首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 852 毫秒
1.

Background

TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302.

Methodology/Results

The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500–1500 mm3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼550 mm3), significantly delayed tumor growth.

Conclusions/Significance

Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.  相似文献   

2.

Background/Aims

Resveratrol has been demonstrated to be protective in the cardiovascular system. The aim of this study was to assess the effects of resveratrol on hydrogen peroxide (H2O2)-induced increase in late sodium current (I Na.L) which augmented the reverse Na+-Ca2+ exchanger current (I NCX), and the diastolic intracellular Ca2+ concentration in ventricular myocytes.

Methods

I Na.L, I NCX, L-type Ca2+ current (I Ca.L) and intracellular Ca2+ properties were determined using whole-cell patch-clamp techniques and dual-excitation fluorescence photomultiplier system (IonOptix), respectively, in rabbit ventricular myocytes.

Results

Resveratrol (10, 20, 40 and 80 µM) decreased I Na.L in myocytes both in the absence and presence of H2O2 (300 µM) in a concentration dependent manner. Ranolazine (3–9 µM) and tetrodotoxin (TTX, 4 µM), I Na.L inhibitors, decreased I Na.L in cardiomyocytes in the presence of 300 µM H2O2. H2O2 (300 µM) increased the reverse I NCX and this increase was significantly attenuated by either 20 µM resveratrol or 4 µM ranolazine or 4 µM TTX. In addition, 10 µM resveratrol and 2 µM TTX significantly depressed the increase by 150 µM H2O2 of the diastolic intracellular Ca2+ fura-2 fluorescence intensity (FFI), fura-fluorescence intensity change (△FFI), maximal velocity of intracellular Ca2+ transient rise and decay. As expected, 2 µM TTX had no effect on I Ca.L.

Conclusion

Resveratrol protects the cardiomyocytes by inhibiting the H2O2-induced augmentation of I Na.L.and may contribute to the reduction of ischemia-induced lethal arrhythmias.  相似文献   

3.
4.
2'', 3'', 5''-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine (also known as WS070117) is a new adenosine analog that displays anti-hyperlipidemic activity both in vitro and in vivo experiments as shown in many preliminary studies. Due to its new structure, little is known about the metabolism of WS070117. Hence, the in vivo metabolites of WS070117 in rat urine following oral administration were investigated. Identification of the metabolites was conducted using the combination of high-performance liquid chromatography (HPLC) coupled with diode array detector (DAD), ion trap electrospray ionization-mass spectrometry (ESI-MS), and off-line microprobe nuclear magnetic resonance (NMR) measurements. Seven metabolites were obtained as pure compounds at the sub-milligram to milligram levels. Results of structure elucidation unambiguously revealed that the phase I metabolite, N6-(3-hydroxyphenyl) adenosine (M8), was a hydrolysate of WS070117 by hydrolysis on the three ester groups. N6-(3-hydr-oxyphenyl) adenine (M7), also one of the phase I metabolites, was the derivative of M8 by the loss of ribofuranose. In addition to two phase I metabolites, there were five phase II metabolites of WS070117 found in rat urine. 8-hydroxy-N6-(3-hydroxy-phenyl) adenosine (M6) was the product of M7 by hydrolysis at position 8. The other four were elucidated to be N6-(3-O-β-D-glucuronyphenyl) adenine (M2), N8-hydroxy-N6-(3-O-sulfophenyl) adenine (M3), N6-(3-O-β-D-glucuronyphenyl) adenosine (M4), and N6-(3-O- sulfophenyl) adenosine (M5). Phase II metabolic pathways were proven to consist of hydroxylation, glucuronidation and sulfation. This study provides new and valuable information on the metabolism of WS070117, and also demonstrates the HPLC/MS/off-line microprobe NMR approach as a robust means for rapid identification of metabolites.  相似文献   

5.

Background

The effectiveness of near-infrared imaging (NIR) interrogation of epidermal growth factor receptor (EGFR) expression as a sensitive biomarker of oral squamous cell carcinoma (OSCC) response to arsenic trioxide therapy was studied in mice.

