首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annual patterns of mildew on winter and spring barley, wheat and oats at NIAB trial sites for 1958-68 are reported. High intensities of mildew were preceded by early infections, particularly at sites where both winter and spring crops were infected early. Relative earliness and severity of infections in all six crops of cereals were generally similar at any site. This pattern was repeated within denned mildew ‘regions’, i.e. north, east and west. Sprowston (Norfolk) was atypical of the eastern sites, showing patterns of mildew infection more characteristic of sites in the west, where mildew values were 50 % higher than elsewhere. Dates of first visible infection became later further eastwards and northwards, particularly in winter cereals. This suggested the possibility of dispersal of inoculum by prevailing winds to the north, north-east and east, or a similar progression in climatic factors favourable to mildew development. Estimates of loss of potential yield in the trial plots of sites in each region and over the whole country were calculated for winter wheat, spring barley and spring oats using the formulae of Large and Doling, for which supplementary confirmation was provided.  相似文献   

2.
Samples from 200–400 randomly selected winter barley crops were taken annually at growth stage 71–73 from 1981 to 1991, with the exception of 1984 and 1985. The number of samples from each region was proportional to the area of barley growth in each region. The percentage of the area of the top two leaves affected by diseases and the severity of stem base diseases were recorded. Mildew (Erysiphe graminis) was the most widespread of the foliar diseases and in three years (1982, 1986 and 1991) was also the most severe. Rhynchosporium (Rhynchosporium secalis), net blotch (Pyrenophora teres) and brown rust (Puc-cinia hordei) were also prevalent in some years. Of the stem base diseases, fusarium was often the most widespread. Eyespot (Pseudocercosporella her-potrichoides) severity varied widely from year to year ranging from 1.2% of stems affected by moderate or severe symptoms in 1982 to 24.1% in 1988. There were regional differences in the severity of mildew, rhynchosporium, brown rust, halo spot (Selenophoma donacis) and eyespot. Cultivar resistance affected disease severity and previous cropping affected eyespot and less frequently mildew, rhynchosporium and net blotch. Eyespot, and to a lesser extent, sharp eyespot, were less severe in late- than in early-sown crops. The percentage of crops treated with a fungicidal spray increased from 72% in 1981 to 95% in 1991. The use of benzimidazole fungicides for the control of eyespot declined in response to the development of resistance, and more recently the use of prochlo-raz also declined. Broad spectrum DMI fungicides were widely used, and the use of morpholines to improve mildew control increased significantly. The proportion of crops grown from seed treated with a non-mercurial fungicidal seed dressing reached a peak of 47% in 1986 but subsequently declined to 22% in 1990 and 1991.  相似文献   

3.
Samples from 200–300 randomly selected spring barley crops were taken annually at growth stage 73–77 (milky ripe) from 1976 to 1980. The number of samples from each region was proportional to the area of barley grown in each region. The percentage of the area of the top two leaves affected by diseases was recorded. Mildew (Erysiphe graminis) was the most widespread and severe disease recorded. Brown rust (Puccinia hordei) and rhynchosporium (Rhyn-chosporium secalis) occurred frequently but at relatively low levels. Yellow rust {Puccinia striiformis) and septoria (Septoria nodorum) were seen on less than 50% of the samples in most years, and halo spot (Selenophoma donacis) and net blotch (Pyrenophora teres) were rarely recorded. There was an association between the severity of rhynchosporium and the number of rain days in May and June. The highest levels of brown rust occurred in the south and east and rhynchosporium was more common in Wales and the south-west than in the east, but there were no differences in the regional distribution of other diseases. Cultivar resistance, sowing date, previous cropping and fungicide usage were all found to be associated with altered disease levels. The proportion of crops treated with a foliar fungicidal spray rose from 26% in 1976 to 47% in 1980. The use of tridemorph declined but that of triadimefon increased reaching 29% of crops treated by 1980. The use of ethirimol as a seed treatment declined from 16% of crops grown from treated seed in 1976 to 7% in 1980. Estimated yield losses between 1976 and 1980 varied between 4% and 9% due to mildew, between 0.3% and 0.8% due to brown rust and between 0.2% and 0.5% due to rhynchosporium.  相似文献   

