首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of an arbuscular mycorrhizal (AM) fungus between soil and roots, and between mycelial and storage structures, was studied by use of the fatty acid signature 16:1(omega)5. Increasing the soil phosphorus level resulted in a decrease in the level of the fatty acid 16:1(omega)5 in the soil and roots. A similar decrease was detected by microscopic measurements of root colonization and of the length of AM fungal hyphae in the soil. The fatty acid 16:1(omega)5 was estimated from two types of lipids, phospholipids and neutral lipids, which mainly represent membrane lipids and storage lipids, respectively. The numbers of spores of the AM fungus formed in the soil correlated most closely with neutral lipid fatty acid 16:1(omega)5, whereas the hyphal length in the soil correlated most closely with phospholipid fatty acid 16:1(omega)5. The fungal neutral lipid/phospholipid ratio in the extraradical mycelium was positively correlated with the level of root infection and thus decreased with increasing applications of P. The neutral lipid/phospholipid ratio indicated that at high P levels, less carbon was allocated to storage structures. At all levels of P applied, the major part of the AM fungus was found to be present outside the roots, as estimated from phospholipid fatty acid 16:1(omega)5. The ratio of extraradical biomass/intraradical biomass was not affected by the application of P, except for a decrease at the highest level of P applied.  相似文献   

2.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1omega5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1omega5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1omega5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

3.
Soil biological studies are often conducted on sieved soils without the presence of plants. However, soil fungi build delicate mycelial networks, often symbiotically associated with plant roots (mycorrhizal fungi). We hypothesized that as a result of sieving and incubating without plants, the total fungal biomass decreases. To test this, we conducted three incubation experiments. We expected total and arbuscular mycorrhizal (AM) fungal biomass to be higher in less fertilized soils than in fertilized soils, and thus to decrease more during incubation. Indeed, we found that fungal biomass decreased rapidly in the less fertilized soils. A shift towards thicker hyphae occurred, and the fraction of septate hyphae increased. However, analyses of phospholipid fatty acids (PLFAs) and neutral lipid fatty acids could not clarify which fungal groups were decreasing. We propose that in our soils, there was a fraction of fungal biomass that was sensitive to fertilization and disturbance (sieving, followed by incubation without plants) with a very high turnover (possibly composed of fine hyphae of AM and saprotrophic fungi), and a fraction that was much less vulnerable with a low turnover (composed of saprotrophic fungi and runner hyphae of AMF). Furthermore, PLFAs might not be as sensitive in detecting changes in fungal biomass as previously thought.  相似文献   

4.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1ω5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1ω5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1ω5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

5.
The abundance of microbes in soil is thought to be strongly influenced by plant productivity rather than by plant species richness per se. However, whether this holds true for different microbial groups and under different soil conditions is unresolved. We tested how plant species richness, identity and biomass influence the abundances of arbuscular mycorrhizal fungi (AMF), saprophytic bacteria and fungi, and actinomycetes, in model plant communities in soil of low and high fertility using phospholipid fatty acid analysis. Abundances of saprophytic fungi and bacteria were driven by larger plant biomass in high diversity treatments. In contrast, increased AMF abundance with larger plant species richness was not explained by plant biomass, but responded to plant species identity and was stimulated by Anthoxantum odoratum. Our results indicate that the abundance of saprophytic soil microbes is influenced more by resource quantity, as driven by plant production, while AMF respond more strongly to resource composition, driven by variation in plant species richness and identity. This suggests that AMF abundance in soil is more sensitive to changes in plant species diversity per se and plant species composition than are abundances of saprophytic microbes.  相似文献   

6.
The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1omega5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating (13)C enrichment of 16:1omega5 and compared it with (13)C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [(13)C]glucose. The (13)C enrichment of neutral lipid fatty acid 16:1omega5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for (13)C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1omega5 than for the root specific neutral lipid fatty acid 18:2omega6,9. We labeled plant assimilates by using (13)CO(2) in whole-plant experiments. The extraradical mycelium often was more enriched for (13)C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between (13)C enrichment in neutral lipid fatty acid 16:1omega5 and total (13)C in extraradical mycelia in different systems (r(2) = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the (13)C enrichment of 16:1omega5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.  相似文献   