Material and Methods

A431 OSCC in vitro were exposed to 0 µM, 0.5 µM, 2.5 µM, or 5 µM of As2O3 for 0 h, 24 h, 48 h and 72 h. Confocal microscopy and flow cytometry confirmed EGFR expression and demonstrated a sensitivity dose-related signal decline with As2O3 treatment. Next, mice with pharynx-implanted A431 cells received As2O3 i.p. every 48 h at 0.0, 0.5, 2.5, or 5 mg/kg/day (n = 6/group) from day 0 to 10. An intravenous NIR probe, EGF-Cy5.5, was injected at baseline and on days 4, 8, and 12 for dynamic NIR imaging. Tumor volume and body weights were measured three times weekly.

Results

In vitro, A431 EGFR expression was well appreciated in the controls and decreased (p<0.05) with increasing As2O3 dose and treatment duration. In vivo EGFR NIR tumor signal intensity decreased (p<0.05) in As2O3 treated groups versus controls from days 4 to 12, consistent with increasing dosage. Tumor volume diminished in a dose-related manner while body weight was unaffected. Immunohistochemical staining of excised tumors confirmed that EGFR expression was reduced by As2O3 treatment in a dose responsive pattern.

Conclusion

This study demonstrates for the first time that OSCC can be interrogated in vivo by NIR molecular imaging of the EGFR and that this biomarker is effective for the longitudinal assessment of OSCC response to As2O3 treatment.  相似文献   

6.
Low O2 levels in solid tumors are associated with increase in hypoxia-inducible factor 1α (HIF-1α). The present study examines functional changes involved in adaptation to hypoxia of the LMM3 mammary tumor cell line, using CoCl2 as hypoxic mimetic. Our results showed that LMM3 cells were not only tolerant to 150 μM CoCl2 but they can overgrowth in vitro respect to untreated cells. Hypoxia inhibited cell invasion, migration, MMP-9 activity and NO levels. Macrophage cytotoxicity augmented under hypoxia but was blunted by conditioned media from tumor cells. In vivo tumorigenicity of CoCl2-treated cells was greater than controls. Our results show stabilization of HIF-1α in LMM3 cells under CoCl2 and functional changes associated with enhanced cell survival and growth but not with tumor dissemination.  相似文献   

7.
8.
Bufalin is the primary component of the traditional Chinese herb “Chan Su”. Evidence suggests that this compound possesses potent anti-tumor activities, although the exact molecular mechanism(s) is unknown. Our previous study showed that bufalin inhibited growth of human osteosarcoma cell lines U2OS and U2OS/MTX300 in culture. Therefore, this study aims to further clarify the in vitro and in vivo anti-osteosarcoma effects of bufalin and its molecular mechanism of action. We found bufalin inhibited both methotrexate (MTX) sensitive and resistant human osteosarcoma cell growth and induced G2/M arrest and apoptosis. Using a comparative proteomics approach, 24 differentially expressed proteins following bufalin treatment were identified. In particular, the level of an anti-apoptotic protein, heat shock protein 27 (Hsp27), decreased remarkably. The down-regulation of Hsp27 and alterations of its partner signaling molecules (the decrease in p-Akt, nuclear NF-κB p65, and co-immunoprecipitated cytochrome c/Hsp27) were validated. Hsp27 over-expression protected against bufalin-induced apoptosis, reversed the dephosphorylation of Akt and preserved the level of nuclear NF-κB p65 and co-immunoprecipitated Hsp27/cytochrome c. Moreover, bufalin inhibited MTX-resistant osteosarcoma xenograft growth, and a down-regulation of Hsp27 in vivo was observed. Taken together, bufalin exerted potent anti-osteosarcoma effects in vitro and in vivo, even in MTX resistant osteosarcoma cells. The down-regulation of Hsp27 played a critical role in bufalin-induced apoptosis in osteosarcoma cells. Bufalin may have merit to be a potential chemotherapeutic agent for osteosarcoma, particularly in MTX-resistant groups.  相似文献   

9.

Background

Soft tissue sarcoma (STS) is an anatomically and histologically heterogeneous neoplasia that shares a putative mesenchymal cell origin. The treatment with common chemotherapeutics is still unsatisfying because of association with poor response rates. Although evidence is accumulating for potent oncolytic activity of host defense peptides (HDPs), their potential therapeutic use is often limited by poor bioavailability and inactivation in serum. Therefore, we tested the designer host defense-like lytic D,L-amino acid peptide [D]-K3H3L9 on two STS cell lines in vitro and also in an athymic and syngeneic mouse model. In recent studies the peptide could show selectivity against prostate carcinoma cells and also an active state in serum.

