首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
FabB 和FabF是大肠杆菌(Escherichia. coli)脂肪酸合成的关键酶. 生物信息学分析显示,粪肠球菌基因组中有2个与大肠杆菌fabF同源的基因:fabF1fabF2,缺少与fabB同源的基因. 用粪肠球菌(Enterococcus faecalis)V583总DNA为模板,PCR扩增 fabF1fabF2基因, 以pBAD24为载体,构建了重组质粒pHW13(fabF1)和pHW14(fabF2). 体内体外研究显示: fabF1基因能互补大肠杆菌fabB突变, FabF1具有β酮脂酰ACP合成酶Ⅰ(FabB)活性;fabF2能互补大肠杆菌fabF突变,FabF2 具有β酮脂酰ACP合成酶Ⅱ(FabF)活性. 同时发现粪肠球菌FabF2不同于大肠杆菌FabF,它还拥有微弱β酮脂酰ACP合成酶Ⅰ(FabB)活性,可使大肠杆菌fabB突变株产生少量的不饱和脂肪酸. 上述结果表明,FabF类酶 (FabF like enzyme) 同样可以具有β酮脂酰ACP合成酶Ⅰ(FabB) 活性.  相似文献   

2.
大肠杆菌(Escherichia coli)是Ⅱ型脂肪酸合成系统的模式生物,3-羟基脂酰ACP脱水异构酶(FabA)是不饱和脂肪酸合成中的关键酶.生物信息学分析表明,乳酸乳球菌(Lactococcus lactis)的基因组中没有标注为3-羟基脂酰ACP脱水异构酶的基因,但有两个标注为3-羟基脂酰ACP脱水酶基因LlfabZ1和LlfabZ2,其编码的蛋白质与EcFabZ的相似性分别为41%和45.1%,且都具有3-羟基脂酰ACP脱水酶两个保守的α螺旋结构.用携带LlfabZ1和LlfabZ2的质粒载体遗传互补大肠杆菌fabA温度敏感突变株CY57,在42℃下不能恢复生长,但无细胞抽提物的结果显示LlFabZ1能够使反-2-癸烯酰ACP异构成顺-3-癸烯酰ACP,而LlFabZ2则不能.互补大肠杆菌fabZ突变株HW7显示,在诱导的条件下,含有LlfabZ2的转化子能够恢复生长,而LlfabZ1则不能.体外重建脂肪酸合成反应及蛋白质活性测定表明,LlFabZ1具有3-羟基脂酰ACP脱水异构酶功能,而LlFabZ2只具有3-羟基脂酰ACP脱水酶功能.另外,未得到LlfabZ1和LlfabZ2的突变株,表明LlFabZ1和LlFabZ2可能是乳酸乳球菌脂肪酸合成酶系中的必不可少的关键蛋白.上述结果证实了乳酸乳球菌fabZ1和fabZ2两个基因在脂肪酸合成中的功能.  相似文献   

3.
大肠杆菌的FabB和FabF均具有长链3-酮基脂酰ACP合成酶活性.除参与长链饱和脂酰链的延伸外,FabB还是合成不饱和脂肪酸的关键酶之一,参与不饱和脂酰ACP的从头合成,最终生成顺-9-十六烯脂酰ACP.而FabF只能将顺-9-十六烯脂酰ACP延伸为顺-11-十八烯脂酰ACP,不参与不饱和脂酰ACP的从头合成.有研究表明,粪肠球菌、乳酸乳球菌、丙酮丁醇梭菌和茄科雷尔氏菌等细菌的FabF同源蛋白,具有类似大肠杆菌FabB和FabF的双功能.为证实该现象是否普遍存在,本研究选取了枯草芽孢杆菌BsfabF、中华苜蓿根瘤菌SmfabF、霍乱弧菌VcfabF、铜绿假单胞菌PafabF1和PafabF2 5个同源基因进行功能鉴定,体外酶学分析表明,5个FabF同源蛋白均具有长链3-酮基脂酰ACP合成酶活性,异体互补大肠杆菌CL28的脂肪酸组分分析显示,SmfabF、VcfabF、PafabF1和PafabF2具有3-酮脂酰ACP合成酶Ⅱ(FabF)活性,遗传互补大肠杆菌温度敏感突变株CY242和CY244的研究显示,仅有PafabF2编码的蛋白拥有3-酮脂酰ACP合成酶Ⅰ(FabB)活性,能互补大肠杆菌fabB的突变.这表明不是所有的FabF同源蛋白均具有3-酮脂酰ACP合成酶Ⅰ和Ⅱ的双重活性.  相似文献   

