首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurosecretion is catalyzed by assembly of a soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE)-complex composed of SNAP-25, synaptobrevin and syntaxin. Munc 18-1 is known to bind to syntaxin in vitro. This interaction prevents assembly of the SNARE-complex, but might also affect intracellular targeting of the proteins. We have fused syntaxin and Munc 18 to the yellow- (YFP) or cyan-fluorescence-protein (CFP) and expressed the constructs in CHO- and MDCK-cells. We have studied their localization with confocal microscopy and a possible protein-protein interaction with fluorescence-resonance energy transfer (FRET). YFP-syntaxin localizes to intracellular membranes. CFP-Munc 18 is present in the cytoplasm as expected for a protein lacking membrane targeting domains. However, Munc 18 is redirected to internal membranes when syntaxin is coexpressed, but only limited transport of the proteins to the plasma membrane was observed. An interaction between Munc 18 and syntaxin could be demonstrated by FRET using two methods, sensitized acceptor fluorescence and acceptor photobleaching. A mutation in syntaxin (L165A, E166A), which is known to inhibit binding to Munc 18 in vitro, prevents colocalization of the proteins and also the FRET signal. Thus, a protein-protein interaction between Munc 18 and syntaxin occurs on intracellular membranes, which is required but not sufficient for quantitative transport of both proteins to the plasma membrane.  相似文献   

2.
Neurosecretion is catalyzed by assembly of a soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE)-complex composed of SNAP-25, synaptobrevin and syntaxin. Munc 18-1 is known to bind to syntaxin in vitro. This interaction prevents assembly of the SNARE-complex, but might also affect intracellular targeting of the proteins. We have fused syntaxin and Munc 18 to the yellow- (YFP) or cyan-fluorescence-protein (CFP) and expressed the constructs in CHO- and MDCK-cells. We have studied their localization with confocal microscopy and a possible protein-protein interaction with fluorescence-resonance energy transfer (FRET). YFP-syntaxin localizes to intracellular membranes. CFP-Munc 18 is present in the cytoplasm as expected for a protein lacking membrane targeting domains. However, Munc 18 is redirected to internal membranes when syntaxin is coexpressed, but only limited transport of the proteins to the plasma membrane was observed. An interaction between Munc 18 and syntaxin could be demonstrated by FRET using two methods, sensitized acceptor fluorescence and acceptor photobleaching. A mutation in syntaxin (L165A, E166A), which is known to inhibit binding to Munc 18 in vitro, prevents colocalization of the proteins and also the FRET signal. Thus, a protein-protein interaction between Munc 18 and syntaxin occurs on intracellular membranes, which is required but not sufficient for quantitative transport of both proteins to the plasma membrane.  相似文献   

3.
Sec1/Munc18-like (SM) proteins functionally interact with SNARE proteins in vesicular fusion. Despite their high sequence conservation, structurally disparate binding modes for SM proteins with syntaxins have been observed. Several SM proteins appear to bind only to a short peptide present at the N terminus of syntaxin, designated the N-peptide, while Munc18a binds to a 'closed' conformation formed by the remaining portion of syntaxin 1a. Here, we show that the syntaxin 16 N-peptide binds to the SM protein Vps45, but the remainder of syntaxin 16 strongly enhances the affinity of the interaction. Likewise, the N-peptide of syntaxin 1a serves as a second binding site in the Munc18a/syntaxin 1a complex. When the syntaxin 1a N-peptide is bound to Munc18a, SNARE complex formation is blocked. Removal of the N-peptide enables binding of syntaxin 1a to its partner SNARE SNAP-25, while still bound to Munc18a. This suggests that Munc18a controls the accessibility of syntaxin 1a to its partners, a role that might be common to all SM proteins.  相似文献   

4.
Two protein families that are critical for vesicle transport are the Syntaxin and Munc18/Sec1 families of proteins. These two molecules form a high affinity complex and play an essential role in vesicle docking and fusion. Munc18c was expressed as an N-terminally His-tagged fusion protein from recombinant baculovirus in Sf9 insect cells. His-tagged Munc18c was purified to homogeneity using both cobalt-chelating affinity chromatography and gel filtration chromatography. With this simple two-step protocol, 3.5 mg of purified Munc18c was obtained from a 1L culture. Further, the N-terminal His-tag could be removed by thrombin cleavage while the tagged protein was bound to metal affinity resin. Recombinant Munc18c produced in this way is functional, in that it forms a stable complex with the SNARE interacting partner, syntaxin4. Thus we have developed a method for producing and purifying large amounts of functional Munc18c--both tagged and detagged--from a baculovirus expression system. We have also developed a method to purify the Munc18c:syntaxin4 complex. These methods will be employed for future functional and structural studies.  相似文献   