4.
The aims of this investigation have been to map new (quantitative) resistance genes against powdery mildew, caused by Blumeria graminis f.sp. hordei L., and leaf rust, caused by Puccinia hordei L., in a cross between the barley ( Hordeum vulgare ssp. vulgare) cultivar "Vada" and the wild barley ( Hordeum vulgare ssp. spontaneum) line "1B-87" originating from Israel. The population consisted of 121 recombinant inbred lines. Resistance against leaf rust and powdery mildew was tested on detached leaves. The leaf rust isolate "I-80" and the powdery mildew isolate "Va-4", respectively, were used for the infection in this experiment. Moreover, powdery mildew disease severity was observed in the field at two different epidemic stages. In addition to other DNA markers, the map included 13 RGA (resistance gene analog) loci. The structure of the data demanded a non-parametric QTL-analysis. For each of the four observations, two QTLs with very high significance were localised. QTLs for resistance against powdery mildew were detected on chromosome 1H, 2H, 3H, 4H and 7H. QTLs for resistance against leaf rust were localised on 2H and 6H. Only one QTL was common for two of the powdery mildew related traits. Three of the seven QTLs were localised at the positions of the RGA-loci. Three of the five powdery mildew related QTLs are sharing their chromosomal position with known qualitative resistance genes. All detected QTLs behaved additively. Possible sources of the distorted segregation observed, the differences between the results for the different powdery mildew related traits and the relation between qualitative and quantitative resistance are discussed.  相似文献   

5.
Hordeum chilense is a South American wild barley with high potential for cereal breeding given its high crossability with other members of the Triticeae. In the present paper we consider the resistance of H. chilense to several fungal diseases and the prospects for its transference to cultivated cereals. All H. chilense accessions studied are resistant to the barley, wheat and rye brown rusts, the powdery mildews of wheat, barley, rye and oat, to Septoria leaf blotch, common bunt and to loose smuts, which suggests that H. chilense is a non-host of these diseases. There are also lines resistant to wheat and barley yellow rust, stem rust and to Agropyron leaf rust, as well as lines giving moderate levels of resistance to Septoria glume blotch, tan spot and Fusarium head blight. Some H. chilense lines display pre-appressorial avoidance to brown rust. Lines differ in the degree of haustorium formation by rust and mildew fungi they permit, and in the degree to which a hypersensitive response occurs after haustoria are formed. Unfortunately, resistance of H. chilense to rust fungi is not expressed in tritordeum hybrids, nor in chromosome addition lines in wheat. In tritordeum, H. chilense contributes quantitative resistance to wheat powdery mildew, tan spot and loose smut. The resistance to mildew, expressed as a reduced disease severity, is not associated with macroscopically visible necrosis. Hexaploid tritordeums are immune to Septoria leaf blotch and to common bunt although resistance to both is slightly diluted in octoploid tritordeums. Studies with addition lines in wheat indicate that the resistance of H. chilense to powdery mildew, Septoria leaf blotch and common bunt is of broad genetic basis, conferred by genes present on various chromosomes.  相似文献   

6.
The objective of this study was to map new resistance genes against powdery mildew (Blumeria graminis f. sp. hordei L.), leaf rust (Puccinia hordei L.) and scald [Rhynchosporium secalis (Oud.) J. Davis] in the advanced backcross doubled haploid (BC2DH) population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). Using field data of disease severity recorded in eight environments under natural infestation and genotype data of 98 SSR loci, we detected nine QTL for powdery mildew, six QTL for leaf rust resistance and three QTL for scald resistance. The presence of the exotic QTL alleles reduced disease symptoms by a maximum of 51.5, 37.6 and 16.5% for powdery mildew, leaf rust and scald, respectively. Some of the detected QTL may correspond to previously identified qualitative (i.e. Mla) and to quantitative resistance genes. Others may be newly identified resistance genes. For the majority of resistance QTL (61.0%) the wild barley contributed the favourable allele demonstrating the usefulness of wild barley in the quest for resistant cultivars.  相似文献   

7.
Fourteen Bacillus thuringiensis isolates having both insecticidal activity and in vitro antifungal activity were selected and tested for in vivo antifungal activity against tomato late blight, wheat leaf rust, tomato gray mold, and barley powdery mildew in growth chambers. All the isolates represented more than 70% disease control efficacy against at least one of four plant diseases. Specifically, 12 isolates exhibited strong control activity against barley powdery mildew. Under glasshouse conditions, four (50-02, 52-08, 52-16, and 52- 18) of the isolates also displayed potent control efficacy against cucumber powdery mildew. To our knowledge, this is the first report of B. thuringiensis isolates that have disease control efficacy against powdery mildew of barley and cucumber as well as insecticidal activity.  相似文献   

