首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have recently obtained strong genetic evidence that the acidic Calcofluor-binding exopolysaccharide (EPS I) of Rhizobium meliloti Rm1021 is required for nodule invasion and possibly for later events in nodule development. Thirteen loci on the second megaplasmid have been identified that are required for, or affect, the synthesis of EPS I. Mutations in certain of these loci completely abolish the production of EPS I and result in mutants that form empty Fix- nodules. exoH mutants fail to succinylate their EPS I and form empty Fix- nodules. We have identified two unlinked regulatory loci, exoR and exoS, whose products play negative roles in the regulation of expression of the exo genes. We have recently discovered that R. meliloti has a latent capacity to synthesize a second exopolysaccharide (EPS II) that can substitute for the role(s) of EPS I in nodulation of alfalfa but not of other hosts. Possible roles for Rhizobium exopolysaccharides in nodulation are discussed.  相似文献   

2.
Exopolysaccharide production by Sinorhizobium meliloti is required for invasion of root nodules on alfalfa and successful establishment of a nitrogen-fixing symbiosis between the two partners. S. meliloti wild-type strain Rm1021 requires production of either succinoglycan, a polymer of repeating octasaccharide subunits, or EPS II, an exopolysaccharide of repeating dimer subunits. The reason for the production of two functional exopolysaccharides is not clear. Earlier reports suggested that low-phosphate conditions stimulate the production of EPS II in Rm1021. We found that phosphate concentrations determine which exopolysaccharide is produced by S. meliloti. The low-phosphate conditions normally found in the soil (1 to 10 microM) stimulate EPS II production, while the high-phosphate conditions inside the nodule (20 to 100 mM) block EPS II synthesis and induce the production of succinoglycan. Interestingly, the EPS II produced by S. meliloti in low-phosphate conditions does not allow the invasion of alfalfa nodules. We propose that this invasion phenotype is due to the lack of the active molecular weight fraction of EPS II required for nodule invasion. An analysis of the function of PhoB in this differential exopolysaccharide production is presented.  相似文献   

3.
Genetic experiments have indicated that succinoglycan (EPS I), the acidic Calcofluor-binding exopolysaccharide, of the nitrogen-fixing bacterium Rhizobium meliloti strain Rm1021 is required for nodule invasion and possibly for later events in nodule development on alfalfa and other hosts. Fourteen exo loci on the second megaplasmid have been identified that are required for, or affect, the synthesis of EPS I. Mutations in certain of these loci completely abolish the production of EPS I and result in mutants that form empty Fix- nodules. We have identified two loci, exoR and exoS, that are involved in the regulation of EPS I synthesis in the free-living state. Certain exo mutations which completely abolish EPS I production are lethal in an exoR95 or exoS96 background. Histochemical analyses of the expression of exo genes during nodulation using exo::TnphoA fusions have indicated that the exo genes are expressed most strongly in the invasion zone. In addition, we have discovered that R. meliloti has a latent capacity to synthesize a second exopolysaccharide (EPS II) that can substitute for the role(s) of EPS I in nodulation of alfalfa but not of other hosts. Possible roles for exopolysaccharides in symbiosis are discussed.  相似文献   

4.
5.
J W Reed  M Capage    G C Walker 《Journal of bacteriology》1991,173(12):3776-3788
R. meliloti Rm1021 normally produces an acidic Calcofluor-binding exopolysaccharide, called succinoglycan or EPS I, which is required for successful nodulation of alfalfa by this strain. At least 13 loci affecting production of EPS I were previously mapped to a cluster on the second of two symbiotic megaplasmids in Rm1021, pRmeSU47b. A putative regulatory region was originally defined by the exoG and exoJ mutations. exoG and exoJ mutants produced less exopolysaccharide than wild-type strains and induced nitrogen-fixing nodules on alfalfa with reduced efficiency compared with the wild type. These mutants appeared to produce only a low-molecular-weight form of EPS I. Mutations called exoX cause an increase in exopolysaccharide production and map in the same region as the exoG and exoJ mutations. The DNA sequence of this region reveals that it contains two open reading frames, called exoX and exoY, which have homologs in other Rhizobium species. Interestingly, the exoG insertion mutations fall in an intergenic region and may affect the expression of exoX or exoY. The exoJ mutation falls in the 3' portion of the exoX open reading frame and is probably an allele of exoX that results in altered function. exoG and exoJ mutations limit EPS I production in the presence of exoR95 or exoS96 mutations, which cause overproduction of EPS I. Gene regulation studies suggest that ExoX and ExoY constitute a system that modulates exopolysaccharide synthesis at a posttranslational level. The deduced sequence of ExoY is homologous to a protein required for an early step in xanthan gum biosynthesis, further suggesting that the modulatory system may affect the exopolysaccharide biosynthetic apparatus.  相似文献   