5.
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.  相似文献   

6.
Rab3A is a small G-protein of the Rab family that is involved in the late steps of exocytosis. Here, we studied the role of Rab3A and its relationship with Munc13-1 and Munc18-1 during vesicle priming. Phorbol 12-myristate 13-acetate (PMA) is known to enhance the percentage of fusion-competent vesicles and this is mediated by protein kinase C (PKC)-independent Munc13-1 activation and PKC-dependent dissociation of Munc18-1 from syntaxin 1a. Our results show that the effects of PMA varied in cells overexpressing Rab3A or mutants of Rab3A and in cells with Rab3A knockdown. When Munc13-1 was overexpressed in Rab3A knockdown cells, secretion was completely inhibited. In cells overexpressing a Rab-interacting molecule (RIM)-binding deficient Munc13-1 mutant, 128-Munc13-1, the effects of Rab3A on PMA-induced secretion was abolished. The effect of PMA, which disappeared in cells overexpressing GTP-Rab3A (Q81L), could be reversed by co-expressing Munc18-1 but not its mutant R39C, which is unable to bind to syntaxin 1a. In cells overexpressing Munc18-1, manipulation of Rab3A activity had no effect on secretion. Finally, Munc18-1 enhanced the dissociation of Rab3A, and such enhancement correlated with exocytosis. In summary, our results support the hypothesis that the Rab3A cycle is coupled with the activation of Munc13-1 via RIM, which accounts for the regulation of secretion by Rab3A. Munc18-1 acts downstream of Munc13-1/RIM/Rab3A and interacts with syntaxin 1a allowing vesicle priming. Furthermore, Munc18-1 promotes Rab3A dissociation from vesicles, which then results in fusion.  相似文献   

7.
Munc18-1 plays a crucial role in regulated exocytosis in neurons and neuroendocrine cells through modulation of vesicle docking and membrane fusion. The molecular basis for Munc18 function is still unclear, as are the links with Rabs and SNARE [SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) receptor] proteins that are also required. Munc18-1 can bind to SNAREs through at least three modes of interaction, including binding to the closed conformation of syntaxin 1. Using a gain-of-function mutant of Munc18-1 (E466K), which is based on a mutation in the related yeast protein Sly1p, we have identified a direct interaction of Munc18-1 with Rab3A, which is increased by the mutation. Expression of Munc18-1 with the E466K mutation increased exocytosis in adrenal chromaffin cells and PC12 cells (pheochromocytoma cells) and was found to increase the density of secretory granules at the periphery of PC12 cells, suggesting a stimulatory effect on granule recruitment through docking or tethering. Both the increase in exocytosis and changes in granule distribution appear to require Munc18-1 E466K binding to the closed form of syntaxin 1, suggesting a role for this interaction in bridging Rab- and SNARE-mediated events in exocytosis.  相似文献   

8.
Exocytosis is regulated by NO in many cell types, including neurons. In the present study we show that syntaxin 1a is a substrate for S-nitrosylation and that NO disrupts the binding of Munc18-1 to the closed conformation of syntaxin 1a in vitro. In contrast, NO does not inhibit SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive fusion protein) attachment protein] receptor} complex formation or binding of Munc18-1 to the SNARE complex. Cys(145) of syntaxin 1a is the target of NO, as a non-nitrosylatable C145S mutant is resistant to NO and novel nitrosomimetic Cys(145) mutants mimic the effect of NO on Munc18-1 binding in vitro. Furthermore, expression of nitrosomimetic syntaxin 1a in living cells affects Munc18-1 localization and alters exocytosis release kinetics and quantal size. Molecular dynamic simulations suggest that NO regulates the syntaxin-Munc18 interaction by local rearrangement of the syntaxin linker and H3c regions. Thus S-nitrosylation of Cys(145) may be a molecular switch to disrupt Munc18-1 binding to the closed conformation of syntaxin 1a, thereby facilitating its engagement with the membrane fusion machinery.  相似文献   

