首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peripheral nerve injury has remained a substantial clinical complication with no satisfactory treatment options.Despite the great development in the field ofmicrosurgery,some severe types of neural injuries cannot be treated without causing tension to the injured nerve.Thus current studies have focused on the new approaches for the treatment of peripheral nerve injuries.Stem cells with the ability to differentiate into a variety of cell types have brought a new perspective to this matter.In this review,we will discuss the use of three main sources of mesenchymal stem cells in the treatment of peripheral nerve injuries.  相似文献   

2.
Meyer RA  Ringkamp M 《生理学报》2008,60(5):605-609
Diseases and injuries to the nervous system can lead to a devastating chronic pain condition called neuropathic pain. We review changes that occur in the peripheral nervous system that may play a role in this disease. Common animal models for neuropathic pain involve an injury to one or more peripheral nerves. Following such an injury, the nerve fibers that have been injured exhibit many abnormal properties including the development of spontaneous neural activity as well as a change in the expression of certain genes in their cell body. Recent data indicate that adjacent, uninjured nerve fibers also exhibit significant changes. These changes are thought to be driven by injury-induced alterations in the milieu surrounding the uninjured nerve and nerve terminals. Thus, alteration in neural signaling in both injured and uninjured neurons play a role in the development of neuropathic pain after peripheral nerve injury.  相似文献   

3.
The effects of the repair of nerve gap injuries are still unsatisfactory, despite the great progress in microsurgery. Until now, there is no effective method to induce the regeneration of the transected peripheral nerve when its distal stump is missing. The aim of this work was to examine whether the implantation of dead-ended connective tissue chambers can promote the outgrowth of injured peripheral neurites. This method differs from all previous nerve guides because it totally eliminates the distal part of the nerve and restricts the influence of surrounding tissues. We have also tried to establish whether some neurotrophic factors can be applied by means of these chambers. The results of this work show that dead-ended autologous connective tissue chambers can be a useful tool in peripheral nerve injuries treatment, even when the distal part of the nerve is missing.  相似文献   

4.
To evaluate the hypothesis that platelet activating factor (PAF) antagonism may affect the functional recovery following the nerve injuries and also to evaluate the effect of PAF receptor antagonism on the neuroprotective effect of tacrolimus and sodium valproate, effect of PAF receptor antagonist, WEB2086 was evaluated in animal models of sciatic nerve crush and endothelin-1 induced focal cerebral ischemia. WEB2086, per se, while attenuating spontaneous sensory motor recovery after sciatic nerve crush, enhanced functional recovery after focal cerebral ischemia. WEB2086 also attenuated the neuroprotective effect of tacrolimus and sodium valproate subsequent to peripheral nerve injury, while it significantly improved the neuroprotective action of tacrolimus and sodium valproate following cerebral ischemia reperfusion injury. These results suggest that PAF receptor antagonists alone and in combination with tacrolimus/sodium valproate could be used in the treatment of cerebral ischemia reperfusion injuries however, their use following peripheral nerve injuries could be detrimental.  相似文献   

5.
Quantification of peripheral nerve regeneration in animal studies of nerve injury and repair by histologic, morphologic, and electrophysiologic parameters has been controversial because such studies may not necessarily correlate with actual nerve function. This study modifies the previously described sciatic functional index (SFI), tibial functional index (TFI), and peroneal functional index (PFI) based on multiple linear regression analysis of factors derived from measurements of walking tracks in rats with defined nerve injuries. The factors that contributed to these formulas were print-length factor (PLF), toe-spread factor (TSF), and intermediary toe-spread factor (ITF). It was shown that animals with selective nerve injuries gave walking tracks that were consistent, predictable, and based on known neuromuscular deficits. The new formula for sciatic functional index was compared with previously described indices. The sciatic functional index, tibial functional index, and peroneal functional index offer the peripheral nerve investigator a noninvasive quantitative assessment of hindlimb motor function in the rat with selective hindlimb nerve injury.  相似文献   