8.
Arbuscular mycorrhizal barley-plants were more susceptible to the obligate biotrophic shoot pathogen Erysiphe graminis f. sp. hordei. In experiments under greenhouse and open-air conditions on leaves of mycorrhizal plants, the sporulation rate of the mildew fungus was more than twice that on control plants. However, mycorrhizal plants suffered less than non-mycorrhizal plants in terms of grain number, ear yield and thousand-grain weight. Disease-yield-relationship analysis showed that the symbiosis neutralised the positive correlation between disease severity and yield loss (up to 25% infected leaf area tested). After mildew infection, nitrogen in ears of non-mycorrhizal barley was higher because of an impaired starch accumulation during grain filling. In mycorrhizal plants, leaf disease did not impair either the quantity or quality of grain yield. This improved compensation in mycorrhizal plants was related to maintained photosynthetic capacity and a delay in pathogen-induced senescence. Thus filling of long-term storage pools (fructans in internodes) and consequently reallocation of these reserves during grain filling was improved. The results suggest that higher availability of energy and material during grain formation, together with longer physiological activity, were the basis of yield maintenance and, therefore, expression of mycorrhiza-induced tolerance towards the pathogen.  相似文献   

9.
In three separate experiments, the upper leaf surface of the fifth formed leaf of wheat cv. Highbury, the fourth and fifth leaves of barley cv. Julia and the third and fourth leaves of oat cv. Mostyn were inoculated in a spore settling tower with wheat brown rust (Puccinia recondita f. sp. tritici), barley brown rust (P. hordei) or oat crown rust (P. coronata f. sp. avenae), respectively. Fewer pustules developed on distal portions of leaves of plants infected with barley yellow dwarf virus (BYDV) than on similar portions of leaves from virus-free plants. There were no significant differences in the number of pustules on proximal leaf portions. In barley and oats, the number of pustules on distal leaf portions was negatively correlated with the amount of yellowing of the leaf areas scored. In wheat, symptoms of BYDV were mild and leaves were little affected by yellowing. The latent period of rust on wheat and oats was not affected by BYDV. In barley, BYDV reduced the latent period of rust on leaf 5, but not on leaf 4, and reduced it on proximal, but not distal, leaf portions. In other experiments, BYDV reduced the yield of wheat and oats by 44% and 66%, respectively, while BYDV-infected barley was almost sterile. The appropriate rust reduced the yield of wheat, barley and oats by 33%, 13% and 86%, respectively. When infected with both BYDV and rust, yield of wheat and oats was reduced by 63% and 91%, respectively. Neither BYDV nor rust affected the percentage crude protein content of wheat grain, nor did rust affect that of barley. In oats, BYDV and rust each significantly increased crude protein of grain, but rust infection of BYDV-infected plants tended to reduce it.  相似文献   

10.
A set of 59 spring barley introgression lines (ILs) was developed from the advanced backcross population S42. The ILs were generated by three rounds of backcrossing, two to four subsequent selfings, and, in parallel, marker-assisted selection. Each line includes a single marker-defined chromosomal segment of the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is derived from the elite barley cultivar Scarlett (H. vulgare ssp. vulgare). Based on a map containing 98 SSR markers, the IL set covers so far 86.6% (1041.5 cM) of the donor genome. Each single line contains an average exotic introgression of 39.2 cM, representing 3.2% of the exotic genome. The utility of the developed IL set is illustrated by verification of QTLs controlling resistance to powdery mildew (Blumeria graminis f. sp. hordei L.) and leaf rust (Puccinia hordei L.) which were previously identified in the advanced backcross population S42. Altogether 57.1 and 75.0% of QTLs conferring resistance to powdery mildew and leaf rust, respectively, were verified by ILs. The strongest favorable effects were mapped to regions 1H, 0–85 cM and 4H, 125–170 cM, where susceptibility to powdery mildew and leaf rust was decreased by 66.1 and 34.7%, respectively, compared to the recurrent parent. In addition, three and one new QTLs were localized, respectively. A co-localization of two favorable QTLs was identified for line S42IL-138, which holds an introgressed segment in region 7H, 166–181. Here, a reduction effect was revealed for powdery mildew as well as for leaf rust severity. This line might be a valuable resource for transferring new resistance alleles into elite cultivars. In future, we aim to cover the complete exotic genome by selecting additional ILs. We intend to conduct further phenotype studies with the IL set in regard to the trait complexes agronomic performance, malting quality, biotic stress, and abiotic stress.  相似文献   

