首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Docosahexaenoic acid (DHA), the most abundant n-3 polyunsaturated fatty acid in the brain, has important functions in the hippocampus. To better understand essential fatty acid homeostasis in this region of the brain, we investigated the contributions of n-3 fatty acid precursors in supplying hippocampal neurons with DHA. Primary cultures of rat hippocampal neurons incorporated radiolabeled 18-, 20-, 22-, and 24-carbon n-3 fatty acid and converted some of the uptake to DHA, but the amounts produced from either [1-14C]α-linolenic or [1-14C]eicosapentaenoic acid were considerably less than the amounts incorporated when the cultures were incubated with [1-14C]22:6n-3. Most of the [1-14C]22:6n-3 uptake was incorporated into phospholipids, primarily ethanolamine phosphoglycerides. Additional studies demonstrated that the neurons converted [1-14C]linoleic acid to arachidonic acid, the main n-6 fatty acid in the brain. These findings differ from previous results indicating that cerebral and cerebellar neurons cannot convert polyunsaturated fatty acid precursors to DHA or arachidonic acid. Fatty acid compositional analysis demonstrated that the hippocampal neurons contained only 1.1–2.5 mol% DHA under the usual low-DHA culture conditions. The relatively low-DHA content suggests that some responses obtained with these cultures may not be representative of neuronal function in the brain.  相似文献   

2.
Boraginaceae seeds are particularly rich in Γ -linolenic acid (6,9,12-octadecatrienoic acid, Γ -18:3). In microsomes, the analysis of phosphatidylcholine (PC) molecular species by HPLC led to identification of 15 different molecular species; among them 4 contained Γ -18:3, mostly at position 2 of sn -glycerol. Time courses of acylation and desaturation in PC molecular species were examined when [14C]oleoyl-CoA or [14C]linoleoyl-CoA was provided as substrates to isolated microsomes. With [14C]oleoyl-CoA or [14C]linoleoyl-CoA and in the absence of NADH, 3 main labelled PC molecular species were found: 18:2/[14C]18:1, 16:0/[14C]18:1 and 18:1/[14C]18:1. When NADH was present in the incubation medium, the fatty acids were progressively desaturated by the Δ12- and Δ6-desaturases successively (with [14C]oleoyl-CoA as precursor) or by the Δ6-desaturase alone (with [14C]linoleoyl-CoA as precursor). In both types of experiments, 7 final desaturation products in microsomes were evidenced; among them, 3 contained radioactive Γ -18:3, i.e . 18:2/[14C] Γ -18:3, 18:1/[14C] Γ -18:3 and 16:0/[14C] Γ -18:3. While the Δ12-desaturase had no specificity for position on the glycerol backbone, labelled Γ -linolenic acid was recovered exclusively in the sn -2 position.  相似文献   

3.
Abstract: The present study was undertaken to determine whether polyunsaturated fatty acid metabolism is affected by high glucose levels in cerebral and retinal microvascular endothelial cells. The metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 was studied in cells previously cultured for 5 days in normal (5 m M ) or high (30 m M ) glucose medium. After incubation of retinal endothelial cells with [3-14C]22:5n-3 in the high glucose condition, the formation of labeled 24:6n-3 and 22:6n-3 was increased, and that of labeled 24:5n-3 was decreased, compared with the normal glucose condition. The changes were found for fatty acids esterified in cellular lipids and those released into the medium. After incubation with [1-14C]18:2n-6, levels of all elongation/desaturation products were increased at the expense of the precursor in retinal endothelial cells cultured in high glucose medium. The changes were primarily found for esterified fatty acids, with the release of n-6 fatty acids being minor in both glucose concentrations. By contrast, high glucose levels did not affect the metabolism of [3-14C]22:5n-3 and [1-14C]18:2n-6 in cerebral endothelial cells. The changes in metabolic activity of retinal endothelial cells were not reflected in the fatty acid composition. The present data suggest that high glucose can increase the desaturation process in retinal but not cerebral endothelial cells. This may produce some lipid abnormalities in retinal microvasculature and contribute to altered vascular function observed in diabetic retinopathy.  相似文献   