Methods

In vitro the human synovial sarcoma cell line SW982, the murine fibrosarcoma cell line BFS-1 and primary human fibroblasts as a control were exposed to [D]-K3H3L9, a 15mer D,L-amino acid designer HDP. Cell vitality in physiological and acidic conditions (MTT-assay), cell growth (BrdU) and DNA-fragmentation (TUNEL) were investigated. Membrane damage at different time points could be analyzed with LDH assay. An antibody against the tested peptide and recordings using scanning electron microscopy could give an inside in the mode of action. In vivo [D]-K3H3L9 was administered intratumorally in an athymic and syngeneic (immunocompetent) mouse model with SW982 and BFS-1 cells, respectively. After three weeks tumor sections were histologically analyzed.

Results

The peptide exerts rapid and high significant cytotoxicity and antiproliferating activity against the malignant cell lines, apparently via a membrane disrupting mode of action. The local intratumoral administration of [D]-K3H3L9 in the athymic and syngeneic mice models significantly inhibited tumor progression. The histological analyses of the tumor sections revealed a significant antiproliferative, antiangiogenic activity of the treatment group.

Conclusion

These findings demonstrate the in vitro and in vivo oncolytic activity of [D]-K3H3L9 in athymic and syngeneic mouse models.  相似文献   

10.
The anti-tumor efficacy of liposomal formulations of cell cycle dependent anticancer drugs is critically dependent on the rates at which the drugs are released from the liposomes. Previous work on liposomal formulations of vincristine have shown increasing efficacy for formulations with progressively slower release rates. Recent work has also shown that liposomal formulations of vincristine with higher drug-to-lipid (D/L) ratios exhibit reduced release rates. In this work, the effects of very high D/L ratios on vincristine release rates are investigated, and the antitumor efficacy of these formulations characterized in human xenograft tumor models. It is shown that the half-times (T1/2) for vincristine release from egg sphingomyelin/cholesterol liposomes in vivo can be adjusted from T1/2 = 6.1 h for a formulation with a D/L of 0.025 (wt/wt) to T1/2 = 117 h (extrapolated) for a formulation with a D/L ratio of 0.6 (wt/wt). The increase in drug retention at the higher D/L ratios appears to be related to the presence of drug precipitates in the liposomes. Variations in the D/L ratio did not affect the circulation lifetimes of the liposomal vincristine formulations. The relationship between drug release rates and anti-tumor efficacy was evaluated using a MX-1 human mammary tumor model. It was found that the antitumor activity of the liposomal vincristine formulations increased as D/L ratio increased from 0.025 to 0.1 (wt/wt) (T1/2 = 6.1-15.6 h respectively) but decreased at higher D/L ratios (D/L = 0.6, wt/wt) (T1/2 = 117 h). Free vincristine exhibited the lowest activity of all formulations examined. These results demonstrate that varying the D/L ratio provides a powerful method for regulating drug release and allows the generation of liposomal formulations of vincristine with therapeutically optimized drug release rates.  相似文献   

11.
(−)-Epigallocatechin-3-O-gallate (EGCG) monoesters modified with butanoyl (EGCG-C4), octanoyl (EGCG-C8), palmitoyl groups (EGCG-C16) were synthesized by a lipase-catalyzed transesterification method and their antitumor activities were investigated in vitro and in vivo. The in vitro antitumor activities of EGCG-monoester derivatives increased in an alkyl chain length-dependent manner. The cytotoxicity of EGCG, EGCG-C4, EGCG-C8 was mainly caused by H2O2 which was generated with their oxidation. On the other hand, EGCG-C16 was more stable than EGCG and it did not generate H2O2 in the cell culture medium. Furthermore, EGCG-C16 inhibited cell proliferation and induced apoptosis in the presence of catalase. EGCG-C16 was found to inhibit the phosphorylation of the epidermal growth factor receptor (EGFR), which is related to various types of tumor growth. EGCG-C16 suppressed tumor growth in vivo in colorectal tumor bearing mice in comparison to an untreated control, vector control (DMSO) and EGCG.  相似文献   