9.
Sec1/Munc18 (SM) proteins activate intracellular membrane fusion through binding to cognate SNAP receptor (SNARE) complexes. The synaptic target membrane SNARE syntaxin 1 contains a highly conserved Habc domain, which connects an N-peptide motif to the SNARE core domain and is thought to participate in the binding of Munc18-1 (the neuronal SM protein) to the SNARE complex. Unexpectedly, we found that mutation or complete removal of the Habc domain had no effect on Munc18-1 stimulation of fusion. The central cavity region of Munc18-1 is required to stimulate fusion but not through its binding to the syntaxin Habc domain. SNAP-25, another synaptic SNARE subunit, contains a flexible linker and exhibits an atypical conjoined Qbc configuration. We found that neither the linker nor the Qbc configuration is necessary for Munc18-1 promotion of fusion. As a result, Munc18-1 activates a SNARE complex with the typical configuration, in which each of the SNARE core domains is individually rooted in the membrane bilayer. Thus, the SNARE four-helix bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of fusion.  相似文献   

10.
In the process of insulin-stimulated GLUT4 vesicle exocytosis, Munc18c has been proposed to control SNARE complex formation by inactivating syntaxin 4 in a self-associated conformation. Using in vivo fluorescence resonance energy transfer in 3T3L1 adipocytes, co-immunoprecipitation, and in vitro binding assays, we provide data to indicate that Munc18c also associates with nearly equal affinity to a mutant of syntaxin 4 in a constitutively open (unfolded) state (L173A/E174A; LE). To bind to the open conformation of syntaxin 4, we found that Munc18c requires an interaction with the N terminus of syntaxin 4, which resembles Sly1 interaction with the N terminus of ER/Golgi syntaxins. However, both N and C termini of syntaxin 4 are required for Munc18c binding, since a mutation in the syntaxin 4 SNARE domain (I241A) reduces the interaction, irrespective of syntaxin 4 conformation. Using an optical reporter for syntaxin 4-SNARE pairings in vivo, we demonstrate that Munc18c blocks recruitment of SNAP23 to wild type syntaxin 4 yet associates with syntaxin 4LE-SNAP23 Q-SNARE complexes. Fluorescent imaging of GLUT4 vesicles in 3T3L1 adipocytes revealed that syntaxin 4LE expressed with Munc18c bypasses the requirement of insulin for GLUT4 vesicle plasma membrane docking. This effect was attenuated by reducing the Munc18c-syntaxin 4LE interaction with the I241A mutation, indicating that Munc18c facilitates vesicle docking. Therefore, in contradiction to previous models, our data indicates that the conformational "opening" of syntaxin 4 rather than the dissociation of Munc18c is the critical event required for GLUT4 vesicle docking.  相似文献   

11.
Membrane docking and fusion in neurons is a highly regulated process requiring the participation of a large number of SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) and SNARE-interacting proteins. We found that mammalian Class C Vps protein complex associated specifically with nSec-1/Munc18-a, and syntaxin 1A both in vivo and in vitro. In contrast, VAMP2 and SNAP-25, other neuronal core complex proteins, did not interact. When co-transfected with the human growth hormone (hGH) reporter gene, mammalian Class C Vps proteins enhanced Ca2+-dependent exocytosis, which was abolished by the Ca2+-channel blocker nifedipine. In hippocampal primary cultures, the lentivirus-mediated overexpression of hVps18 increased asynchronous spontaneous synaptic release without changing mEPSCs. These results indicate that mammalian Class C Vps proteins are involved in the regulation of membrane docking and fusion through an interaction with neuronal specific SNARE molecules, nSec-1/Munc18-a and syntaxin 1A.  相似文献   