4.
The present study was undertaken to establish whether the formation of 22:6n-3 from 18:3n-3 and/or 20:5n-3 can occur in turbot liver and if this conversion is consistent with the operation of a Delta4 desaturase-independent pathway. At the same, time the effects of feeding a diet devoid of long chain polyunsaturated fatty acids (PUFA) on the patterns of esterification and modification of 18:3n-3, 20:5n-3 and 18:2n-6 by turbot hepatocytes and liver microsomes were examined. For this purpose, two groups of fish (25-30 g) were employed: one was fed a commercial diet containing fish oil (FO) and thus rich in long chain n-3 PUFA and the other was fed an experimental diet based on olive oil (OO). After 5 months of feeding, hepatocytes and liver microsomes isolated from individuals in the two groups of fish were incubated with [1-(14)C]-PUFA [either 18:3n-3, 20:5n-3 or 18:2n-6]. After 3 h of incubation, most radioactivity from all three radiolabelled substrates incorporated into lipids by hepatocytes and microsomes was recovered in the original substrate. The formation of desaturation products of n-3 radiolabelled substrates was higher in hepatocytes isolated from OO-fed than FO-fed fish. Small amounts of radiolabelled 22:6n-3 were formed from [1-(14)C]18:3n-3 and [1-(14)C]20:5n-3, but only by hepatocytes from fish fed OO, which also synthesised a small amount of radiolabelled 24:6n-3 from 14C-20:5n-3. Elongation products predominated over desaturation products in hepatic microsomes from both groups of fish studied, particularly in microsomes from fish fed FO. The results confirm that regardless of the long chain PUFA content of the diet, the production of 22:6n-3 in turbot liver from 18:3n-3 and/or 20:5n-3, and of 20:4n-6 from 18:2n-6, is very limited. The presence of radiolabelled 24:6n-3 in microsomes coupled with the absence of radiolabelled 22:6n-3 suggests that the formation of 22:6n-3 that does occur in turbot liver cells, may involve C24 intermediates and peroxisomal beta-oxidation.  相似文献   

5.
Abstract Monic acid A was isolated from a Pseudomonas fluorescens fermentation in which pseudomonic acid A (PA) was the principal secondary metabolite. [3-14C]3-Hydroxy-3-methyl-glutaric acid (HMG) given early in the idiophase radiolabelled PA (1.1% incorporation), confirming experimentally the putative direct involvement of HMG in the biosynthesis of PA, but contributed relatively insignificant radiolabel to the monic acid extracted from the broth at the end of the fermentation. Ethionine inhibited (80%) PA biosynthesis and correspondingly reduced incorporation of [14C]HMG. In contrast, ethionine increased incorporation of [methyl-14C]methionine into PA and enhanced specific radioactivity of the antibiotic 8-fold. Ethionine inhibition of secondary metabolite methylations did not divert pseudomonate biosynthesis to give unusual analogues, implying that methylation of a putative pentaketide precursor of the monate moiety forms a vital intermediate of the pseudomonate pathway, but caused a new [14C]HMG-derived polar metabolite of biosynthetic interest to become evident.  相似文献   

6.
Abstract— Ninhydrin decarboxylation experiments were carried out on the labelled amino acids produced following intraventricular injection of either γ-hydroxy-[1-14C]butyric acid (GHB) or [1-14C] succinate. The loss of isotope (as 14CO2) was similar for both substances. The [1-14C]GHB metabolites lost 75% of the label and the [1-14C] succinate metabolites lost 68%. This observation gives support to the hypothesis that the rat brain has the enzymatic capacity to metabolize [1-14C]GHB to succinate and to amino acids that have the isotope in the carboxylic acid group adjacent to the a-amino group. These results also indicate that the label from [1-14C]GHB does not enter the Krebs cycle as acetate. The specific activity ratio of radiolabelled glutamine to glutamic acid was determined in order to evaluate which of the two major metabolic compartments preferentially metabolize GHB. It was found that for [1-14C]GHB this ratio was 4.20 ± 0.18 (S.E. for n = 7) and for [l-14C]succinate this ratio was 7.71 (average of two trials, 7.74 and 7.69). These results suggest that the compartment thought to be associated with glial cells and synaptosomal structures is largely responsible for the metabolism of GHB. Metabolism as it might relate to the neuropharmacological action of GHB is discussed.  相似文献   