4.
流产布氏杆菌烯脂酰ACP还原酶的鉴定   总被引:1,自引:0,他引:1  
烯脂酰ACP还原酶是细菌脂肪酸合成的关键酶之一.流产布氏杆菌基因组有2个注释为烯脂酰ACP还原酶基因fabI的同源基因:fabI1fabI2.由这2个fabI同源基因编码的蛋白质分别与大肠杆菌FabI有50%和51%的同源性,且都拥有与大肠杆菌FabI一样的催化中心Tyr-(Xaa)6-Lys序列.分别用携带这2个同源基因的质粒载体转化大肠杆菌fabI温度敏感突变菌株JP1111.转化子能在42℃生长,表明这2个基因均能遗传互补大肠杆菌fabI突变,并使此菌株恢复脂肪酸的合成.另外,体外酶学分析显示,由这2个同源基因编码的蛋白质都拥有烯脂酰ACP还原酶活性,均能参与细菌脂肪酸合成.上述结果证实,流产布氏杆菌同时拥有2个同种类型的烯脂酰ACP还原酶,是一种新的烯脂酰ACP多样性的表现.  相似文献   

5.
【背景】链霉菌属于放线菌科,在土壤环境中广泛分布。链霉菌具有复杂的形态分化和多样性的次生代谢网络,能产生大量具有生物活性的次级代谢产物,被广泛深入研究。【目的】天蓝色链霉菌是链霉菌的模式菌株,其脂肪酸合成代谢与次级代谢联系紧密,但目前脂肪酸合成代谢途径还不清楚,其长链3-酮脂酰ACP合成酶还未见报道。【方法】利用大肠杆菌FabF序列进行同源比对,发现天蓝色链霉菌A3(2)的基因组中,SCO2390(ScoFabF1)、SCO1266(ScoFabF2)、SCO0548(ScoFabF3)和SCO5886 (ScoRedR)具有较高的相似性,并具有保守的Cys-His-His催化活性中心,可能具有长链3-酮脂酰ACP合成酶活性。采用PCR扩增方法分别获得以上基因,连入表达载体pBAD24M后分别互补大肠杆菌fabB(ts)突变株和fabB(ts)fabF双突变株,并检测转化子的生长情况。以上基因与pET-28b连接后,在大肠杆菌BL21(DE3)中表达,并利用Ni-NTA纯化获得蛋白,体外测定其催化活性。将以上基因分别互补大肠杆菌fabF突变株后,GC-MS测定互补株的脂肪酸组成。【结果】4个同源基因中,只有ScofabF1能恢复fabB(ts)fabF双突变株42°C时在添加油酸条件下的生长,其他3个基因均不能恢复生长。而这4个基因都不能恢复fabB(ts)突变株42°C时生长。体外活性测定ScoFabF1具有长链3-酮脂酰ACP合成酶活性,其他3个蛋白都不具有该活性。仅ScofabF1能显著提高大肠杆菌fabF突变株的顺-11-十八碳烯酸(C18:1)比例,其他3个基因都不具有该功能。【结论】天蓝色链霉菌中ScofabF1编码长链3-酮脂酰ACP合成酶II,在脂肪酸利用过程中发挥重要作用。天蓝色链霉菌中没有发现编码长链3-酮脂酰ACP合成酶I的基因,其可能通过其他途径合成少量的不饱和脂肪酸。以上研究结果为进一步研究天蓝色链霉菌中脂肪酸合成机制奠定了基础。  相似文献   