12.
Attenuated levels of the Sec1/Munc18 (SM) protein Munc18-1 in human islet β-cells is coincident with type 2 diabetes, although how Munc18-1 facilitates insulin secretion remains enigmatic. Herein, using conventional Munc18-1(+/-) and β-cell specific Munc18-1(-/-) knock-out mice, we establish that Munc18-1 is required for the first phase of insulin secretion. Conversely, human islets expressing elevated levels of Munc18-1 elicited significant potentiation of only first-phase insulin release. Insulin secretory changes positively correlated with insulin granule number at the plasma membrane: Munc18-1-deficient cells lacked 35% of the normal component of pre-docked insulin secretory granules, whereas cells with elevated levels of Munc18-1 exhibited a ~20% increase in pre-docked granule number. Pre-docked syntaxin 1-based SNARE complexes bound by Munc18-1 were detected in β-cell lysates but, surprisingly, were reduced by elevation of Munc18-1 levels. Paradoxically, elevated Munc18-1 levels coincided with increased binding of syntaxin 4 to VAMP2 at the plasma membrane. Accordingly, syntaxin 4 was a requisite for Munc18-1 potentiation of insulin release. Munc18c, the cognate SM isoform for syntaxin 4, failed to bind SNARE complexes. Given that Munc18-1 does not pair with syntaxin 4, these data suggest a novel indirect role for Munc18-1 in facilitating syntaxin 4-mediated granule pre-docking to support first-phase insulin exocytosis.  相似文献   

13.
14.
Para Red (PR) has been isolated from food additives, and shown to be toxic to humans. To facilitate examination of its toxicity, the interaction between PR and serum albumins (SA) was studied using fluorescence quenching and circular dichroism (CD) spectrophotometry. The experiments showed that the fluorescence intensity of serum albumins decreased with increasing concentrations of PR, which resulted from the binding of PR and SA. The binding constant, number of binding sites and thermodynamic parameters were calculated and hydrogen bond and van der Waals interactions were shown to play a key role in the binding process. Competition experiments indicated that PR mainly binds to Trp residues of SA within the site I. As the CD and three‐dimensional spectra revealed, the addition of PR induced a conformational change in SA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Intracellular membrane fusion requires complexes of syntaxins with other SNARE proteins and regulatory Sec1/Munc18 (SM) proteins. In membrane fusion mediating, e.g., neurotransmitter release or glucose-stimulated insulin secretion in mammals, SM proteins preferentially interact with the inactive closed, rather than the active open, conformation of syntaxin or with the assembled SNARE complex. Other membrane fusion processes such as vacuolar fusion in yeast involve like membranes carrying cis-SNARE complexes, and the role of SM protein is unknown. We investigated syntaxin-SM protein interaction in membrane fusion of Arabidopsis cytokinesis, which involves cytokinesis-specific syntaxin KNOLLE and SM protein KEULE. KEULE interacted with an open conformation of KNOLLE that complemented both knolle and keule mutants. This interaction occurred at the cell division plane and required the KNOLLE linker sequence between helix Hc and SNARE domain. Our results suggest that in cytokinesis, SM protein stabilizes the fusion-competent open form of syntaxin, thereby promoting trans-SNARE complex formation.  相似文献   

16.
Munc18–1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18–1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fusion, it has hitherto not been possible to reconcile binding of Munc18–1 to syntaxin 1 with its biological function. We now show that in intact and exocytosis-competent lawns of plasma membrane, Munc18–1 forms a complex with syntaxin that allows formation of SNARE complexes. Munc18–1 associated with membrane-bound syntaxin 1 can be effectively displaced by adding recombinant synaptobrevin but not syntaxin 1 or SNAP-25. Displacement requires the presence of endogenous SNAP-25 since no displacement is observed when chromaffin cell membranes from SNAP-25–deficient mice are used. We conclude that Munc18–1 allows for the formation of a complex between syntaxin and SNAP-25 that serves as an acceptor for vesicle-bound synaptobrevin and that thus represents an intermediate in the pathway towards exocytosis.  相似文献   

17.
Although Munc18-1 was originally identified as a syntaxin1–interacting protein, the physiological significance of this interaction remains unclear. In fact, recent studies of Munc18-1 mutants have suggested that Munc18-1 plays a critical role for docking of secretory vesicles, independent of syntaxin1 regulation. Here we investigated the role of Munc18-1 in syntaxin1 localization by generating stable neuroendocrine cell lines in which Munc18-1 was strongly down-regulated. In these cells, the secretion capability, as well as the docking of dense-core vesicles, was significantly reduced. More importantly, not only was the expression level of syntaxin1 reduced, but the localization of syntaxin1 at the plasma membrane was also severely perturbed. The mislocalized syntaxin1 resided primarily in the perinuclear region of the cells, in which it was highly colocalized with Secretogranin II, a marker protein for dense-core vesicles. In contrast, the expression level and the plasma membrane localization of SNAP-25 were not affected. Furthermore, the syntaxin1 localization and the secretion capability were restored upon transfection-mediated reintroduction of Munc18-1. Our results indicate that endogenous Munc18-1 plays a critical role for the plasma membrane localization of syntaxin1 in neuroendocrine cells and therefore necessitates the interpretation of Munc18-1 mutant phenotypes to be in terms of mislocalized syntaxin1.  相似文献   

