronobiology International, 18(5), 801-808, 2001)  相似文献   

8.
Summary The spectral absorbance by the visual pigments in the compound eye of the mothDeilephila elpenor was determined by microphotometry. Two visual pigments and their photoproducts were demonstrated. The photoproducts are thermostable and are reconverted to the visual pigments by light. The concentrations of the visual pigments and the photoproducts at each wavelength are determined by their absorbance coefficients at this wavelength. P 525: The experimental recordings (difference spectra and spectral absorbance changes after exposure to monochromatic lights) were completely reproduced by calculations using nomograms for vertebrate rhodopsin. The identity between experimental recordings and calculations show: One visual pigment absorbs maximally at 525 nm (P 525). The resonance spectrum of the visual pigment is identical to that for a vertebrate rhodopsin (max at 525 nm). The photoproduct of this pigment absorbs maximally at 480 nm (M 480). It is similar to the acid metarhodopsin in cephalopods. The relative absorbance of P 525 to that of M 480 is 11.75. The quantum efficiency for photoconversion of P 525 to M 480 is nearly equal to that for reconversion of M 480 to P 525. Wavelengths exceeding about 570 nm are absorbed only by P 525, i. e. P 525 is completely converted to M 480. Shorter wavelengths are absorbed both by P 525 and M 480. At these wavelengths a photoequilibrium between the two pigments is formed. Maximal concentration of P 525 is obtained at about 450 nm. P 350: A second visual pigment absorbs maximally at about 350 nm (P 350), and its photoproduct at 450 to 460 nm. In the region of spectral overlap a photoequilibrium between the two pigments is formed.The visual pigment and the photoproduct are similar to those in the neuropteran insectAscalaphus.The work reported in this article was supported by Deutsche Forschungsgemeinschaft, Schwerpunktsprogramm Rezeptorphysiologie Ha 258-10, and SFB 114, by the Swedish Medical Research Council (grant no B 73-04X-104-02B), by Karolinska Institutet, and by a grant (to G. Höglund) from Deutscher Akademischer Austauschdienst.  相似文献   

9.
The absorption spectra of a highly purified water-soluble chlorophyll-protein, CP 668, obtained from upper leaves of Atriplex hortensis L., and its phototransformation product have been measured and analyzed as sums of component curves. The difference spectrum before and after transformation has the same major peaks as those previously reported for a preparation from Chenopodium . The curve resolution indicates that, unlike some previous studies with preparations from other species of CP 668 from Atriplex , the main red band is a single, though somewhat unsymmetrical, component very much like the chlorophyll α 670 (Ca 670) common to all green plants. The "740" band of the phototransformed material, however, appears to have at least two components. The amounts of photoconversion of this pigment-protein was more extensive than any complex previously studied. The converted material had a far-red to red absorbance ratio of 2.6.  相似文献   

10.
Abstract.  Adult flea beetles, Phyllotreta striolata , show a strong positive phototactic response. The action spectrum of phototaxis of dark-adapted beetles was measured with minimal required light intensity between the wavelength range of 300 nm and 600 nm. Male and female flea beetles showed identical phototacitc behaviours. The beetles were most sensitive to light with peak wavelengths between 350 nm and 430 nm in the morning. In the afternoon and evening, the sensitivity to wavelengths shorter than 430 nm decreased, but they remained most sensitive to 430 nm. These results suggest that changes in sensitivity of the photoreceptors or nervous integration influence the phototactic responses, and that the blue wavelengths are more attractive than others.  相似文献   

11.
Inoue Y  Furuya M 《Plant physiology》1975,55(6):1098-1101
Action spectra for photoinduction of perithecia after different lengths of dark period were determined with apically growing mycelium of a sordariaceous fungus Gelasinospora reticulispora. When hyphae were exposed to monochromatic light in near ultraviolet and visible regions, reciprocity between intensity and exposure time was observed within the range of incident energy used. The resulting action spectrum determined after a dark period of 48 hours showed a peak at 460 nm with shoulders at 420 and 480 nm and another peak at 370 nm, indicating minima at 410, 430, and 470 nm. After 72 hours darkness the spectrum was very similar to the above, except that the major peak shifted to 450 nm and the near ultraviolet region was somewhat less effective. In both cases, wavelengths longer than 520 nm showed no effect.  相似文献   