6.
细菌采用II型脂肪酸系统合成脂肪酸,其中3-羟脂酰ACP脱水酶催化唯一的脱水反应,是细菌生长的关键酶之一.野油菜黄单胞菌(Xcc)引起几乎所有十字花科植物的黑腐病,在全球范围内造成广泛的经济损失.为研究Xcc中3-羟脂酰ACP脱水酶,本研究利用大肠杆菌3-羟脂酰ACP脱水酶FabZ序列同源比对时,发现其与XC2876 (XcfabZ)编码蛋白具有同源性,序列一致性达到46.1%,同时还具有保守的α螺旋结构和活性位点.将XcfabZ异体遗传互补大肠杆菌fabZ(EcfabZ)条件突变株HW7,结果显示添加IPTG能恢复突变株的生长,初步表明XcFabZ具有3-羟脂酰ACP脱水酶活性.而体外活性分析显示,XcFabZ能在脂肪酸合成的起始反应和延伸反应中发挥3-羟脂酰ACP脱水酶活性作用.本研究不能直接获得XcfabZ基因敲除突变株,但将携带EcfabZ或XcfabZ的表达质粒导入后,获得基因替换突变株,证明XcfabZ是必需基因. EcfabZ替换突变株的脂肪酸组成与野生菌有差异,对逆境条件(高盐、低pH、H2O2和SDS)...  相似文献   

7.
Δ9硬脂酰 ACP 脱氢酶基因(GhSAD2)是脂肪酸合成代谢过程中关键的去饱和酶基因,为明确该基因在棉花脂肪酸合成代谢中的功能,该研究克隆了陆地棉GhSAD2基因,并对该基因的序列特征、进化关系及表达特性进行分析。序列分析显示,GhSAD2基因(GenBank登录号为KX197920)cDNA全长1 188 bp,编码396个氨基酸,具有脂肪酸去饱和酶家族2个高度保守的组氨酸簇EENRHG和DEKRH,分别位于氨基酸的185和271位。系统进化分析显示,GhSAD2基因与可可树的同源基因进化关系非常接近。qPCR分析显示,GhSAD2基因在叶中的表达量高于茎和根,且在花后25 d的种子中表达量达到最高值。低温胁迫诱导结果表明,GhSAD2基因在不同程度低温处理下均有上调表达,6 h表达量最大,之后逐渐下调。研究表明,GhSAD2基因可能对棉子油不饱和脂肪酸的合成具有重要作用,同时在棉花抗寒方面也起一定的生理作用。  相似文献   

8.
不同细菌来源的3-酮脂酰ACP合成酶Ⅲ生物学特性分析   总被引:1,自引:0,他引:1  
3-酮脂酰ACP合成酶Ⅲ(FabH)是催化细菌脂肪酸合成的起始反应.研究表明,革兰氏阳性细菌FabH对支链脂酰-CoA前体的选择性是其合成支链脂肪酸的关键.但部分革兰氏阴性细菌也产生一定量的支链脂肪酸,其合成机制还不清楚.为此,本研究选取了革兰氏阳性细菌枯草芽孢杆菌BsfabH1和BsfabH2、金黄色葡萄球菌SafabH、天蓝色链霉菌ScofabH、革兰氏阴性细菌茄科雷尔氏菌RsfabH、大肠杆菌EcfabH,以及产支链脂肪酸的水稻黄单胞菌XoofabH,共7种fabH同源基因进行生物学特性分析.异体遗传互补茄科雷尔氏菌fabH突变株RsmH,表明这7个基因编码蛋白都具有3-酮脂酰ACP合成酶Ⅲ活性.脂肪酸组成分析显示,4个革兰氏阳性菌fabH和XoofabH互补株类似,均能产生支链脂肪酸,而EcfabH和RsfabH互补株不产生支链脂肪酸,说明XooFabH不同于EcFabH,参与支链脂肪酸合成.体外酶学分析表明,XooFabH与4种革兰氏阳性菌FabH类似,对支链脂酰-CoA有较高的选择,但EcFabH和RsFabH对支链前体活性低.与革兰氏阳性细菌FabH不同,XooFabH对中短链长(C4~C10)脂酰-CoA也具有较高的活性.综合以上结果,不同细菌来源FabH的生物学特性差异明显,FabH能利用支链前体是细菌合成支链脂肪酸的关键因素.  相似文献   