18.
The Sec1-related proteins bind to syntaxin family t-SNAREs with high affinity, thus controlling the interaction of syntaxins with their cognate SNARE partners. Munc18-2 is a Sec1 homologue enriched in epithelial cells and forms a complex with syntaxin 3, a t-SNARE localized to the apical plasma membrane. We generated here a set of Munc18-2 point mutants with substitutions in conserved amino acid residues. The mutants displayed a spectrum of different syntaxin binding efficiencies. The in vitro and in vivo binding patterns were highly similar, and the association of the Munc18-2 variants with syntaxin 3 correlated well with their ability to displace SNAP-23 from syntaxin 3 complexes when overexpressed in Caco-2 cells. Even the Munc18-2 mutants that do not detectably bind syntaxin 3 were membrane associated in Caco-2 cells, suggesting that the syntaxin interaction is not the sole determinant of Sec1 protein membrane attachment. Overexpression of the wild-type Munc18-2 was shown to inhibit the apical delivery of influenza virus hemagglutinin (HA). Interestingly, mutants unable to bind syntaxin 3 behaved differently in the HA transport assay. While one of the mutants tested had no effect, one inhibited and one enhanced the apical transport of HA. This implies that Munc18-2 function in apical membrane trafficking involves aspects independent of the syntaxin 3 interaction.  相似文献   

19.
Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a is specifically localized on dense-core vesicles in certain neuroendocrine cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A. However, the precise molecular mechanism of its inhibitory effect on exocytosis has never been elucidated and is still a matter of controversy. Here we show by deletion and chimeric analyses that the linker domain of Slp4-a interacts with the Munc18-1.syntaxin-1a complex by directly binding to Munc18-1 and that this interaction promotes docking of dense-core vesicles to the plasma membrane in PC12 cells. Despite increasing the number of plasma membrane docked vesicles, expression of Slp4-a strongly inhibited high-KCl-induced dense-core vesicle exocytosis. The inhibitory effect by Slp4-a is absolutely dependent on the linker domain of Slp4-a, because substitution of the linker domain of Slp4-a by that of Slp5 (the closest isoform of Slp4-a that cannot bind the Munc18-1.syntaxin-1a complex) completely abrogated the inhibitory effect. Our findings reveal a novel docking machinery for dense-core vesicle exocytosis: Slp4-a simultaneously interacts with Rab27A and Munc18-1 on the dense-core vesicle and with syntaxin-1a in the plasma membrane.  相似文献   

20.
Sec1p/Munc18 (SM) proteins are believed to play an integral role in vesicle transport through their interaction with SNAREs. Different SM proteins have been shown to interact with SNAREs via different mechanisms, leading to the conclusion that their function has diverged. To further explore this notion, in this study, we have examined the molecular interactions between Munc18c and its cognate SNAREs as these molecules are ubiquitously expressed in mammals and likely regulate a universal plasma membrane trafficking step. Thus, Munc18c binds to monomeric syntaxin4 and the N-terminal 29 amino acids of syntaxin4 are necessary for this interaction. We identified key residues in Munc18c and syntaxin4 that determine the N-terminal interaction and that are consistent with the N-terminal binding mode of yeast proteins Sly1p and Sed5p. In addition, Munc18c binds to the syntaxin4/SNAP23/VAMP2 SNARE complex. Pre-assembly of the syntaxin4/Munc18c dimer accelerates the formation of SNARE complex compared to assembly with syntaxin4 alone. These data suggest that Munc18c interacts with its cognate SNAREs in a manner that resembles the yeast proteins Sly1p and Sed5p rather than the mammalian neuronal proteins Munc18a and syntaxin1a. The Munc18c-SNARE interactions described here imply that Munc18c could play a positive regulatory role in SNARE assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号