11.
Delaying the date of sowing of spring-sown barley in 1953 and wheat in 1954 from February to April increased the incidence of powdery mildew, Erysiphe graminis DC., from May onwards. Before then, conditions did not favour the rapid spread of mildew.
From mid-June, infected barley produced necrotic lesions. These developed sooner on the early- than on the late-sown crops, and on the lower than upper leaves. Perithecia were first seen on 29 June. They were abundant on the wheat by 20 July.
Mildew reduced the yield of barley sown on 30 March and 28 April 1955 by 8 cwt./acre. The percentage loss was greater in the late- than in the early-sown crops. The number of ears per metre of row, the weight of 100 ears and the 1000-grain weights were reduced. Altering the seed rate from 1 ½ to 2½ bushels/acre did not affect the incidence, or the effect, of mildew on grain yield.  相似文献   

12.
The relationship between yield loss and disease severity can differ widely between crops. This has given rise to the concept of disease tolerance, with some crops exhibiting a smaller yield loss under a given severity of disease than others. Genetic improvement to minimise yield loss under disease is an attractive goal, as it exerts little or no selection pressure on pathogen populations, and could form a useful component of durable disease management programmes. However, progress towards this end requires a thorough understanding of the phenotypic traits that influence the response of yield to disease, their genetic control and the possible trade-offs involved with other desirable agronomic characteristics. This paper examines the candidate crop traits that may confer tolerance of foliar disease in wheat and barley and reviews evidence of genetic variation in their expression. In wheat grown under the relatively low light conditions of North-West Europe, post-anthesis source (assimilate supply) and grain sink capacity (capacity for dry matter accumulation) appear to be closely balanced. Traits associated with maintaining post-anthesis radiation interception and radiation use efficiency in spite of disease may confer tolerance. The most promising traits include a larger flag leaf and compensatory increases in photosynthetic rate in non-infected parts of leaves. In barley, yield is often more strongly sink limited, and early-season disease management is required to protect the formation of potential grain sites. A wider range of potential traits may influence tolerance including compensatory adjustments in leaf growth and morphology, and differences in the sensitivity of tiller and spikelet mortality to photoassimilate supply. Different methods for quantifying tolerance are suggested depending on the trait of interest.  相似文献   

13.
Information on disease severity assists greatly with making decisions about crop protection systems. However, there are no published long‐term field trials in different locations to determine the severity of individual diseases. National trials that relate to the agronomic traits of varieties, including disease responses, are available. The current article describes the use of such data to determine disease severity based on official Czech variety trials. In total, 838 and 334 field trials of spring and winter barley, respectively, conducted from 1976 to 2005, were analysed. To compare year to year powdery mildew severity, five parameters were used. Annual disease severity in both crops differed substantially, whereas similarity of the disease severity was rare. During the last 15 years, disease severity in spring barley was stable despite a rapid increase in the area of fully resistant spring barley varieties, particularly those with the gene mlo. During the period 1976–2005, the mean disease severity in winter barley accounted for 64.1% of the mean disease severity in spring barley. The effect of deployment of the resistance genes and growing areas of winter barley on the determined disease severity was analysed. The method described here allows easy comparisons to be made of disease severity among years, locations and different crops and diseases if similar scoring scales for disease infection evaluation are used.  相似文献   

