首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.  相似文献   

2.
Influenza virus infection results in strong, mainly T-dependent, extrafollicular and germinal center B cell responses, which provide lifelong humoral immunity against the homotypic virus strain. Follicular T helper cells (T(FH)) are key regulators of humoral immunity. Questions remain regarding the presence, identity, and function of T(FH) subsets regulating early extrafollicular and later germinal center B cell responses. This study demonstrates that ICOS but not CXCR5 marks T cells with B helper activity induced by influenza virus infection and identifies germinal center T cells (T(GC)) as lymph node-resident CD4(+) ICOS(+) CXCR4(+) CXCR5(+) PSGL-1(lo) PD-1(hi) cells. The CXCR4 expression intensity further distinguished their germinal center light and dark zone locations. This population emerged strongly in regional lymph nodes and with kinetics similar to those of germinal center B cells and were the only T(FH) subsets missing in influenza virus-infected, germinal center-deficient SAP(-/-) mice, mice which were shown previously to lack protective memory responses after a secondary influenza virus challenge, thus indicting the nonredundant functions of CXCR4- and CXCR5-coexpressing CD4 helper cells in antiviral B cell immunity. CXCR4-single-positive T cells, present in B cell-mediated autoimmunity and regarded as "extrafollicular" helper T cells, were rare throughout the response, despite prominent extrafollicular B cell responses, revealing fundamental differences in autoimmune- and infection-induced T-dependent B cell responses. While all ICOS(+) subsets induced similar antibody levels in vitro, CXCR5-single-positive T cells were superior in inducing B cell proliferation. The regulation of T cell localization, marked by the single and coexpression of CXCR4 and CXCR5, might be an important determinant of T(FH) function.  相似文献   

3.
Certain classes of dendritic cells (DCs) meet rare cognate Ag-specific T and B cells inside primary B cell follicles for the development of germinal centers. However, the mechanisms underlying this coordination are still undefined. Cysteine-rich (CR) domain of the mannose receptor (CR-Fc)(+) DCs are a newly discovered subset of DCs that migrate rapidly into the primary lymphoid follicles from marginal zone after immunization. In this work, we uncover the key role of B cells in the establishment of a microenvironment that allows these DCs to be in the B cell area in a lymphotoxin (LT)-dependent fashion. CR-Fc(+) DCs are absent from the spleens of both LTbetaR- and LTalpha-deficient mice, suggesting that signaling by membrane LT is required for the presence of CR-Fc(+) DCs in the spleen. Interestingly, analysis of mutant mice that lack T, B, or NK cells demonstrates that B cell-derived membrane LT is essential for the unique localization of CR-Fc(+) DCs in the spleen. Using bone marrow transfer and ligand-blocking approaches, we provide evidence that B cell-derived LT acts indirectly on CR-Fc(+) DCs through LTbetaR(+) stromal cells. In analogous fashion to certain Ag-activated T and B cells, CR-Fc(+) DCs, expressing CXCR5, localize to primary lymphoid follicles in response to CXC ligand 13 (B lymphocyte chemoattractant). Together, we propose that B cells play a central role in establishing the chemotactic gradient that attracts not only Ag-activated T and B cells but also Ag-carrying CR-Fc(+) DCs. In turn, CR-Fc(+) DCs and T cells home to B cell follicles to interact with B cells in the developing germinal center.  相似文献   

4.
Ag encounter will recruit Ag-specific cells from the pool of mature B lymphocytes in the spleen and activate them to perform effector functions: generation of Ab-forming cells (plasma cells) and presentation of Ag to T cells. We have compared the ability of mature follicular and marginal zone cells to develop into effector B cells. The generation of marginal zone B cells and their localization in the marginal sinus area are T cell and CD40 ligand independent, suggesting that they do not represent a postgerminal center population. Compared with mature recirculating follicular B cells, they express several characteristics of previous antigenic experience, including higher levels of B7.1 (CD80) and B7.2 (CD86) when freshly isolated and following in vitro stimulation. After a brief 6- to 8-h in vitro stimulation with LPS or anti-CD40 Abs, marginal zone B cells become potent APCs. In addition, their ability to proliferate and differentiate into plasma cells in response to low doses of T-independent polyclonal stimuli (LPS) is far greater than that of follicular B cells. These findings indicate a functional heterogeneity within splenic mature B lymphocytes, with marginal zone B cells having the capacity to generate effector cells in early stages of the immune response against particulate Ags scavenged efficiently in this special anatomical site.  相似文献   