12.
The responses of male and female Lutzomyia longipalpis (Lutz & Neiva) to different wavelengths of light was tested by presenting the sandflies with two light sources simultaneously, a series of test wavelengths between 350-670 nm and a 400 nm control. To test whether L. longipalpis could discriminate between the test and control, three sets of experiments were carried out in which the test wavelengths were presented at higher, equivalent or lower intensity than the control. In all three experiments, ultra-violet (350 nm) and blue-green-yellow (490-546 nm) light was more attractive to L. longipalpis than the control wavelength. However, at low intensity, UV was less attractive, than equivalent or higher intensity UV light. At intensities equivalent to or higher than the control wavelength, ultra-violet light was more attractive than blue-green. Furthermore, at low intensity, green-yellow (546 nm) light was more attractive to males whereas blue-green (490 nm) was more attractive to females. Blue-violet (400 nm) and orange-red (600-670 nm) light were least attractive in all three sets of experiments. Response function experiments indicated that the responses were dependent on both intensity and wavelength and that therefore more than one photoreceptor must be involved in the response. The results indicated that L. longipalpis can discriminate between different wavelengths at different intensities and thus have true colour vision. It also suggests that L. longipalpis may be able to navigate at dusk or under moonlight or starlight conditions using light in the blue-green-yellow part of the spectrum. The difference in response of males and females to light in this region is interesting and may indicate the different ecology of the sexes at night. Overall, these results may have important implications for sandfly trap design.  相似文献   

13.
The cigarette beetle, Lasioderma serricorne (Fabricius), is an important pest insect that consumes a variety of dry foods. It is known that UV light traps attract this species. However, less attention has been paid to its preferred wavelength. First, we investigated the spectral sensitivity of the compound eye. Next, we compared the attraction efficiency of LEDs of different colors (wavelengths). Our results showed that ultraviolet (UV, 375 nm) and blue (470 nm) LEDs attracted the most cigarette beetles of both sexes, irrespective of mating or oviposition status, although the UV LED consistently tended to attract the most beetles. Although the primary sensitivity peak of the compound eye was 520 nm, the green LED (520 nm) scarcely attracted beetles. Although the reason for the difference between the peaks in spectral sensitivity and attraction of beetles awaits further studies, whether UV and/or blue LEDs is more effective as a practical light trap for controlling L. serricorne beetle is discussed in this study.  相似文献   

14.
The turbidity during trypsin-induced coagulin gel formation was studied over a range of wavelengths. The range of wavelengths used (686-326 nm) also made it possible to investigate the dependence of turbidity on wavelength (the wavelength exponent). Using the results from that work, and structural information on coagulin and the coagulin gel from other studies, a model gel-forming system was designed that consists of species for which the turbidity can be calculated relatively simply. These species include small particles (small in all dimensions relative to the wavelength of incident light); long rods and long random coils (particles that are large in just one dimension relative to the wavelength of incident light); and reflective regions (aggregated material that is large in more than one dimension relative to the wavelength of incident light). The turbidimetric characteristics of the real coagulin gel-forming system are compared with those of the model system.  相似文献   

15.
The spectral sensitivity of the fish and the suitable light wavelength range for survival and growth performance of juvenile Pacific bluefin tuna (PBT) were investigated. The spectral sensitivity peak of PBT under photopic condition was observed between 449 and 503 nm, which corresponded to their natural habitat. The fish were reared in tanks irradiated continuously with 4 kinds of light emitting diodes (LEDs). The maximum wavelength of LEDs used for the rearing experiment were 460 nm (blue), 520 nm (green), 630 nm (red), and 450–680 nm (white). There was no notable difference in survival rate among fish in the four LED groups. However, the growth of juvenile PBT was lesser under red light compared to the green and white light wavelengths. These results suggest that PBT juveniles have low sensitivity to red light because the fish are rarely exposed to the red light wavelengths under natural ocean conditions. Thus, low sensitivity to red light negatively influenced the feeding behavior and growth of PBT juveniles.  相似文献   

16.
A 405 nm diode laser is used to excite fluorescence of juices of raw and ripe lemons. Emission bands appear approximately at 520 nm and 670 nm. Fluorescence intensity ratio F520/F670 is determined for the two stages. Variation in the fluorescence intensity ratio is observed during the process of ripening or growth of the fruit. Time-resolved spectra at this excitation wavelength reveal two decay times at both the stages at the emission wavelength of 520 nm, and two decay times at the raw stage and one decay time at the ripe stage at 670 nm.  相似文献   