6.
Abstract

Optogenetics has recently gained recognition as a biological technique to control the activity of cells using light stimulation. Many studies have applied optogenetics to cell lines in the central nervous system because it has the potential to elucidate neural circuits, treat neurological diseases and promote nerve regeneration. There have been fewer studies on the application of optogenetics in the peripheral nervous system. This review introduces the basic principles and approaches of optogenetics and summarizes the physiology and mechanism of opsins and how the technology enables bidirectional control of unique cell lines with superior spatial and temporal accuracy. Further, this review explores and discusses the therapeutic potential for the development of optogenetics and its capacity to revolutionize treatment for refractory epilepsy, depression, pain, and other nervous system disorders, with a focus on neural regeneration, especially in the peripheral nervous system. Additionally, this review synthesizes the latest preclinical research on optogenetic stimulation, including studies on non-human primates, summarizes the challenges, and highlights future perspectives. The potential of optogenetic stimulation to optimize therapy for peripheral nerve injuries (PNIs) is also highlighted. Optogenetic technology has already generated exciting, preliminary evidence, supporting its role in applications to several neurological diseases, including PNIs.  相似文献   

7.
Androgens act on the CNS to affect motor function through interaction with a widespread distribution of intracellular androgen receptors (AR). This review highlights our work on androgens and process outgrowth in motoneurons, both in vitro and in vivo. The actions of androgens on motoneurons involve the generation of novel neuronal interactions that are mediated by the induction of androgen-dependent neurite or axonal outgrowth. Here, we summarize the experimental evidence for the androgenic regulation of the extension and regeneration of motoneuron neurites in vitro using cultured immortalized motoneurons, and axons in vivo using the hamster facial nerve crush paradigm. We place particular emphasis on the relevance of these effects to SBMA and peripheral nerve injuries.  相似文献   

8.
Acute noxious stimuli activate a specialized neuronal detection system that generates sensations of pain and, generally, adaptive behavioral responses. More persistent noxious stimuli notably those associated with some chronic injuries and disease states not only activate the pain-signaling system but also dramatically alter its properties so that weak stimuli produce pain. These hyperalgesic states arise from at least two distinct broad classes of mechanisms. These are peripheral and central sensitization associated with increased responsiveness of peripheral nociceptor terminals and dorsal horn neurons, respectively. Here we review the key features of these sensitized states and discuss the role of one neurotrophic factor, nerve growth factor, as a peripheral mediator of sensitization and of another factor, brain-derived neurotrophic factor, as a mediator of central sensitization. We use as a specific example the pain induced by acid stimuli. We review the neurobiology of such pain states, and discuss how acid stimuli both initiate sensitization and how the neuronal processing of acid stimuli is subject to sensitization.  相似文献   

9.
Mesenchymal stem cell(MSC)therapy has attracted the attention of scientists and clinicians around the world.Basic and pre-clinical experimental studies have highlighted the positive effects of MSC treatment after spinal cord and peripheral nerve injury.These effects are believed to be due to their ability to differentiate into other cell lineages,modulate inflammatory and immunomodulatory responses,reduce cell apoptosis,secrete several neurotrophic factors and respond to tissue injury,among others.There are many pre-clinical studies on MSC treatment for spinal cord injury(SCI)and peripheral nerve injuries.However,the same is not true for clinical trials,particularly those concerned with nerve trauma,indicating the necessity of more well-constructed studies showing the benefits that cell therapy can provide for individuals suffering the consequences of nerve lesions.As for clinical trials for SCI treatment the results obtained so far are not as beneficial as those described in experimental studies.For these reasons basic and pre-clinical studies dealing with MSC therapy should emphasize the standardization of protocols that could be translated to the clinical set with consistent and positive outcomes.This review is based on pre-clinical studies and clinical trials available in the literature from 2010 until now.At the time of writing this article there were 43 and 36 pre-clinical and 19 and 1 clinical trials on injured spinal cord and peripheral nerves,respectively.  相似文献   

10.
The successful regeneration of a multifascicular, complete peripheral nerve through a tubular synthetic biodegradable nerve guide across a gap of 10 mm in the rat sciatic nerve is reported. The importance of the distal nerve as a source of target-derived neuronotrophic factors necessary for the successful regeneration of the proximal regenerating nerve is emphasized. A simplified research model for further investigation into and manipulation of the biological processes of nerve regeneration is described. The potential clinical utilization of this model in the management of peripheral nerve injuries and, ultimately, central nervous system lesions is mentioned.  相似文献   