9.
FabB和FabF是大肠杆菌(Escherichia.coli)脂肪酸合成的关键酶.生物信息学分析显示,粪肠球菌基因组中有2个与大肠杆菌fabF同源的基因:fabF1和fabF2,缺少与fabB同源的基因.用粪肠球菌(Enterococcus faecalis)V583总DNA为模板,PCR扩增fabF1和fabF2基因,以pBAD24为载体,构建了重组质粒pHW13(fabF1)和pHW14(fabF2).体内体外研究显示:fabF1基因能互补大肠杆菌fabB突变,FabF1具有β酮脂酰ACP合成酶Ⅰ(FabB)活性;fabF2能互补大肠杆菌fabF突变,FabF2具有β酮脂酰ACP合成酶Ⅱ(FabF)活性.同时发现粪肠球菌FabF2不同于大肠杆菌FabF,它还拥有微弱β酮脂酰ACP合成酶Ⅰ(FabB)活性,可使大肠杆菌fabB突变株产生少量的不饱和脂肪酸.上述结果表明,FabF类酶(FabF like enzyme)同样可以具有β酮脂酰ACP合成酶Ⅰ(FabB)活性.  相似文献   

10.
3-酮脂酰ACP还原酶(FabG)在细菌中广泛存在并且十分保守,已经发现的所有FabG及其同系物都具有类似的催化活性中心序列,隶属于短链醇脱氢酶/还原酶(SDRs)超家族成员。它是Ⅱ型脂肪酸合成反应中的关键酶,将3-酮脂酰ACP还原为3-羟脂酰ACP多以NADPH作为辅酶。从搜集的文献来看,国内外针对不同细菌中3-酮脂酰ACP还原酶同系物的研究报道体现了其多样性的特点。但是,近年来,该方面的专题综述十分少见。本文主要对3-酮脂酰ACP还原酶的结构特征、在脂肪酸合成和其他方面的生物学功能,以及以该酶为作用靶点的抑菌剂等方面进行概述,以期为将来3-酮脂酰ACP还原酶的深入研究提供理论参考。  相似文献   

11.
12.
为研究苜蓿中华根瘤菌脂肪酸脱饱和酶desA基因在不饱和脂肪酸合成、共生结瘤固氮以及应对逆境胁迫中的功能,为高效利用苜蓿中华根瘤菌提供理论依据,本文通过异体遗传互补和脂肪酸组成薄层层析,分析SmdesA编码蛋白是否具有脱饱和酶的活性并参与不饱和脂肪酸的合成,构建SmdesA的缺失突变株和互补菌株,比较各菌株在不同逆境胁迫条件下的生长速率以及回接宿主植物后与紫花苜蓿共生结瘤的能力.结果表明SmdesA不能互补大肠杆菌CY57中EcfabA的突变,但具有将饱和脂肪酸脱饱和形成不饱和的棕榈油酸和十八碳烯酸的能力.另外,SmdesA缺失突变对苜蓿中华根瘤菌的脂肪酸组成影响不大,但会显著影响低温和高盐条件下菌株的生长速率以及与紫花苜蓿共生结瘤的能力.我们推测,SmdesA参与的脱饱和途径可能是苜蓿中华根瘤菌不饱和脂肪酸合成的补偿途径,其编码的蛋白DesA不是不饱和脂肪酸合成的关键酶,但在应对逆境胁迫和共生结瘤中具有重要的生物学功能.  相似文献   

13.
14.
Biodiesel is an interesting alternative energy source and is used as substitute for petroleum-based diesel. Microorganisms have been used for biodiesel production due to their significant environmental and economic benefits. However, few researches have investigated the regulation of fatty acid composition of these microbial diesels. Fatty acid biosynthesis in Escherichia coli has provided a paradigm for other bacteria and plants. By overexpressing two genes (fabA and fabB) associated with unsaturated fatty acid (UFA) synthesis in E. coli, we have engineered an efficient producer of UFAs. Saturated fatty acid (SFA) contents decreased from 50.2% (the control strain) to 34.6% (the recombinant strain overexpressing fabA and fabB simultaneously) and the ratio of cis-vaccenate (18:1Δ11), a major UFA in E. coli, reached 51.1% in this recombinant strain. When an Arabidopsis thaliana thioesterase (AtFatA) was coexpressed with these two genes, 0.19 mmol l−1 fatty acids was produced by this E. coli strain after 18-h culture under shake-flask conditions. Free fatty acids made up about 37.5% of total fatty acid concentration in this final engineered strain carrying fabA, fabB, and AtFatA, and the ratio of UFA/SFA reached 2.3:1. This approach offers a means to improve the fatty acid composition of microdiesel and might pave the way for production of biodiesel equivalents using engineered microorganisms in the near future.  相似文献   