12.
The lysogenic state of phage λ is maintained by the CI repressor. CI binds to three operators each in the right operator (OR) and left operator (OL) regions, which lie 2.4 kb apart. At moderate CI levels, the predominant binding pattern is two dimers of CI bound cooperatively at each regulatory region. The resulting tetramers can then interact, forming an octamer and a loop of the intervening DNA. CI is expressed from the PRM promoter, which lies in the OR region and is subjected to multiple regulatory controls. Of these, the most recently discovered is stimulation by loop formation. In this work, we have investigated the mechanism by which looping stimulates PRM. We find that two cis-acting sites lying in the OL region are involved. One site, an UP element, is required for stimulation. Based on the behavior of other promoters with UP elements located upstream of the −35 region, we suggest that a subunit of RNA polymerase (RNAP) bound at PRM binds to the UP element located in the OL region. In addition, adjacent to the UP element lies a binding site for integration host factor (IHF); this site plays a less critical role but is required for stimulation of the weak prm240 allele. A loop with CI at the OL2 and OL3 operators does not stimulate PRM, while one with CI only at OL2 provides some stimulation. We discuss possible mechanisms for stimulation.  相似文献   

13.
The modulation of cisPlatin cytotoxicity by interleukin-1 (IL-1α) was studied in cultures of SCC-7 tumor cells with and without tumor macrophages to examine potential mechanisms for the synergistic antitumor activity of cisPlatin and IL-1α in SCC-7 solid tumors. Neither IL-1α nor tumor macrophages affected the survival of clonogenic tumor cells and IL-1α had no direct effect on tumor cell growthin vitro. Macrophages had no direct effect on cisPlatin sensitivity (IC90=6.0 μM), but, the addition of IL-1α (500–2000U/ml) to co-cultures of cisPlatin pretreated tumor cells and resident tumor macrophages increased cell killing (IC90=3.1 μM). Similar responses were seen in primary cultures treated with cisPlatin before IL-1α. The modulation of cisPlatin cytotoxicity by IL-1α exhibited a biphasic dose response that paralleled the IL-1α dose dependent release of H2O2by resident tumor macrophages. Further, IL-1α modification of cisPlatin cytotoxicity was prompt and inhibited by catalase. CisPlatin and exogenous H2O2 (50 μM) produced more than additive SCC-7 clonogenic cell kill and hydroxyl radicals played an important role in the response. Interleukin-1 modulation of cisPlatin cytotoxicity was schedule dependent. IL-1α treatment for 24 hrs, before cisPlatin, produced drug resistance (IC90=11.1 μM). Our study shows that IL-1α can stimulate tumor macrophages to release pro-oxidants that modify cellular chemosensitivity in a schedule and dose dependent fashion. Our findings may also provide a mechanistic explanation for the synergistic antitumor activity of cisPlatin and IL-1αin vivo.  相似文献   

14.
Capsaicin, the pungent ingredient of hot chilli pepper, has been recently shown to induce apoptosis in several cell lines through a not well known mechanism. Here, we investigated the role of the vanilloid capsaicin in the death regulation of the human cancer androgen-resistant cell line PC-3. Capsaicin inhibited the growth of PC-3 with an IC50 of 20 μM cells and induced cell apoptosis, as assessed by flow cytometry and nuclei staining with DAPI. Capsaicin induced apoptosis in prostate cells by a mechanism involving reactive oxygen species generation, dissipation of the mitochondrial inner transmembrane potential (ΔΨm) and activation of caspase 3. Capsaicin-induced apoptosis was not reduced by the antagonist capsazepine in a dose range from 0.1 μM to 20 μM, suggesting a receptor-independent mechanism. To study the in vivo effects of capsaicinoids, PC-3 cells were grown as xenografts in nude mice. Subcutaneous injection of either capsaicin or capsazepine (5 mg/kg body weight) in nude mice suppressed PC-3 tumor growth in all tumors investigated and induced apoptosis of tumor cells. Our data show a role for capsaicin against androgen-independent prostate cancer cells in vitro and in vivo and suggest that capsaicin is a promising anti-tumor agent in hormone-refractory prostate cancer, which shows resistance to many chemotherapeutic agents.  相似文献   