7.
Effects of long-term mineral fertilization and manuring on the biomass of arbuscular mycorrhizal fungi (AMF) were studied in a field experiment. Mineral fertilization reduced the growth of AMF, as estimated using both measurements of hyphal length and the signature fatty acid 16:1ω5, whereas manuring alone increased the growth of AMF. The results of AMF root colonization followed the same pattern as AMF hyphal length in soil samples, but not AMF spore densities, which increased with increasing mineral and organic fertilization. AMF spore counts and concentration of 16:1ω5 in soil did not correlate positively, suggesting that a significant portion of spores found in soil samples was dead. AMF hyphal length was not correlated with whole cell fatty acid (WCFA) 18:2ω6,9 levels, a biomarker of saprotrophic fungi, indicating that visual measurements of the AMF mycelium were not distorted by erroneous involvement of hyphae of saprotrophs. Our observations indicate that the measurement of WCFAs in soil is a useful research tool for providing information in the characterization of soil microflora.  相似文献   

8.
Increased nitrogen (N) deposition caused by human activities has altered ecosystem functioning and biodiversity. To understand the effects of altered N availability, we measured the abundance of arbuscular mycorrhizal fungi (AMF) and the microbial community in northern hardwood forests exposed to long-term (12 years) simulated N deposition (30 kg N ha−1 y−1) using phospholipid fatty acid (PLFA) analysis and hyphal in-growth bags. Intra- and extraradical AMF biomass and total microbial biomass were significantly decreased by simulated N deposition by 36, 41, and 24%, respectively. Both methods of extraradical AMF biomass estimation (soil PLFA 16:1ω5c and hyphal in-growth bags) showed comparable treatment responses, and extraradical biomass represented the majority of total (intra-plus extraradical) AMF biomass. N deposition also significantly affected the microbial community structure, leading to a 10% decrease in fungal to bacterial biomass ratios. Our observed decline in AMF and total microbial biomass together with changes in microbial community structure could have substantial impacts on the nutrient and carbon cycling within northern hardwood forest ecosystems.  相似文献   

9.
Arbuscular mycorrhizal fungi (AMF) play a key role in the maintenance of the balance of terrestrial ecosystems, but little is known about the biogeography of these fungi, especially on tropical islands. This study aims to compare AMF community structure along a transect crossing a fluvial-marine island and relate these communities with soil and vegetation parameters to shed light on the forces driving AMF community structure on a local scale. We tested the hypothesis that the composition of AMF communities changes across the island, even within short distances among sites, in response to differences in edaphic characteristics and vegetation physiognomies. We sampled roots and soils in five different natural and degraded habitats: preserved mangrove forest (MF), degraded mangrove forest (MD), natural Restinga forest (RF), and two regeneration Restinga forests (RR1 and RR2) on Ilha da Restinga, northeastern Brazil. We determined the mycorrhizal colonization rate and AMF community structure based on morphological spore identification. The island soils were sandy with pH varying from acid to neutral; higher levels of organic matter were registered in RF and lower in MF; other chemical and physical soil attributes differed along the habitat types on the island. In total, 22 AMF species were identified, without any difference in species richness. However, the diversity and composition of AMF communities, spore abundance per families, and mycorrhizal colonization were statistically different among the habitats. The composition of AMF communities was strongly related to soil characteristics, especially the sum of exchangeable bases. Our results indicate that the different habitat types have diverse AMF communities even within short distances among habitats. In conclusion, islands with high spatial heterogeneity in soil parameters and diverse vegetation are potential refuges for the diversity conservation of AM fungi.  相似文献   

10.
丛枝菌根真菌参与下植物-土壤系统的养分交流及调控   总被引:8,自引:0,他引:8  
韦莉莉  卢昌熠  丁晶  俞慎 《生态学报》2016,36(14):4233-4243
近几年随着有机农业的发展,丛枝菌根的作用受到特别关注。丛枝菌根是由植物根系与丛枝菌根真菌(AMF)形成的一种共生体。在植物-AMF-土壤系统中,AMF为植物提供N、P等营养的同时从根系得到所需的C。概述了植物-AMF-土壤系统中C、N、P等营养物质的交流以及AMF与土壤微生物的互作关系。丛枝菌根的形成可显著提高植物对P的吸收,且在高P条件下多余的P可储存于AMF中。AMF对土壤N循环的影响相当复杂,可能参与调控N循环的多个过程,如硝化作用、反硝化作用和氨氧化作用等。在有机质丰富的土壤中AMF菌丝可快速扩增并吸收其中的N,主要供菌丝自身所需,只有一小部分传递给植物。AMF对土壤C库的影响尚存争议,可能存在时间尺度的差异。短期内可活化土壤C,而在长期尺度上可能有利于土壤C的储存。AMF能够通过改变土壤微生物群落结构而影响植物-土壤体系的物质交流。AMF与解磷菌、根瘤菌和放线菌的协同增效作用可促进土壤有机质的降解或增强其固氮能力;AMF对氨氧化菌的抑制作用可降低氨的氧化减少N2O的释放。AMF与外生共生真菌EMF共存时,表现出协同增效作用,但EMF的优先定殖会限制AMF的侵染。AMF不同类群之间则主要表现为竞争和拮抗关系。AMF与土壤微生物之间的互作关系受土壤无机环境的影响,在养分亏缺条件下微生物之间往往表现为竞争关系。因植物、AMF与土壤微生物之间存在复杂的互作关系,为此AMF并不总是表现出其对植物营养的促进作用。目前关于AMF的作用机理仍以假说为主,需要进一步的实验验证。在植物-AMF-土壤系统中N与C的交流和P与C的交流并未表现出一致性,对N、P循环相互关系的进一步探讨有助于深入理解植物-土壤体系中的养分循环。植物、AMF和土壤微生物的养分来源及其对养分的相对需求强度和吸收效率尚未可知,因此无法深入理解AMF在植物-土壤体系中养分交流和转化的作用。在方法上,传统的土壤学方法在养分动态研究中存在局限性,现代分子生物学手段和化学计量学的结合值得尝试。  相似文献   