11.
Outcomes following peripheral nerve injury remain frustratingly poor. The reasons for this are multifactorial, although maintaining a growth permissive environment in the distal nerve stump following repair is arguably the most important. The optimal environment for axonal regeneration relies on the synthesis and release of many biochemical mediators that are temporally and spatially regulated with a high level of incompletely understood complexity. The Schwann cell(SC) has emerged as a key player in this process. Prolonged periods of distal nerve stump denervation, characteristic of large gaps and proximal injuries, have been associated with a reduction in SC number and ability to support regenerating axons. Cell based therapy offers a potential therapy for the improvement of outcomes following peripheral nerve reconstruction. Stem cells have the potential to increase the number of SCs and prolong their ability to support regeneration. They may also have the ability to rescue and replenish populations of chromatolytic and apoptotic neurons following axotomy. Finally, they can be used in non-physiologic ways to preserve injured tissues such as denervated muscle while neuronal ingrowth has not yet occurred. Aside from stem cell type, careful consideration must be given to differentiation status, how stem cells are supported following transplantation and how they will be delivered to the site of injury. It is the aim of this article to review current opinions on the strategies of stem cell based therapy for the augmentation of peripheral nerve regeneration.  相似文献   

12.
周围神经损伤是临床中常见的神经损伤之一,神经胶质细胞和信号通路转导在周围神经损伤和再生修复中发挥重要作用。小胶质细胞的活化与周围神经损伤导致的神经损伤及疼痛密切相关,小胶质细胞是周围神经损伤与修复的关键场所。脊髓背角的小胶质细胞可被嘌呤信号通路的P2Y_(12)受体活化,进而导致p38MAPK磷酸化,造成相关神经损伤及感觉功能障碍。以脊髓背角的小胶质细胞为靶点,从P2Y_(12)受体-p38MAPK通路的角度可揭示周围神经损伤的部分可能机制。探究从嘌呤信号通路与小胶质细胞活化的新角度,将神经损伤后的P2Y_(12)受体与p38MAPK的磷酸化表达联系为P2Y_(12)受体-p38MAPK通路,可为临床治疗周围神经损伤提供新的思路。本文就周围神经损伤中P2Y_(12)受体-p38MAPK通路的研究进展作一综述。  相似文献   

13.

Upper limb nerve injuries are common, and their treatment poses a challenge for physicians and surgeons. Experimental models help in minimum exploration of the functional characteristics of peripheral nerve injuries of forelimbs. This study was conducted to characterize the functional recovery (1, 3, 7, 10, 14, and 21 days) after median and ulnar nerve crush in mice and analyze the histological and biochemical markers of nerve regeneration (after 21 days). Sensory–functional impairments appeared after 1 day. The peripheral nerve morphology, the nerve structure, and the density of myelin proteins [myelin protein zero (P0) and peripheral myelin protein 22 (PMP22)] were analyzed after 21 days. Cold allodynia and fine motor coordination recovery occurred on the 10th day, and grip strength recovery was observed on the 14th day after injury. After 21 days, there was partial myelin sheath recovery. PMP22 recovery was complete, whereas P0 recovery was not. Results suggest that there is complete functional recovery even with partial remyelination of median and ulnar nerves in mice.

  相似文献   

14.
Peripheral nerve injuries (PNIs) continue to present both diagnostic and treatment challenges. While nerve transections are typically a straightforward diagnosis, other types of PNIs, such as chronic or traumatic nerve compression, may be more difficult to evaluate due to their varied presentation and limitations of current diagnostic tools. As a result, diagnosis may be delayed, and these patients may go on to develop progressive symptoms, impeding normal activity. In the past, PNIs were diagnosed by history and clinical examination alone or techniques that raised concerns regarding accuracy, invasiveness, or operator dependency. Magnetic resonance neurography (MRN) has been increasingly utilized in clinical settings due to its ability to visualize complex nerve structures along their entire pathway and distinguish nerves from surrounding vasculature and tissue in a noninvasive manner. In this review, we discuss the clinical applications of MRN in the diagnosis, as well as pre- and postsurgical assessments of patients with peripheral neuropathies.  相似文献   

15.
The coordinated movement of many organisms relies on efficient nerve–muscle communication at the neuromuscular junction (NMJ), a peripheral synapse composed of a presynaptic motor axon terminal, a postsynaptic muscle specialization, and non-myelinating terminal Schwann cells. NMJ dysfunctions are caused by traumatic spinal cord or peripheral nerve injuries as well as by severe motor pathologies. Compared to the central nervous system, the peripheral nervous system displays remarkable regenerating abilities; however, this capacity is limited by the denervation time frame and depends on the establishment of permissive regenerative niches. At the injury site, detailed information is available regarding the cells, molecules, and mechanisms involved in nerve regeneration and repair. However, a regenerative niche at the final functional step of peripheral motor innervation, i.e. at the mature neuromuscular synapse, has not been deciphered. In this review, we integrate classic and recent evidence describing the cells and molecules that could orchestrate a dynamic ecosystem to accomplish successful NMJ regeneration. We propose that such a regenerative niche must ensure at least two fundamental steps for successful NMJ regeneration: the proper arrival of incoming regenerating axons to denervated postsynaptic muscle domains, and the resilience of those postsynaptic domains, in morphological and functional terms. We here describe and combine the main cellular and molecular responses involved in each of these steps as potential targets to help successful NMJ regeneration.  相似文献   