5.
6.
Previous studies have suggested that B cell Ag receptor (BCR) down-regulation by potentially pathological autoreactive B cells is associated with pathways leading to developmental arrest and receptor editing, or anergy. In this study we compare the primary development of B cells in two strains of mice expressing transgenic BCRs that differ by a single amino acid substitution that substantially increases reactivity for nuclear autoantigens such as DNA. Surprisingly, we find that both BCRs promote efficient development to mature follicular phenotype, but the strongly autoreactive BCR fails to promote marginal zone B cell development. The follicular B cells expressing the strongly autoreactive BCR do not appear to be anergic, as they robustly respond to polyclonal stimuli in vitro, are not short-lived, and can participate in germinal center reactions. Strikingly however, substantial and progressive down-modulation of surface IgM and IgD takes place throughout their primary development in the BM and periphery. We propose that BCR-autoantigen interactions regulate this pathway, resulting in reduced cellular avidity for autoantigens. This process of "learned ignorance" could allow autoreactive B cells access to the foreign Ag-driven memory B cell response, during which their self-reactivity would be attenuated by somatic hypermutation and selection in the germinal center.  相似文献   

7.
ICOS is a new member of the CD28 family of costimulatory molecules that is expressed on activated T cells. Its ligand B7RP-1 is constitutively expressed on B cells. Although the blockade of ICOS/B7RP-1 interaction inhibits T cell-dependent Ab production and germinal center formation, the mechanism remains unclear. We examined the contribution of ICOS/B7RP-1 to the generation of CXCR5+ follicular B helper T (T(FH)) cells in vivo, which preferentially migrate to the B cell zone where they provide cognate help to B cells. In the spleen, anti-B7RP-1 mAb-treated or ICOS-deficient mice showed substantially impaired development of CXCR5+ T(FH) cells and peanut agglutinin+ germinal center B cells in response to primary or secondary immunization with SRBC. Expression of CXCR5 on CD4+ T cells was associated with ICOS expression. Adoptive transfer experiments showed that the development of CXCR5+ T(FH) cells was enhanced by interaction with B cells, which was abrogated by anti-B7RP-1 mAb treatment. The development of CXCR5+ T(FH) cells in the lymph nodes was also inhibited by the anti-B7RP-1 mAb treatment. These results indicated that the ICOS/B7RP-1 interaction plays an essential role in the development of CXCR5+ T(FH) cells in vivo.  相似文献   

8.
The recovery of the B lymphocyte compartments was investigated in lethally irradiated mice reconstituted with fetal liver cells. This was done by means of immunofluorescence on frozen sections of spleen, lymph nodes and Peyer's patches. The first B lymphocyte recovery in the spleen was observed on day 8, a few days earlier than in lymph nodes and Peyer's patches (day 13). These early B cells in the spleen were found in the central part of the periarteriolar lymphatic sheath (PALS). Later on, while increasing in number, the B cells formed growing follicles at the periphery of the PALS. Subsequently, brightly fluorescent B cells appeared in the marginal zone, which surrounded the follicles. Another two weeks later, around day 30, also germinal center formation was observed in the follicles of the spleen. B cell development in lymph nodes and Peyer's patches started somewhat later than in the spleen, but once started, the recovery of the different compartments was completed very fast. Germinal center reactions were found in lymph nodes and Peyer's patches already on day 25, and thus earlier than in the spleen, but later than the first occurrence of the strongly fluorescent cells in the marginal zone. Apparently, germinalcenter formation is not essential for the recovery of the population of brightly fluorescent B cells in the marginal zone after irradiation and reconstitution.  相似文献   

9.
BAFF (B cell-activating factor belonging to the TNF family) is a cell survival and maturation factor for B cells, and overproduction of BAFF is associated with systemic autoimmune disease. BAFF binds to three receptors, BAFF-R, transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), and B cell maturation Ag (BCMA). Using specific mAbs, BAFF-R was found to be the predominant BAFF receptor expressed on peripheral B cells, in both humans and mice, and antagonist mAbs to BAFF-R blocked BAFF-mediated costimulation of anti- micro responses. The other BAFF receptors showed a much more restricted expression pattern, suggestive of specialized roles. BCMA was expressed by germinal center B cells, while TACI was expressed predominantly by splenic transitional type 2 and marginal zone B cells, as well as activated B cells, but was notably absent from germinal center B cells. BAFF was also an effective costimulator for T cells, and this costimulation occurs entirely through BAFF-R. BAFF-R, but not TACI or BCMA, was expressed on activated/memory subsets of T cells, and T cells from BAFF-R mutant A/WySnJ mice failed to respond to BAFF costimulation. Thus, BAFF-R is important not only for splenic B cell maturation, but is the major mediator of BAFF-dependent costimulatory responses in peripheral B and T cells.  相似文献   