6.
K polysaccharides (KPSs) of Sinorhizobium meliloti strains are strain-specific surface polysaccharides analogous to the group II K antigens of Escherichia coli. The K(R)5 antigen of strain AK631 is a highly polymerized disaccharide of pseudaminic and glucuronic acids. During invasion of host plants, this K antigen is able to replace the structurally different exopolysaccharide succinoglycan (EPS I) and promotes the formation of a nitrogen-fixing (Fix(+)) symbiosis. The KPS of strain Rm1021 is a homopolymer of 3-deoxy-D-manno-2 octulosonic acid (Kdo). The Kdo polysaccharide is covalently linked to the lipid anchor, has a low molecular weight (LMW), and is symbiotically inactive. On introduction of the Rm41-specific rkpZ gene into strain Rm1021, a modified KPS is expressed that is able to substitute EPS I during symbiosis with the host plant. To better understand the nature of modification conferred by rkpZ, we performed a structural analysis of the KPS using nuclear magnetic resonance (NMR), electrospray ionization-mass spectrometry (ESI-MS), and gas chromatography (GC-MS). The modified KPS retained primary polyKdo structure, but its degree of polymerization (DP) and level of production were increased significantly. In contrast to the wild-type polyKdo, only a part of polyKdo was lipidated. Shorter polysaccharide chains were lipid-free, whereas longer polysaccharide chains were lipidated. Sinorhizobium meliloti Rm1021 was found to carry two paralogs of rkpZ. Both genes are involved in polyKdo production, but they only show partial functional activity as compared with the rkpZ of Rm41.  相似文献   

7.
Swarming is a mode of translocation dependent on flagellar activity that allows bacteria to move rapidly across surfaces. In several bacteria, swarming is a phenotype regulated by quorum sensing. It has been reported that the swarming ability of the soil bacterium Sinorhizobium meliloti Rm2011 requires a functional ExpR/Sin quorum-sensing system. However, our previous published results demonstrate that strains Rm1021 and Rm2011, both known to have a disrupted copy of expR, are able to swarm on semisolid minimal medium. In order to clarify these contradictory results, the role played by the LuxR-type regulator ExpR has been reexamined. Results obtained in this work revealed that S. meliloti can move over semisolid surfaces using at least two different types of motility. One type is flagellum-independent surface spreading or sliding, which is positively influenced by a functional expR gene mainly through the production of exopolysaccharide II (EPS II). To a lesser extent, EPS II-deficient strains can also slide on surfaces by a mechanism that is at least dependent on the siderophore rhizobactin 1021. The second type of surface translocation shown by S. meliloti is swarming, which is greatly dependent on flagella and rhizobactin 1021 but does not require ExpR. We have extended our study to demonstrate that the production of normal amounts of succinoglycan (EPS I) does not play a relevant role in surface translocation but that its overproduction facilitates both swarming and sliding motilities.  相似文献   

8.
Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodule formation on roots of alfalfa plants. S. meliloti produces two exopolysaccharides (EPSs), termed EPS I and EPS II, that are both able to promote symbiosis. EPS I and EPS II are secreted in two major fractions that reflect differing degrees of subunit polymerization, designated high- and low-molecular-weight fractions. We reported previously that EPSs are crucial for autoaggregation and biofilm formation in S. meliloti reference strains and isogenic mutants. However, the previous observations were obtained by use of "domesticated" laboratory strains, with mutations resulting from successive passages under unnatural conditions, as has been documented for reference strain Rm1021. In the present study, we analyzed the autoaggregation and biofilm formation abilities of native S. meliloti strains isolated from root nodules of alfalfa plants grown in four regions of Argentina. 16S rRNA gene analysis of all the native isolates revealed a high degree of identity with reference S. meliloti strains. PCR analysis of the expR gene of all the isolates showed that, as in the case of reference strain Rm8530, this gene is not interrupted by an insertion sequence (IS) element. A positive correlation was found between autoaggregation and biofilm formation abilities in these rhizobia, indicating that both processes depend on the same physical adhesive forces. Extracellular complementation experiments using mutants of the native strains showed that autoaggregation was dependent on EPS II production. Our results indicate that a functional EPS II synthetic pathway and its proper regulation are essential for cell-cell interactions and surface attachment of S. meliloti.  相似文献   