11.
We examined the response of mycorrhizal fungi to free-air CO2 enrichment (FACE) and nitrogen (N) fertilization in a warm temperate forest to better understand potential influences over plant nutrient uptake and soil carbon (C) storage. In particular, we hypothesized that mycorrhizal fungi and glomalin would become more prevalent under elevated CO2 but decrease under N fertilization. In addition, we predicted that N fertilization would mitigate any positive effects of elevated CO2 on mycorrhizal abundance. Overall, we observed a 14% increase in ectomycorrhizal (ECM) root colonization under CO2 enrichment, which implies that elevated CO2 results in greater C investments in these fungi. Arbuscular mycorrhizal (AM) hyphal length and glomalin stocks did not respond substantially to CO2 enrichment, and effects of CO2 on AM root colonization varied by date. Nitrogen effects on AM fungi were not consistent with our hypothesis, as we found an increase in AM colonization under N fertilization. Lastly, neither glomalin concentrations nor ECM colonization responded significantly to N fertilization or to an N-by-CO2 interaction. A longer duration of N fertilization may be required to detect effects on these parameters.  相似文献   

12.
Arbuscular mycorrhiza (AM) fungi establish symbiotic interactions with plants, providing the host plant with minerals, i.e. phosphate, in exchange for organic carbon. Arbuscular mycorrhiza fungi of the order Glomerales produce vesicles which store lipids as an energy and carbon source. Acyl‐acyl carrier protein (ACP) thioesterases (Fat) are essential components of the plant plastid‐localized fatty acid synthase and determine the chain length of de novo synthesized fatty acids. In addition to the ubiquitous FatA and FatB thioesterases, AM‐competent plants contain an additional, AM‐specific, FatM gene. Here, we characterize FatM from Lotus japonicus by phenotypically analyzing fatm mutant lines and by studying the biochemical function of the recombinant FatM protein. Reduced shoot phosphate content in fatm indicates compromised symbiotic phosphate uptake due to reduced arbuscule branching, and the fungus shows reduced lipid accumulation accompanied by the occurrence of smaller and less frequent vesicles. Lipid profiling reveals a decrease in mycorrhiza‐specific phospholipid forms, AM fungal signature fatty acids (e.g. 16:1ω5, 18:1ω7 and 20:3) and storage lipids. Recombinant FatM shows preference for palmitoyl (16:0)‐ACP, indicating that large amounts of 16:0 fatty acid are exported from the plastids of arbuscule‐containing cells. Stable isotope labeling with [13C2]acetate showed reduced incorporation into mycorrhiza‐specific fatty acids in the fatm mutant. Therefore, colonized cells reprogram plastidial de novo fatty acid synthesis towards the production of extra amounts of 16:0, which is in agreement with previous results that fatty acid‐containing lipids are transported from the plant to the fungus.  相似文献   

13.
A significant challenge for understanding how fungal communities may change in the Anthropocene are the multiple aspects of simultaneous environmental change. To address this challenge, we used a seven-year multi-factorial field experiment in southern California to examine how root-associated fungi respond to aridity, nitrogen deposition, and plant invasions. We hypothesized that all three global change drivers reduce the abundance of arbuscular mycorrhizal fungi responsible for nutrient uptake (edaphophilic AMF), while increasing the abundance of AMF that colonize roots at high rates (rhizophilic AMF). We found that invasive grasses hosted lower abundances of edaphophilic AMF, and higher abundances of rhizophilic AMF and opportunistically parasitic fungi. Aridity reduced overall AMF abundance while N addition altered the allocation of AMF biomass, increasing root colonization while reducing the density of extraradical hyphae. Overall, these results imply that ongoing global change will alter both the composition of AMF and how these fungi interact with plants.  相似文献   