10.
The cell surface phenotype of dinitrophenol (DNP)-specific memory B cells, defined by their capacity to transfer IgG responses into syngeneic irradiated recipients, was assessed using two markers of relevance to lymphocyte migratory properties: (i) peanut agglutinin, which binds to terminal galactosyl residues expressed at high levels by several nonmigrating lymphocyte subsets and, among lymph node B cells, is highly specific for germinal center cells; and (ii) MEL-14, a monoclonal antibody specific for lymphocyte surface receptors required for migration from the blood into peripheral lymph nodes. At various times after primary or secondary immunization with DNP-keyhole limpet hemocyananin (KLH), lymph node B cells were separated by fluorescence-activated cell sorting on the basis of staining with PNA and/or MEL-14, and the presence of B-memory cells in each fraction was assessed by adoptive transfer with antigen (DNP-KLH) and helper T cells. One week after immunization, most of the memory sorted in the PNAhi population, confirming a previous report by R. F. Coico, B. S. Bhogal, and G. J. Thorbecke (J. Immunol. 131, 2254, 1983) that early memory B cells or their precursors are contained within the germinal center cell population, a population which is known to be MEL-14- and migratory-incompetent. Six weeks after primary stimulation, however, the bulk of memory cells, unlike germinal center cells, were MEL-14hi. After secondary immunization, memory was still predominantly MEL-14+ and PNAlo, although in some experiments adoptive responses were transferred by all sorted fractions. The results are consistent with the hypothesis that antigen-specific B cells initially undergo local (sessile) differentiation and proliferation in germinal centers, where they develop the capacity for adoptive transfer of antigen-specific secondary responses, but that with continued development their long-lived memory-containing progeny express a phenotype permitting their reentry into the recirculating lymphocyte pool.  相似文献   

11.
We investigated the structure of hemal nodes in Saanen goats using immunohistochemical staining. We examined the distribution of CD3 positive T lymphocytes, CD79a positive B lymphocytes, CD68 positive macrophages and S100 protein positive follicular dendritic cells. Hemal nodes of six healty adult female goats were used. Hemal nodes were removed from the thoracic and abdominal cavities. The oval to round hemal nodes were observed especially between the abdominal aorta and vena cava, and near the kidneys and adrenal glands. Tissue sections were stained with Crossmon’s modified triple stain to demonstrate general histological structure. The avidin-biotin-peroxidase technique using anti-CD3, anti-CD79a, anti-CD68 and anti-S100 primary antibodies was used for immunohistochemistry. Many CD3 positive T lymphocytes were found in the germinal center of the lymph follicles and in the lymphatic cords of hemal nodes; CD3 positive cells also were observed in the sinuses. CD79a and CD68 positive cells were found at the germinal center of the lymph follicles. In the lymph follicles near the subcapsular sinuses, CD79a and CD68 positive cells were found especially in e areas bordering the mantle zone. S100 positive cells were found in the lymph follicles, lymphatic cords and sinuses.  相似文献   

12.
Marginal zone (MZ), follicular (FO), and B1 B cells form the long-lived naive B cell compartment. To identify surface markers that define MZ B cells in mice, we generated a panel of mAbs reactive with MZ but not FO B cells. One of these mAbs, MZ3, was found to recognize the tetraspanin CD9. CD9 expression not only distinguishes MZ B cells from FO B cells but also divided peritoneal cavity B1 cells into smaller subsets. After short-term in vitro stimulation with various mitogens, FO B cells failed to induce CD9 protein, while MZ B cells up-regulated the level of CD9 protein. However, after prolonged culture of FO B cells with LPS, surface CD9 was induced, together with syndecan 1, indicative of plasma cell differentiation. Following immunization with a T-independent-2 Ag, R36A, or a T-dependent Ag, SRBC, we found that CD9 is not expressed by germinal center B cells but is eventually expressed on plasma cells in response to both T-independent-2 and T-dependent Ags. Collectively, these results suggest that MZ B cells and B1 cell subsets are the immediate precursors of plasma cells in the primary response and that CD9 is acquired by T-dependent plasma cells.  相似文献   