9.
Jones KM 《Journal of bacteriology》2012,194(16):4322-4331
The nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 produces acidic symbiotic exopolysaccharides that enable it to initiate and maintain infection thread formation on host legume plants. The exopolysaccharide that is most efficient in mediating this process is succinoglycan (exopolysaccharide I [EPSI]), a polysaccharide composed of octasaccharide repeating units of 1 galactose and 7 glucose residues, modified with succinyl, acetyl, and pyruvyl substituents. Previous studies had shown that S. meliloti 1021 mutants that produce increased levels of succinoglycan, such as exoR mutants, are defective in symbiosis with host plants, leading to the hypothesis that high levels of succinoglycan production might be detrimental to symbiotic development. This study demonstrates that increased succinoglycan production itself is not detrimental to symbiotic development and, in fact, enhances the symbiotic productivity of S. meliloti 1021 with the host plant Medicago truncatula cv. Jemalong A17. Increased succinoglycan production was engineered by overexpression of the exoY gene, which encodes the enzyme responsible for the first step in succinoglycan biosynthesis. These results suggest that the level of symbiotic exopolysaccharide produced by a rhizobial species is one of the factors involved in optimizing the interaction with plant hosts.  相似文献   

10.
Rhizobium meliloti Rm1021 requires a Calcofluor-binding exopolysaccharide, termed succinoglycan or EPS I, to invade alfalfa nodules. We have determined that a strain carrying a mutation in the exoZ locus produces succinoglycan that lacks the acetyl substituent. The exoZ mutant nodules alfalfa normally.  相似文献   

11.
Mutants of Rhizobium meliloti have been isolated which are deficient in exopolysaccharide (EPS) production and effective nodulation of alfalfa (J. A. Leigh, E. R. Signer, and G. C. Walker, Proc. Natl. Acad. Sci. USA 82:6231-6235, 1985). We isolated approximately 100 analogous EPS-deficient (Exo) mutants of the closely related plant pathogen Agrobacterium tumefaciens, including strains whose EPS deficiencies were specifically complemented by each of five cloned R. meliloti exo loci. We also cloned A. tumefaciens genes which complemented EPS defects in three of the R. meliloti Exo mutants. In two of these cases, symbiotic defects were also complemented. All of the A. tumefaciens Exo mutants formed normal crown gall tumors on four different plant hosts, except ExoC mutants, which were nontumorigenic and unable to attach to plant cells in vitro. Like their R. meliloti counterparts, A. tumefaciens Exo mutants were deficient in production of succinoglycan, the major acidic EPS species produced by both genera. A. tumefaciens ExoC mutants also produced extremely low levels of another major EPS, cyclic 1,2-beta-D-glucan. This deficiency has been noted previously in a different set of nontumorigenic, attachment-defective A. tumefaciens mutants.  相似文献   

12.
A fix region of Rhizobium meliloti 41 involved both in symbiotic nodule development and in the adsorption of bacteriophage 16-3 was delimited by directed Tn5 mutagenesis. Mutations in this DNA region were assigned to four complementation units and were mapped close to the pyr-2 and pyr-29 chromosomal markers. Phage inactivation studies with bacterial cell envelope preparations and crude lipopolysaccharides (LPS) as well as preliminary characterization of LPS in the mutants indicated that these genes are involved in the synthesis of a strain-specific LPS. Mutations in this DNA region resulted in a Fix- phenotype in AK631, an exopolysaccharide (EPS)-deficient derivative of R. meliloti 41; however, they did not influence the symbiotic efficiency of the parent strain. An exo region able to restore the EPS production of AK631 was isolated and shown to be homologous to the exoB region of R. meliloti SU47. By generating double mutants, we demonstrated that exo and lps genes determine similar functions in the course of nodule development, suggesting that EPS and LPS may provide equivalent information for the host plant.  相似文献   