15.
16.
17.
茄科雷尔氏菌(Ralstonia solanacearum)是一种危害严重的土传植物致病菌,其宿主范围广泛,在世界各地严重影响重要经济作物的生产.研究茄科雷尔氏菌的生理特性,探索其致病机理,有利于研发防治青枯病的技术与方法.脂肪酸是细菌细胞重要的组成物质,但是茄科雷尔氏菌脂肪酸合成的机制尚不清晰.本文以茄科雷尔氏菌GMI1000为材料,鉴定了该菌的脂酰Co A脱饱和酶和环丙烷脂肪酸合成酶,并分析了这两种酶在不饱和脂肪酸和环丙烷脂肪酸合成中的作用.结果显示,茄科雷尔氏菌RSc2450编码脂酰Co A脱饱和酶,参与其不饱和脂肪酸合成,但是该菌还存在其他不饱和脂肪酸合成途径.同时发现在茄科雷尔氏菌编码两个可能的环丙烷脂肪酸合成酶蛋白质中,仅有Cfa1(RSc0776)参与了该菌环丙烷脂肪酸的合成,并在低p H和高渗透压的耐受中起作用.该研究结果为深入研究茄科雷尔氏菌脂肪酸合成代谢特点及致病机理奠定了基础.  相似文献   

18.

Thraustochytrium sp. 26185, a unicellular marine protist, synthesizes docosahexaenoic acid, an omega-3 very long chain polyunsaturated fatty acid (VLC-PUFAs), by a polyunsaturated fatty acid (PUFA) synthase comprising three large subunits with multiple catalytic dehydratase (DH) domains critical for introducing double bonds at the specific position of fatty acids. To investigate functions of these DH domains, one DH domain from subunit-A and two DH domains from subunit-C of the PUFA synthase were dissected and expressed as stand-alone enzymes in Escherichia coli. The results showed that all these DH domains could complement the defective phenotype of a E. coli FabA temperature sensitive mutant, despite they have only modest sequence similarity with FabA, indicating they can function as 3-hydroxyacyl-ACP dehydratase for the biosynthesis of unsaturated fatty acids in E. coli. Site-directed mutagenesis analysis confirmed the authenticity of active site residues in these domains. In addition, overexpression of the three domains in a wild type E. coli strain resulted in the substantial alteration of fatty acid profiles including productions and ratio of unsaturated to saturated fatty acids. A combination of evidences from sequence comparison, functional expression, and mutagenesis analysis suggest that the DH domain from subunit-A is similar to DH domains from polyketide synthases, while the DH domains from subunit-C are more comparable to E. coli FabA in catalytic functions. Successful complementation and functional expression of the embedded DH domains from the PUFA synthase in E. coli is an important step towards for elucidating the molecular mechanism in the biosynthesis of VLC-PUFAs in Thraustochytrium.

  相似文献   

19.
The anaerobic unsaturated fatty acid synthetic pathway of Escherichia coli requires two specialized proteins, FabA and FabB. However, the fabA and fabB genes are found only in the Gram-negative alpha- and gamma-proteobacteria, and thus other anaerobic bacteria must synthesize these acids using different enzymes. We report that the Gram-positive bacterium Enterococcus faecalis encodes a protein, annotated as FabZ1, that functionally replaces the E. coli FabA protein, although the sequence of this protein aligns much more closely with E. coli FabZ, a protein that plays no specific role in unsaturated fatty acid synthesis. Therefore E. faecalis FabZ1 is a bifunctional dehydratase/isomerase, an enzyme activity heretofore confined to a group of Gram-negative bacteria. The FabZ2 protein is unable to replace the function of E. coli FabZ, although FabZ2, a second E. faecalis FabZ homologue, has this ability. Moreover, an E. faecalis FabF homologue (FabF1) was found to replace the function of E. coli FabB, whereas a second FabF homologue was inactive. From these data it is clear that bacterial fatty acid biosynthetic pathways cannot be deduced solely by sequence comparisons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号