7.
Abstract The biosynthesis of the positional isomers of the monounsaturated fatty acids of Methylococcus capsulatus (Bath) has been investigated by studying the incorporation of [2-14C]malonyl CoA into long-chain fatty acids in vitro. The major unsaturated products were Δ 9 16:1 and Δ 11 18:1; however, Δ 8, Δ 10 and Δ 11 16:1, as well as, Δ 10, Δ 12 and Δ 13 18:1 were also synthesized. The exclusion of O2 from the reaction vessel did not affect the synthesis of unsaturated fatty acids or the double bonds positions. Cerulenin inhibited the synthesis of unsaturated fatty acid more than saturated fatty acid. The use of both [1-14C] octanoate and [1-14C] decanoate as substrate resulted in the synthesis of long-chain fatty acids, however, unsaturates were only synthesized from octanoate. These results imply that the unique positional isomers of M. capsulatus are not synthesized by an aerobic mechanism.  相似文献   

8.
A combined fatty acid metabolism assay was employed to determine fatty acid uptake and relative utilisation in enterocytes isolated from the pyloric caeca of rainbow trout. In addition, the effect of a diet high in long-chain monoenoic fatty alcohols present as wax esters in oil derived from Calanus finmarchicus, compared to a standard fish oil diet, on caecal enterocyte fatty acid metabolism was investigated. The diets were fed for 8 weeks before caecal enterocytes from each dietary group were isolated and incubated with [1-14C]fatty acids: 16:0, 18:1n-9, 18:2n-6, 18:3n-3, 20:1n-9, 20:4n-6, 20:5n-3, and 22:6n-3. Uptake was measured over 2 h with relative utilisation of different [1-14C]fatty acids calculated as a percentage of uptake. Differences in uptake were observed, with 18:1n-9 and 18:2n-6 showing the highest rates. Esterification into cellular lipids was highest with 16:0 and C18 fatty acids, accounting for over one-third of total uptake, through predominant incorporation in triacylglycerol (TAG). The overall utilisation of fatty acids in phospholipid synthesis was low, but highest with 16:0, the most prevalent fatty acid recovered in intracellular phosphatidylcholine (PC) and phosphatidylinositol (PI), although exported PC exhibited higher proportions of C20/C22 polyunsaturated fatty acids (PUFA). Other than 16:0, incorporation into PC and PI was highest with C20/C22 PUFA and 20:4n-6 respectively. Recovery of labelled 18:1n-9 in exported TAG was 3-fold greater than any other fatty acid which could be due to multiple esterification on the glycerol 'backbone' and/or increased export. Approximately 20-40% of fatty acids taken up were beta-oxidised, and was highest with 20:4n-6. Oxidation of 20:5n-3 and 22:6n-3 was also surprisingly high, although 22:6n-3 oxidation was mainly attributed to retroconversion to 20:5n-3. Metabolic modification of fatty acids by elongation-desaturation was generally low at <10% of [1-14C]fatty acid uptake. Dietary copepod oil had generally little effect on fatty acid metabolism in enterocytes, although it stimulated the elongation and desaturation of 16:0 and elongation of 18:1n-9, with radioactivity recovered in longer n-9 monoenes. The monoenoic fatty acid, 20:1n-9, abundant in copepod oil as the homologous alcohol, was poorly utilised with 80% of uptake remaining unesterified in the enterocyte. However, the fatty acid composition of pyloric caeca was not influenced by dietary copepod oil.  相似文献   

9.
Abstract— In the lobster nerve the fixation of CO, at various levels of pCO2 was studied by the incorporation of [l-14C]pyruvate. Incorporation of 14C was solely dependent on CO2 fixation since the C-1 was decarboxylated in the formation of acetyl-CoA. Paired-nerve studies with [2-14C]pyruvate afforded a study of pyruvate metabolism in the lobster nerve. [I14C]Pyruvate was incorporated to nearly the same extent at all levels of pCO2 including zero pCO2, a finding that suggested metabolic recycling of CO2. The magnitude of the metabolic recycling of C-1 of pyruvate or pyruvate dismutation was estimated to be nearly 20 per cent of total CO2 fixation. Re-evaluation of the relative contributions of the CO2 fixation. and acetyl-CoA pathways on the basis of more extensive data gave a ratio of 2:3.
The pCO2 affected synthesis of ACh and the level of citrate. With increasing pCO2, the specific radioactivity of ACh decreased much more than the content of ACh. The decrease in the specific radioactivity of ACh but not that of citrate further suggested metabolic compartmentation. The implication of these findings is discussed.
Alanine functioned as a metabolic sink for the incorporated pyruvate. Pyruvate levels were estimated to be approximately 0.1 nmol/mg of protein.  相似文献   