13.
Rhizobium sp. strain NGR234 produces large amounts of acidic exopolysaccharide. Mutants that fail to synthesize this exopolysaccharide are also unable to nodulate the host plant Leucaena leucocephala. A hybrid strain of Rhizobium sp. strain NGR234 containing exo genes from Rhizobium meliloti was constructed. The background genetics and nod genes of Rhizobium sp. strain NGR234 are retained, but the cluster of genes involved in exopolysaccharide biosynthesis was deleted. These exo genes were replaced with genes required for the synthesis of succinoglycan exopolysaccharide from R. meliloti. As a result of the genetic manipulation, the ability of these hybrids to synthesize exopolysaccharide was restored, but the structure was that of succinoglycan and not that of Rhizobium sp. strain NGR234. The replacement genes were contained on a cosmid which encoded the entire known R. meliloti exo gene cluster, with the exception of exoB. Cosmids containing smaller portions of this exo gene cluster did not restore exopolysaccharide production. The presence of succinoglycan was indicated by staining with the fluorescent dye Calcofluor, proton nuclear magnetic resonance spectroscopy, and monosaccharide analysis. Although an NGR234 exoY mutant containing the R. meliloti exo genes produced multimers of the succinoglycan repeat unit, as does the wild-type R. meliloti, the deletion mutant of Rhizobium sp. strain NGR234 containing the R. meliloti exo genes produced only the monomer. The deletion mutant therefore appeared to lack a function that affects the multiplicity of succinoglycan produced in the Rhizobium sp. strain NGR234 background. Although these hybrid strains produced succinoglycan, they were still able to induce the development of an organized nodule structure on L. leucocephala. The resulting nodules did not fix nitrogen, but they did contain infection threads and bacteroids within plant cells. This clearly demonstrated that a heterologous acidic exopolysaccharide structure was sufficient to enable nodule development to proceed beyond the developmental barrier imposed on mutants of Rhizobium sp. strain NGR234 that are unable to synthesize any acidic exopolysaccharide.  相似文献   

14.
15.
Sinorhizobium meliloti is a soil bacterium capable of invading and establishing a symbiotic relationship with alfalfa plants. This invasion process requires the synthesis, by S. meliloti, of at least one of the two symbiotically important exopolysaccharides, succinoglycan and EPS II. We have previously shown that the sinRI locus of S. meliloti encodes a quorum-sensing system that plays a role in the symbiotic process. Here we show that the sinRI locus exerts one level of control through regulation of EPS II synthesis. Disruption of the autoinducer synthase gene, sinI, abolished EPS II production as well as the expression of several genes in the exp operon that are responsible for EPS II synthesis. This phenotype was complemented by the addition of acyl homoserine lactone (AHL) extracts from the wild-type strain but not from a sinI mutant, indicating that the sinRI-specified AHLs are required for exp gene expression. This was further confirmed by the observation that synthetic palmitoleyl homoserine lactone (C(16:1)-HL), one of the previously identified sinRI-specified AHLs, specifically restored exp gene expression. Most importantly, the absence of symbiotically active EPS II in a sinI mutant was confirmed in plant nodulation assays, emphasizing the role of quorum sensing in symbiosis.  相似文献   

16.
The rhizobial production of extracellular polysaccharide (EPS) is generally required for the symbiotic infection of host plants that form nodules with an apical meristem (indeterminate nodules). One exception is Rhizobium meliloti AK631, an exoB mutant of Rm41, which is deficient in EPS production yet infects and fixes nitrogen (i.e., is Fix+) on alfalfa, an indeterminate nodule-forming plant. A mutation of lpsZ in AK631 results in a Fix- strain with altered phage sensitivity, suggesting that a cell surface factor may substitute for EPS in the alfalfa-AK631 symbiosis. Biochemical analyses of the cell-associated polysaccharides of AK631 and Rm5830 (AK631 lpsZ) demonstrated that the lpsZ mutation affected the expression of a surface polysaccharide that is analogous to the group II K polysaccharides of Escherichia coli; the polysaccharide contains 3-deoxy-D-manno-2-octulosonic acid or a derivative thereof in each repeating unit. Rm5830 produced a polysaccharide with altered chromatographic and electrophoretic properties, indicating a difference in the molecular weight range. Similar results were obtained in a study of Rm1021, a wild-type isolate that lacks the lpsZ gene: the introduction of lpsZ into Rm1021 exoB (Rm6903) both suppresses the Fix- phenotype and results in a modified expression of the K polysaccharide. Chromatography and electrophoresis analysis showed that the polysaccharide extracted from Rm6903 lpsZ+ differed from that of Rm6903 in molecular weight range. Importantly, the effect of LpsZ is not structurally specific, as the introduction lpsZ+ into Rhizobium fredii USDA257 also resulted in a molecular weight range change in the structurally distinct K polysaccharide produced by that strain. This evidence suggests that LpsZ has a general effect on the size-specific expression of rhizobial K polysaccharides.  相似文献   