17.
Summary The wavelength dependence of the afterpotentials following a bright illumination was studied in single photoreceptor cells of the droneflyEristalis. Cells with only a spectral sensitivity peak in the blue were selected. As previously demonstrated, these cells contain a rhodopsin absorbing maximally at about 450–460 nm, which upon photoconversion transforms into a metarhodopsin absorbing maximally at about 550 nm (Tsukahara and Horridge, 1977).With the visual pigment initially all in the rhodopsin form, a high rate of visual pigment conversion results in an afterhyperpolarization (AHP) when the fraction of metarhodopsin remains negligible after illumination as occurs at longer wavelengths if the intensity is high. Intensive illumination at short wavelengths is followed by a prolonged depolarizing afterpotential (PDA). The magnitude of the PDA peaks at low intensities at about 450–460 nm, corresponding to the peak of the cell's spectral sensitivity (i.e. the rhodopsin peak). With increasing intensity of illumination, however, the peak shifts progressively towards 430 nm, which corresponds to the photoequilibrium with maximum metarhodopsin that can be established by monochromatic light. From this result, it is inferred that the PDA is related to the induced fall in the rhodopsin fraction. The PDA can be abolished, or knocked down, by a long-wavelength flash which reconverts remaining metarhodopsin into rhodopsin. Therefore the decline of the PDA is restrained by the existing amount of metarhodopsin. Possible theories of afterpotentials are discussed.  相似文献   

18.
In young Acetabularia mediterranea Lamouroux (=A. acetabulum (L.) Silva) the formation of the lateral hair whorls can be induced by a short pulse of blue light after continuous red preillumination. In this paper we describe the experimental conditions for optimum response and the properties of the action spectrum. The probit of the cells which eventually form hair whorls is linearly correlated to the logarithm of the incident quanta of blue light. Parallel fluence-response curves for all wavelengths indicate the involvement of only one photoreceptor pigment. The action spectrum shows no effectiveness of wavelengths above 520 nm, a high action peak at 470 nm and two lower ones at 425 and 370 nm, and is in accordance with those of cryptochrome-like photoreceptors.  相似文献   

19.
Numerous members of the Brassicaceae possess non-photoconvertible water-soluble chlorophyll (Chl)-binding proteins (Class II WSCPs), which function as Chl scavengers during cell disruption caused by wounding, pest/pathogen attacks, and/or environmental stress. Class II WSCPs have two extension peptides, one at the N-terminus and one at the C-terminus. The N-terminal peptide acts as a signal peptide, targeting the protein to the endoplasmic reticulum body, a unique defensive organelle found only in the Brassicaceae. However, the physiological and biochemical functions of the C-terminal extension peptide had not been characterized previously. To investigate the function of the C-terminal extension peptide, we produced expression constructs of recombinant WSCPs with or without the C-terminal extension peptide. The WSCPs used were of Brussels sprouts (Brassica oleracea), Japanese wild radish (Raphanus sativus) and Virginia pepperweed (Lepidium virginicum). The solubility of all of the WSCPs with the C-terminal extension peptide was drastically lower than that of the recombinant WSCPs without the C-terminal extension peptide. In addition, the stability of the reconstituted WSCPs complexes with the C-terminal extension peptide was altered compared with that of the proteins without the C-terminal extension peptide. These finding indicate that the C-terminal extension peptide affects not only the solubility, but also the stability of Class II WSCP. Furthermore, we characterized the Chl-binding properties of the recombinant WSCP from Japanese wild radish (RshWSCP-His) in a 40 % methanol solution. An electrophoretic mobility shift assay revealed that RshWSCP-His required a half-molar ratio of Chls to form a tetramer.  相似文献   

20.
Antenna complexes are key components of plant photosynthesis, the process that converts sunlight, CO2, and water into oxygen and sugars. We report the first (to our knowledge) femtosecond transient absorption study on the light-harvesting pigment-protein complexes CP26 (Lhcb5) and CP24 (Lhcb6) of Photosystem II. The complexes are excited at three different wavelengths in the chlorophyll (Chl) Qy region. Both complexes show a single subpicosecond Chl b to Chl a transfer process. In addition, a reduction in the population of the intermediate states (in the 660-670 nm range) as compared to light-harvesting complex II is correlated in CP26 to the absence of both Chls a604 and b605. However, Chl forms around 670 nm are still present in the Chl a Qy range, which undergoes relaxation with slow rates (10-15 ps). This reduction in intermediate-state amplitude CP24 shows a distinctive narrow band at 670 nm connected with Chls b and decaying to the low-energy Chl a states in 3-5 ps. This 670 nm band, which is fully populated in 0.6 ps together with the Chl a low-energy states, is proposed to originate from Chl 602 or 603. In this study, we monitored the energy flow within two minor complexes, and our results may help elucidate these structures in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号