14.
Rubiales D  Ramirez MC  Carver TL  Niks RE 《Hereditas》2001,135(2-3):271-276
The barley leaf rust fungus forms appressoria over host leaf stomata and penetrates via the stomatal pore. High levels of avoidance to leaf rust fungi have been described in some wild accessions of Hordeum species where a prominent wax layer on the stomata inhibits triggering of fungal appressorium differentiation. Leaf rust avoidance has not yet been found in H. vulgare. Since cuticular leaf waxes are implicated in the avoidance trait, we screened 27 eceriferum (cer) mutant lines of H. vulgare for avoidance to barley leaf rust. These mutations affect leaf waxes. Reduction in numbers of germ tubes forming appressoria over stomata was found in some lines, but the greatest reduction (ca 30%) was less than previously found in wild barley spp. or in an accession of H. chilense used here as a check. In one line (cer-zh654), avoidance was due to a combination of factors. Firstly, fewer germ tubes oriented towards stomata and so failed to contact them. Secondly, some germ tubes that encountered stomata did not form appressoria but over-grew them. In this line, therefore, the fungus tended to fail both to locate and to respond to stomata. The appressoria of barley powdery mildew form on leaf epidermal cells that they penetrate directly. On certain cer lines, a proportion of germlings of the barley powdery mildew fungus developed abnormally, suggesting that germlings failed to recognise and/or respond to the leaf surface waxes on these mutants.  相似文献   

15.
Bancal MO  Robert C  Ney B 《Annals of botany》2007,100(4):777-789
BACKGROUND AND AIMS: Crop protection strategies, based on preventing quantitative crop losses rather than pest outbreaks, are being developed as a promising way to reduce fungicide use. The Bastiaans' model was applied to winter wheat crops (Triticum aestivum) affected by leaf rust (Puccinia triticina) and Septoria tritici blotch (STB; Mycosphaerella graminicola) under a range of crop management conditions. This study examined (a) whether green leaf area per layer accurately accounts for growth loss; and (b) whether from growth loss it is possible to derive yield loss accurately and simply. Methods Over 5 years of field experiments, numerous green leaf area dynamics were analysed during the post-anthesis period on wheat crops using natural aerial epidemics of leaf rust and STB. Key Results When radiation use efficiency (RUE) was derived from bulk green leaf area index (GLAI), RUE(bulk) was hardly accurate and exhibited large variations among diseased wheat crops, thus extending outside the biological range. In contrast, when RUE was derived from GLAI loss per layer, RUE(layer) was a more accurate calculation and fell within the biological range. In one situation out of 13, no significant shift in the RUE(layer) of diseased crops vs. healthy crops was observed. A single linear relationship linked yield to post-anthesis accumulated growth for all treatments. Its slope, not different from 1, suggests that the allocation of post-anthesis photosynthates to grains was not affected by the late occurring diseases under study. The mobilization of pre-anthesis reserves completely accounted for the intercept value. Conclusions The results strongly suggest that a simple model based on green leaf area per layer and pre-anthesis reserves can predict both growth and yield of wheat suffering from late epidemics of foliar diseases over a range of crop practices. It could help in better understanding how crop structure and reserve management contribute to tolerance of wheat genotypes to leaf diseases.  相似文献   

16.
Field experiments showed that the treatment of winter barley with microbial metabolites produced by a Bacillus subtilis strain led to increased yields in spite of a remaining mildew infection. Disease severity/yield relations obtained on a single tiller basis for either mildew infection at EC 75 or area under disease progress curve (AUDPC) were negatively correlated for untreated plants (R2= 89%, 94%) while this relation did not exist for inducer-treated ones (R2= 10%, 13%). Despite an increasing infection density. yields of main tillers of inducertreated plants were not decreased. On the other hand area under green leaf area curve (AUGLAC) showed a higher correlation with grain yield (R2= 89%) of inducer-treated plants. Possible explanations for the mitigated damaging effect of powdery mildew were expected in carbohydrate metabolism. especially carbohydrate formation and translocation. Assimilation rates of flag leaves of inducer-treated barley with similar infection densities to those of untreated plants were increased over a prolonged period and even exceeded those of non infected ones. In inducer-treated plants the export of 14CO2 from flag leaves into ears remained unimpaired by mildew infection and the allocation of assimilates to grains was highest at late stages of grain filling. Obviously plants were stimulated by inducer treatments to compensate for the damaging effect of powdery mildew and to tolerate mildew infection without yield loss.  相似文献   