17.
exo mutants of Rhizobium meliloti SU47, which fail to secrete acidic extracellular polysaccharide (EPS), induce Fix- nodules on alfalfa. However, mutants of R. meliloti Rm41 carrying the same exo lesions induce normal Fix+ nodules. We show that such induction is due to a gene from strain Rm41, which we call lpsZ+, that is missing in strain SU47. lpsZ+ does not restore EPS production but instead alters the composition and structure of lipopolysaccharide. In both SU47 and Rm41, either lpsZ+ or exo+ is sufficient for normal nodulation. This suggests that in R. meliloti EPS and lipopolysaccharide can perform the same function in nodule development.  相似文献   

18.
The acidic exopolysaccharide (EPS I) produced by Rhizobium meliloti during symbiosis with Medicago sativa has been shown to be required for the proper development of nitrogen-fixing nodules. Cloned DNA from the exo region of R. meliloti is shown to stimulate production of the low-molecular-weight form of this exopolysaccharide, and in this report we show that the symbiotic deficiencies of two exo mutants of R. meliloti, the exoA and exoH mutants, can be rescued by the addition of this low-molecular-weight material at the time of inoculation. For exoA and exoH mutants, rescue with a preparation containing low-molecular-weight exopolysaccharide induces the formation of nitrogen-fixing nodules which appear somewhat later and at a reduced efficiency compared with wild-type-induced nodules; however, microscopic analysis of these nodules reveals similar nodule morphology and the presence of large numbers of bacteroids in each.  相似文献   

19.
The exo loci of Rhizobium meliloti are necessary for the production of an acidic exopolysaccharide, EPS I, that is needed for alfalfa nodule invasion by strain Rm1021. We have isolated and characterized alkaline phosphatase fusions made with TnphoA in several exo loci of R. meliloti and used these fusions to examine the subcellular localization of exo gene products and the regulation of exo genes in free-living cells and in planta. In the course of this work, we isolated a new exo locus, exoT. We have obtained evidence that several of the exo loci may encode membrane proteins. The activity of TnphoA fusions in several exo loci is increased two- to fivefold in the presence of the regulatory mutations exoR95 and exoS96. While examining the regulation of the exo gens by exoR95 and exoS96, we found that certain classes of exo mutations are lethal in an exoR95 or exoS96 background unless a plasmid complementing the exo mutation is present. This result has possible implications for the role of these exo loci in EPS I biosynthesis. We have developed a method for staining nodules specifically for the alkaline phosphatase activity present in the inducing bacteria and used this method to show that an exoF::TnphoA fusion is expressed mainly in the invasion zone of the nodule.  相似文献   

20.
A reduced exopolysaccharide phenotype is associated with inability to synthesize polyhydroxyalkanaote (PHA) stores in Sinorhizobium meliloti strain Rm1021. Loss of function mutations in phbB and phbC result in non-mucoid colony morphology on Yeast Mannitol Agar, compared to the mucoid phenotype exhibited by the parental strain. This phenotype is attributed to reduction in succinoglycan synthesis. We have used complementation of this phenotype and the previously described D-3-hydroxybutyrate/acetoacetate utilization phenotype to isolate a heterologous clone containing a Bradyrhizobium japonicum phbC gene. Sequence analysis confirmed that this clone contains one of the five predicted phbC genes in the B. japonicum genome. The described phenotypic complementation strategy should be useful for isolation of novel PHA synthesis genes of diverse origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号