14.
Arbuscular mycorrhizal and dark septate endophyte associations of 31 medicinal plant species collected from the Garden of Medicinal Plants of the Faculty of Pharmacy, Jagiellonian University, Collegium Medicum in Kraków were investigated. Arbuscular mycorrhiza (AM) was found in 30 species; 23 were of the Arum-type, 5—Paris and 2 taxa revealed intermediate morphology. Many plants were strongly colonized by arbuscular mycorrhizal fungi (AMF). The mycelium of dark septate endophytes (DSE) was observed in 21 taxa. However, the percentage of root colonization by these fungi was low. Spores of 15 species of AMF (Glomeromycota) were found in the rhizosphere of the investigated plants. Our results are the first detailed report of both AMF and DSE associations of these plant species. The use of AMF and DSE during the process of medicinal plant cultivation for pharmaceutical purposes is discussed.  相似文献   

15.
Elevated atmospheric pCO(2) increases the C-availability for plants and thus leads to a comparable increase in plant biomass production and nutrient demand. Arbuscular mycorrhizal fungi (AMF) are considered to play an important role in the nutrient uptake of plants as well as to be a significant C-sink. Therefore, an increased colonization of plant roots by AMF is expected under elevated atmospheric pCO(2). To test these hypotheses, Lolium perenne L. plants were grown from seeds in a growth chamber in pots containing a silica sand/soil mixture for 9 weeks with and without inoculation with Glomus intraradices (Schenck and Smith). The growth response of plants at two different levels of N fertilization (1.5 or 4.5 mM) combined with ambient (35 Pa) and elevated atmospheric pCO(2) (60 Pa) was compared. The inoculation with G. intraradices, the elevated atmospheric pCO(2) and the high N fertilization treatment all led to an increased plant biomass production of 16%, 20% and 49%, respectively. AMF colonization and high N fertilization increased the plant growth response to elevated atmospheric pCO(2); the plant growth response to high N fertilization was also increased by AMF colonization. The root/shoot ratio was reduced by high N fertilization or elevated atmospheric pCO(2), but was not affected by AMF colonization. The unchanged specific leaf area indicated that if AMF colonization represented an increased C-sink, this was fully covered by the plant. Elevated atmospheric pCO(2) strongly increased AMF colonization (60%) while the high N fertilization had a slightly negative effect. AMF colonization neither improved the N nor P nutrition status, but led to an improved total P uptake. The results underline the importance of AMF for the response of grassland ecosystems to elevated atmospheric pCO(2).  相似文献   

16.
We have studied how disturbance by ploughing and rotavation affects the carbon (C) flow to arbuscular mycorrhizal (AM) fungi in a dry, semi-natural grassland. AM fungal biomass was estimated using the indicator neutral lipid fatty acid (NLFA) 16:1ω5, and saprotrophic fungal biomass using NLFA 18:2ω6,9. We labeled vegetation plots with 13CO2 and studied the C flow to the signature fatty acids as well as uptake and allocation in plants. We found that AM fungal biomass in roots and soil decreased with disturbance, while saprotrophic fungal biomass in soil was not influenced by disturbance. Rotavation decreased the 13C enrichment in NLFA 16:1ω5 in soil, but 13C enrichment in the AM fungal indicator NLFA 16:1ω5 in roots or soil was not influenced by any other disturbance. In roots, 13C enrichment was consistently higher in NLFA 16:1ω5 than in crude root material. Grasses (mainly Festuca brevipila) decreased as a result of disturbance, while non-mycorrhizal annual forbs increased. This decreases the potential for mycorrhizal C sequestration and may have been the main reason for the reduced mycorrhizal C allocation found in disturbed plots. Disturbance decreased the soil ammonium content but did not change the pH, nitrate or phosphate availability. The overall effect of disturbance on C allocation was that more of the C in AM fungal mycelium was directed to the external phase. Furthermore, the functional identity of the plants seemed to play a minor role in the C cycle as no differences were seen between different groups, although annuals contained less AM fungi than the other groups.  相似文献   