13.
FDC-SP,a novel secreted protein expressed by follicular dendritic cells   总被引:2,自引:0,他引:2  
To define better the molecular basis for follicular dendritic cell (FDC) function, we used PCR-based cDNA subtraction to identify genes specifically expressed in primary FDC isolated from human tonsils. In this work we report the discovery of a novel gene encoding a small secreted protein, which we term FDC-SP (FDC secreted protein). The FDC-SP gene lies on chromosome 4q13 adjacent to clusters of proline-rich salivary peptides and C-X-C chemokines. Human and mouse FDC-SP proteins are structurally unique and contain a conserved N-terminal charged region adjacent to the leader peptide. FDC-SP has a very restricted tissue distribution and is expressed by activated FDCs from tonsils and TNF-alpha-activated FDC-like cell lines, but not by B cell lines, primary germinal center B cells, or anti-CD40 plus IL-4-activated B cells. Strikingly, FDC-SP is highly expressed in germinal center light zone, a pattern consistent with expression by FDC. In addition, FDC-SP is expressed in leukocyte-infiltrated tonsil crypts and by LPS- or Staphylococcus aureus Cowan strain 1-activated leukocytes, suggesting that FDC-SP can also be produced in response to innate immunity signals. We provide evidence that FDC-SP is posttranslationally modified and secreted and can bind to the surface of B lymphoma cells, but not T lymphoma cells, consistent with a function as a secreted mediator acting upon B cells. Furthermore, we find that binding of FDC-SP to primary human B cells is markedly enhanced upon activation with the T-dependent activation signals such as anti-CD40 plus IL-4. Together our data identify FDC-SP as a unique secreted peptide with a distinctive expression pattern within the immune system and the ability to specifically bind to activated B cells.  相似文献   

14.
In response to an antigenic challenge, B cells proliferate in germinal centers within secondary lymphoid tissue. Specialized accessory cells, follicular dendritic cells (FDC), and T cells are necessary to drive this reaction. Indirect evidence suggests that FDC provide signals which not only induce B cell proliferation but can rescue B cells programmed to die by apoptosis. An in vitro system was developed to: 1) define the role of FDC and 2) identify molecules involved in this response. Activated, low density B cells and T cells were coisolated with FDC from immune mouse lymph nodes. Upon culturing, large cellular aggregates formed, composed of 1 to 3 FDC interdigitating between 30 to 90 B cells and 1 to 5 T cells. Many of these B cells were undergoing DNA synthesis. Depleting FDC or T cells from the cultures immediately stopped cluster formation and proliferation. Separating clustered vs nonclustered cells revealed that the FDC-associated population remained viable, whereas cells in suspension became apoptotic. The adhesion/activation molecules ICAM-1, LFA-1, and CD44 supported both cluster formation and proliferation. In addition, anti-class II and anti-kappa L chain mAb interfered dramatically with DNA synthesis. This model mimics many of the features of a germinal center and can be used to further study B cell activation, proliferation, and differentiation in vitro.  相似文献   

15.
We show herein that B cell Ag receptor (BCR) triggering, but not stimulation by CD40 mAb and/or IL-4, rapidly induced the coordinated expression of two closely related T cell chemoattractants, macrophage inflammatory protein-1 beta (MIP-1 beta) and MIP-1 alpha, by human B cells. Naive, memory, and germinal center B cells all produced MIP-1 alpha/beta in response to BCR triggering. In contrast to MIP-1 alpha/beta, IL-8, which is spontaneously produced by germinal center B cells but not by naive and memory B cells, was not regulated by BCR triggering. Culturing follicular dendritic cell-like HK cells with activated B cells did not regulate MIP-1 alpha/beta production, but it did induce production of IL-8 by HK cells. Microchemotaxis assays showed that CD4+CD45RO+ T cells of the effector/helper phenotype actively migrated along a chemotactic gradient formed by BCR-stimulated B cells. This effect was partially blocked by anti-MIP-1 beta and anti-CC chemokine receptor 5 Ab, but not by anti-MIP-1 alpha Ab suggesting that MIP-1 beta plays a major role in this chemoattraction. Since maturation of the B cell response to a peptide Ag is mostly dependent on the availability of T cell help, the ability of Ag-stimulated B cells to recruit T cells via MIP-1 alpha/beta, may represent one possible mechanism enabling cognate interactions between rare in vivo Ag-specific T and B cells.  相似文献   