15.
Leishmania amazonensis is a protozoan parasite that occurs in many areas of Brazil and causes skin lesions. Using this parasite, our group showed the activation of Na+/K+ ATPase through a signaling cascade that involves the presence of heme and protein kinase C (PKC) activity. Heme is an important biomolecule that has pro-oxidant activity and signaling capacity. Reactive oxygen species (ROS) can act as second messengers, which are required in various signaling cascades. Our goal in this work is to investigate the role of hydrogen peroxide (H2O2) generated in the presence of heme in the Na+/K+ ATPase activity of L. amazonensis. Our results show that increasing concentrations of heme stimulates the production of H2O2 in a dose-dependent manner until a concentration of 2.5 μM heme. To confirm that the effect of heme on the Na+/K+ ATPase is through the generation of H2O2, we measured enzyme activity using increasing concentrations of H2O2 and, as expected, the activity increased in a dose-dependent manner until a concentration of 0.1 μM H2O2. To investigate the role of PKC in this signaling pathway, we observed the production of H2O2 in the presence of its activator phorbol 12-myristate 13-acetate (PMA) and its inhibitor calphostin C. Both showed no effect on the generation of H2O2. Furthermore, we found that PKC activity is increased in the presence of H2O2, and that in the presence of calphostin C, H2O2 is unable to activate the Na+/K+ ATPase. 100 μM of Mito-TEMPO was capable of abolishing the stimulatory effect of heme on Na+/K+ ATPase activity, indicating that mitochondria might be the source of the hydrogen peroxide production induced by heme. The modulation of L. amazonensis Na+/K+ ATPase by H2O2 opens new possibilities for understanding the signaling pathways of this parasite.  相似文献   

16.
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin β13. It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The VH CDR3 peptide from mAb A4 and VL CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.  相似文献   

17.
《Translational oncology》2020,13(1):102-112
Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant properties and is deemed as a tissue protector. However, effects of HO-1 in prostate cancer remain in controversy. We evaluated the role of HO-1 in prostate carcinoma in vitro and in vivo.Overexpression of HO-1 did not affect prostate cell proliferation in the normal condition but enhanced cell proliferation under serum starvation. HO-1 overexpression enhanced cell invasion of PC-3 cells through epithelial–mesenchymal transition (EMT) induction, which was supported by increased Slug, N-cadherin, and vimentin expressions. In the xenograft animal study, HO-1 overexpression enhanced PC-3 cell tumor growth in vivo. HO-1 attenuated reactive oxygen species induced by H2O2 or pyocyanin treatment in PC-3 and DU145 cells. HO-1 further reduced PC-3 and DU145 cell apoptosis induced by H2O2 or serum starvation. Our results suggested that HO-1 was able to increase prostate carcinoma cell invasion in vitro and tumor growth in vivo. The EMT induction and antioxidant and antiapoptotic effects of HO-1 in the prostate carcinoma cells may be responsible for these findings.  相似文献   

18.
Background aimsCD24 is markedly overexpressed in ovarian cancer and plays a critical role in ovarian cancer survival and metastasis, rendering it an interesting target for anti-tumor therapy. Using short hairpin RNA (shRNA) targeting CD24, we aimed to investigate the anti-tumor efficacy of CD24 knockdown in ovarian cancer cells in vitro and in vivo.MethodsCD24 shRNA vector (CD24–shRNA) and empty plasmid vector (EP) were transfected into ovarian cancer SKOV3 cells and the knockdown efficacy assessed by Western blot analysis. The effects of CD24 knockdown in SKOV3 cells in vitro, including cell viability and apoptosis, were determined using methyl thiazolyl blue tetrazolium bromide (MTT), flow cytometry and propidium iodide (PI) staining assays. The effects in vivo of CD24 knockdown on angiogenesis, cell proliferation and apoptosis were assessed using immunohistochemistry against CD31, proliferating cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assays.ResultsTransfection of CD24–shRNA effectively down-regulated CD24 expression in vitro and in vivo. Administration of CD24–shRNA into nude mice bearing ovarian cancer significantly suppressed tumor volume growth.ConclusionsKnockdown of CD24 expression by CD24–shRNA significantly inhibited cell viability and induced apoptosis of SKOV3 cells in vitro. Administration with CD24–shRNA in vivo suppressed tumor volume increase by microvessel density (MVD) decrease, cell proliferation inhibition and apoptosis induction. All the data suggested that knockdown of CD24 by shRNA might be a potential therapeutic approach against human ovarian cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号