16.
Clinical application of peripheral nerve transplantation.   总被引:9,自引:0,他引:9  
Surgical reconstruction of extensive peripheral nerve injuries frequently exhausts the patient's own source of expendable autogenous nerve grafts. Nerve allografts would offer a limitless supply of graft material. A 23-cm, 10-cable sciatic nerve allograft was performed in an 8-year-old boy in September of 1988. The patient was managed with Cyclosporin A for 2 years. Forty-four months after the transplant surgery and 19 months after the cessation of Cyclosporin A therapy, the patient has evidence of nerve regeneration across the allograft with recovery of functional sensibility in his foot. In the selected patient with an otherwise irreparable nerve injury, consideration can be given to the use of a nerve allograft.  相似文献   

17.
Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability. In the last few years, numerous microsurgical techniques, such as coaptation, nerve autograft, and different biological or polymeric nerve conduits, have been developed to reconstruct a long segment of damaged peripheral nerve. A few of these techniques are promising and have become popular among surgeons. Advancements in the field of tissue engineering have led to development of synthetic nerve conduits as an alternative for the nerve autograft technique, which is the current practice to bridge nerve defects with gaps larger than 30 mm. However, to date, despite significant progress in this field, no material has been found to be an ideal alternative to the nerve autograft. This article briefly reviews major up-to-date published studies using different materials as an alternative to the nerve autograft to bridge peripheral nerve gaps in an attempt to assess their ability to support and enhance nerve regeneration and their prospective drawbacks, and also highlights the promising hope for nerve regeneration with the next generation of nerve conduits, which has been significantly enhanced with the tissue engineering approach, especially with the aid of nanotechnology in development of the three-dimensional scaffold. The goal is to determine potential alternatives for nerve regeneration and repair that are simply and directly applicable in clinical conditions.  相似文献   

18.
Clinical outcome following nerve allograft transplantation   总被引:7,自引:0,他引:7  
The clinical outcome of seven patients who underwent reconstruction of long upper- and lower-extremity peripheral nerve gaps with interposition peripheral nerve allografts is reported. Patients were selected for transplantation when the nerve gaps exceeded the length that could be reconstructed with available autograft tissue. Before transplantation, cadaveric allografts were harvested and preserved for 7 days in University of Wisconsin Cold Storage Solution at 5 degrees C. In the interim, patients were started on an immunosuppressive regimen consisting of either cyclosporin A or tacrolimus (FK506), azathioprine, and prednisone. Immunosuppression was discontinued 6 months after regeneration across the allograft(s) was evident. Six patients demonstrated return of motor function and sensation in the affected limb, and one patient experienced rejection of the allograft secondary to subtherapeutic immunosuppression. In addition to providing the ability to restore nerve continuity in severe extremity injuries, successful nerve allografting protocols have direct applicability to composite tissue transplantation.  相似文献   

19.
Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.  相似文献   

20.

Background

Sciatic nerve injuries often cause partial or total loss of motor, sensory and autonomic functions due to the axon discontinuity, degeneration, and eventual death which finally result in substantial functional loss and decreased quality of life. Nerve growth factor (NGF) plays a critical role in peripheral nerve regeneration. However, the lack of efficient NGF delivery approach limits its clinical applications. We reported here by fusing with the N-terminal domain of agrin (NtA), NGF-β could target to nerve cells and improve nerve regeneration.

Methods

Laminin-binding assay and sustained release assay of NGF-β fused with NtA (LBD-NGF) from laminin in vitro were carried out. The bioactivity of LBD-NGF on laminin in vitro was also measured. Using the rat sciatic nerve crush injury model, the nerve repair and functional restoration by utilizing LBD-NGF were tested.

Findings

LBD-NGF could specifically bind to laminin and maintain NGF activity both in vitro and in vivo. In the rat sciatic nerve crush injury model, we found that LBD-NGF could be retained and concentrated at the nerve injury sites to promote nerve repair and enhance functional restoration following nerve damages.

Conclusion

Fused with NtA, NGF-β could bind to laminin specifically. Since laminin is the major component of nerve extracellular matrix, laminin binding NGF could target to nerve cells and improve the repair of peripheral nerve injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号