17.
We estimated the biomass and growth of arbuscular mycorrhizal (AM) mycelium in sand dunes using signature fatty acids. Mesh bags and tubes, containing initially mycelium-free sand, were buried in the field near the roots of the dune grass Ammophila arenaria L. AM fungal mycelia were detected at a distance of about 8.5 cm from the roots after 68 days of growth by use of neutral lipid fatty acid (NLFA) 16:1ω5. The average rate of mycelium extension during September and October was estimated as 1.2 mm day−1. The lipid and fatty acid compositions of AM fungal mycelia of isolates and from sand dunes were analysed and showed all to be of a similar composition. Phospholipid fatty acids (PLFAs) can be used as indicators of microbial biomass. The mycelium of G. intraradices growing in glass beads contained 8.3 nmol PLFAs per mg dry biomass, and about 15% of the PLFAs in G. intraradices, G. claroideum and AM fungal mycelium extracted from sand dunes, consisted of the signature PLFA 16:1ω5. We thus suggest a conversion factor of 1.2 nmol PLFA 16:1ω5 per mg dry biomass. Calculations using this conversion factor indicated up to 34 μg dry AM fungal biomass per g sand in the sand dunes, which was less than one tenth of that found in an experimental system with Glomus spp. growing with cucumber as plant associate in agricultural soil. The PLFA results from different systems indicated that the biomass of the AM fungi constitutes a considerable part of the total soil microbial biomass. Calculations based on ATP of AM fungi in an experimental growth system indicated that the biomass of the AM fungi constituted approximately 30% of the total microbial biomass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Root colonization by arbuscular mycorrhizal fungi (AMF) was investigated in industrially polluted grassland characterized by exceptionally high phosphorus levels (up to 120 g kg(-1) soil). Along a pollution-induced nitrogen gradient, soil and tissue element concentrations of Artemisia vulgaris plants and their mycorrhizal status were determined. Additionally, we compared mycorrhization rates and above-ground biomass of A. vulgaris at N-fertilized and control plots in the N-poor area. Despite high soil and tissue P concentrations, plants from N-deficient plots, which were characterized by low tissue N concentrations and N : P ratios, were strongly colonized by AMF, whereas at a plot with comparable P levels, but higher soil and plant N concentrations and N : P ratios, mycorrhization rates were significantly lower. Correlation analyses revealed a negative relationship between percentage root colonization of A. vulgaris by AMF and both tissue N concentration and N : P ratio. Accordingly, in the fertilization experiment, control plants had higher mycorrhization rates than N-fertilized plants, whereas the species attained higher biomass at N-fertilized plots. The results suggest that N deficiency stimulates root colonization by AMF in this extraordinarily P-rich field site.  相似文献   

19.
Arbuscular mycorrhizal (AM) fungi differ in their response to soil pH. Thus, change in soil pH may influence the relative abundance of mycorrhizal fungi inside roots. Root colonization by two AM fungi was studied in relation to addition of lime (CaCO3), quantity of inoculum and inoculum placement. Addition of CaCO3 to an acid soil decreased the colonization of roots by Acaulospora laevis but increased colonization by Glomus invermaium when both fungi were present. In acid soil (pH 4.7), almost all roots were colonized by A. laevis, while G. invermaium was dominant when soil pH was increased to pH 7.3. This occurred regardless of whether the inoculum was banded or mixed throughout the soil. There was no effect of CaCO3 on the relative abundance of fungi inside roots at intermediate rates of CaCO3 application (pH 5.3-6.3) when both fungi were inoculated together. In this experiment, both fungi colonized roots at all levels of CaCO3 when inoculated alone, except for A. laevis at the highest level of CaCO3. We conclude that soil pH affects the competitive ability of these two AM fungi during mycorrhiza formation primarily by affecting hyphae growth in soil and thus the relative abundance of hyphae at the root surface and subsequently inside the root.  相似文献   

20.
The effect of the polycyclic aromatic hydrocarbon (PAH) phenanthrene and the yeast Rhodotorula glutinis on the arbuscular mycorrhizal fungus (AMF) Glomus geosporum colonizing maize roots, was studied. During a 90-day experiment, the highest G. geosporum colonization values were found in control plants. Mycorrhiza root length, measured both on the basis of percentage of root colonization and on the activity of succinate dehydrogenase, showed similar patterns in different phenanthrene treatments. The presence of phenanthrene in the substrate reduced G. geosporum intraradical colonization. The presence of R. glutinis did not enhance AMF colonization in the presence of phenanthrene. The biomass of the external mycelium estimated on the basis of the fatty acid 16:1 omega 5 concentration showed a progressive increase through time, and the amounts of this fatty acid differed among treated and untreated substrates. However, this increase was found to be lowest in the phenanthrene and Rhodotorula treatment at 60 days. There was less phenanthrene accumulation in roots of maize inoculated with AMF and the yeast than in roots inoculated only with AMF. A similar pattern was observed in the phenanthrene content of G. geosporum spores collected after 90 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号