17.
We used a well-characterized barley mapping population (BCD 47 × Baronesse) to determine if barley stripe rust (BSR) resistance quantitative trait loci (QTL) mapped in Mexico and the USA were effective against a reported new race in Peru. Essentially the same resistance QTL were detected using data from each of the three environments, indicating that these resistance alleles are effective against the spectrum of naturally occurring races at these sites. In addition to the mapping population, we evaluated a germplasm array consisting of lines with different numbers of mapped BSR resistance alleles. A higher BSR disease severity on CI10587, which has a single qualitative resistance gene, in Peru versus Mexico suggests there are differences in pathogen virulence between the two locations. Confirmation of a new race in Peru will require characterization using a standard set of differentials, an experiment that is underway. The highest levels of resistance in Peru were observed when the qualitative resistance gene was pyramided with quantitative resistance alleles. We also used the mapping population to locate QTL conferring resistance to barley leaf rust and barley powdery mildew. For mildew, we identified resistance QTL under field conditions in Peru that are distinct from the Mla resistance that we mapped using specific isolates under controlled conditions. These results demonstrate the long-term utility of a reference mapping population and a well-characterized germplasm array for locating and validating genes conferring quantitative and qualitative resistance to multiple pathogens.  相似文献   

18.
In 1980 the relationships between mildew severity, green leaf area (GLA) and grain yield of spring barley were examined using greenhouse-grown plants and plants grown in micro-plots in the field. Mildew, by causing premature senescence, reduced GLA and grain yield was strongly correlated with GLA integrated from growth stages 2–10.5 on the Feekes scale. Early mildew attack reduced all yield components (including grain size) even when fungicidal control had eliminated mildew by anthesis. Analyses of culms at anthesis and harvest supported the view that the smaller grain size associated with early mildew attack resulted from a deficiency in carbohydrate stored in culms before anthesis and available for retranslocation to the developing grain. Amounts of total soluble carbohydrate at anthesis and the amounts lost beween anthesis and harvest were both strongly correlated with GLA up to anthesis.  相似文献   

19.
Abstract:  Limothrips denticornis is a common thrips infesting rye, triticale and winter barley in Sweden. Field experiments with insecticides were carried out 1983–1996 in farmers' fields to investigate the damage to the plant and to evaluate the relationship between thrips density and crop yield losses. The total number of experiments was 99 in rye, 41 in triticale and nine in winter barley. The mean number of thrips per leaf sheath was around 8 in all three crops. The highest number found was 27 thrips per leaf sheath. The population density in the leaf sheath was correlated with the damage observed on the leaf sheath as percentage damaged surface. The effect on the leaf sheath alone contributed to a significant proportion of the yield loss. Thrips in the ear and aphids also contributed to the damage but with multiple regression methods it was possible to estimate the damage done solely by L. denticornis . The yield loss caused by L. denticornis was about the same in all three crops, with a variation between 21 and 26 kg per thrips per leaf sheath and hectare. Compared with the yield loss for aphids, which is about 40 kg per aphid per tiller and hectare, this is considerably lower. The economic injury level was found to be about 14 thrips per straw. The economic threshold for L. denticornis has to be decided when the females are flying into the crop and it was found to be 0.5 females per straw at earing. Economic damage by L. denticornis alone was estimated to be 20% of the total number of experiments for all three crops but economic damage for the three pests together was estimated at 40% of the total number of experiments.  相似文献   

20.
To study genome evolution and diversity in barley (Hordeum vulgare), we have sequenced and compared more than 300 kb of sequence spanning the Rph7 leaf rust disease resistance gene in two barley cultivars. Colinearity was restricted to five genic and two intergenic regions representing <35% of the two sequences. In each interval separating the seven conserved regions, the number and type of repetitive elements were completely different between the two homologous sequences, and a single gene was absent in one cultivar. In both cultivars, the nonconserved regions consisted of approximately 53% repetitive sequences mainly represented by long-terminal repeat retrotransposons that have inserted <1 million years ago. PCR-based analysis of intergenic regions at the Rph7 locus and at three other independent loci in 41 H. vulgare lines indicated large haplotype variability in the cultivated barley gene pool. Together, our data indicate rapid and recent divergence at homologous loci in the genome of H. vulgare, possibly providing the molecular mechanism for the generation of high diversity in the barley gene pool. Finally, comparative analysis of the gene composition in barley, wheat (Triticum aestivum), rice (Oryza sativa), and sorghum (Sorghum bicolor) suggested massive gene movements at the Rph7 locus in the Triticeae lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号