16.
The early involvement of marginal zone (MZ) B lymphocytes in T-independent immune responses is well established. In this study we compared the abilities of MZ and follicular (FO) B cells to collaborate with T cells. After immunization with soluble hen egg lysozyme, both MZ and FO B cells captured Ag and migrated to T cell areas in the response to hen egg lysozyme. MZ B cells were far superior to FO B cells in inducing CD4+ T cell expansion both in vitro and in vivo. MZ, but not FO, B cells, after interaction with T cells, differentiated into plasma cells, and in addition they stimulated Ag-specific CD4+ T cells to produce high levels of Th1-like cytokines upon primary stimulation in vitro. These results indicate that MZ B cells rapidly and effectively capture soluble Ag and activate CD4+ T cells to become effector T cells. The enhanced capacity of MZ B cells to prime T cells in this study appeared to be intrinsic to MZ B cells, as both MZ and FO B cell populations express an identical Ag receptor.  相似文献   

17.
Group B Streptococcus (GBS) is the foremost bacterial cause of serious neonatal infections. Protective immunity to GBS is mediated by specific Abs to the organism's capsular polysaccharide Ags. To examine the role of complement in the humoral immune response to type III GBS capsular polysaccharide (III-PS), mice deficient in C3 or in CD21/CD35 (i.e., complement receptors 1 and 2; CR1/CR2) were immunized with III-PS. Mice deficient in C3 or Cr2 had an impaired primary immune response to III-PS. The defective response was characterized by low IgM levels and the lack of an isotype switch from IgM to IgG Ab production. Compared with wild-type mice, C3- and Cr2-deficient mice exhibited decreased uptake of III-PS by follicular dendritic cells within the germinal centers and impaired localization of III-PS to the marginal zone B cells. Complement-dependent uptake of capsular polysaccharide by marginal zone B cells appears necessary for an effective immune response to III-PS. The normal immune response in wild-type mice may require localization of polysaccharide to marginal zone B cells with subsequent transfer of the Ag to follicular dendritic cells.  相似文献   

18.
Follicular helper (T(FH)) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of T(FH) numbers maintains self tolerance. We describe a population of Foxp3(+)Blimp-1(+)CD4(+) T cells constituting 10-25% of the CXCR5(high)PD-1(high)CD4(+) T cells found in the germinal center after immunization with protein antigens. These follicular regulatory T (T(FR)) cells share phenotypic characteristics with T(FH) and conventional Foxp3(+) regulatory T (T(reg)) cells yet are distinct from both. Similar to T(FH) cells, T(FR) cell development depends on Bcl-6, SLAM-associated protein (SAP), CD28 and B cells; however, T(FR) cells originate from thymic-derived Foxp3(+) precursors, not naive or T(FH) cells. T(FR) cells are suppressive in vitro and limit T(FH) cell and germinal center B cell numbers in vivo. In the absence of T(FR) cells, an outgrowth of non-antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, the T(FH) differentiation pathway is co-opted by T(reg) cells to control the germinal center response.  相似文献   

19.
High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger.  相似文献   

20.
Phosphocholine (PC) is a naturally occurring Ag common to many pathogenic microorganisms. Early in the primary response to PC conjugated to keyhole limpet hemocyanin (KLH), T15 Id(+) Abs constitute >90% of the serum Ig in BALB/c mice. During the late primary and memory response to PC-protein, a shift in the repertoire occurs and T15 Id(+) Abs lose dominance. In this study, we use immunohistochemistry and single germinal center microdissection to locate T15 Id(+) cells in the spleen in a primary response to PC-KLH. We demonstrate T15 Id(+) B cells and V(H)1-DFL16.1-JH1 and V kappa 22-J kappa 5 rearrangements in germinal centers early in the immune response; thus loss of T15 dominance is not due to lack of T15 cells within germinal centers. One-hundred thirty one V(H)1 and 57 V kappa 22 rearrangements were cloned and sequenced. Thirty four percent of the V(H)1 clones and 37% of the V kappa 22 clones contained somatic mutations indicating participation in the germinal center response. Six variant T15 H clones were expressed with wild-type T15 L chain in vitro. Two of these Abs were defective in secretion providing the first evidence that mutation occurring in vivo can disrupt Ig assembly and secretion. Of the four secretion-competent Abs, two failed to display binding to PC-protein, while the other two displayed altered carrier recognition. These results indicate that somatic mutation of T15 in vivo can result in the loss of binding and secretion, potentially leading to B cell wastage. The failure of T15 to gain affinity enhancing mutations in the face of these detrimental changes may contribute to repertoire shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号