10.
Abstract The metabolism of d -alanyl substituents of lipoteichoic acid (LTA) and teichoic acid was studied in Staphylococcus aureus . Double labelling with [3H]glycerol and d -[14C]alanine revealed that during the chase LTA was stable whereas its 14C label rapidly decreased. Half-time comparison indicated an enzyme- rather than a base-catalyzed process. Correlated with the loss of [14C]alanine from LTA was an increase of the radioactivity in wall-linked alanine ester which, after hydrolysis with HF, proved to be linked to teichoic acid. These results suggest that LTA-alanine is the donor for alanine esterification of teichoic acid. In connection with previous data we hypothesize that the loss of alanine from LTA is compensated by de novo incorporation.  相似文献   

11.
Polyunsaturated fatty acid (PUFA) utilization was investigated in skin fibroblasts cultured from a female patient with an inherited abnormality in lipid metabolism. These deficient human skin fibroblasts (DF) converted 85;-95% less [1-14C]linoleic acid (18:2n-6) to arachidonic acid (20:4n-6), 95% less [3-14C]tetracosatetraenoic acid (24:4n-6) to docosapentaenoic acid (22:5n-6), and 95% less [1-14C]-linolenic acid (18:3n-3) and [3-14C]tetracosapentaenoic acid (24:5n-3) to docosahexaenoic acid (22:6n-3) than did normal human skin fibroblasts (NF). The only product formed by the DF cultures from [1-14C]tetradecadienoic acid (14:2n-6) was 18:2n-6. However, they produced 50;-90% as much 20:4n-6 as the NF cultures from [1-14C]hexadecatrienoic acid (16:3n-6), [1-14C]gamma-linolenic acid (18:3n-6), and [1-14C]dihomo-gamma-linolenic acid (20:3n-6), PUFA substrates that contain Delta6 double bonds. DF also contained 80% more 18:2n-6 and 25% less 20:4n-6. These results suggested that DF are deficient in Delta6 desaturation. This was confirmed by Northern blots demonstrating an 81;-94% decrease in Delta6-desaturase mRNA content in the DF cultures, whereas the Delta5-desaturase mRNA content was reduced by only 14%. This is the first inherited abnormality in human PUFA metabolism shown to be associated with a Delta6-desaturase deficiency. Furthermore, the finding that the 18- and 24-carbon substrates are equally affected suggests that a single enzyme carries out both Delta6 desaturation reactions in human PUFA metabolism.  相似文献   

12.
Abstract: The incorporation of amino acids into brain proteins following brachial plexus stimulation (BPS) was studied in anaesthetised Sprague-Dawley rats following injection of radioactive precursors of both neuronal and glial compartments. Following intraperitoneal injection of [14C]glucose, which is the major neuronal pool precursor, BPS resulted in a significant increase of 379% ( P ± 0.001) in the incorporation of carbon from [14C]glucose into TCA-insoluble proteins in the contralateral sensorimotor cortex as compared with the ipsilateral area of the same animal. This increase was abolished totally when tetrodotoxin (10 μg ml-1) was applied topically to the surface of the stimulated area. Following intraperitoneal injection of [14C]acetate, which is considered to be mainly a glial cell precursor, the same afferent electrical stimuli caused a significant decrease of 21% in the incorporation of amino acids into proteins in the stimulated versus unstimulated sensorimotor cortex. With [4-3H]phenyl-alanine or [l-14C]leucine as precursors a significant decrease (12%) or no change was recorded, respectively. A similar decrease in protein synthesis in the stimulated sensorimotor cortex was achieved using different routes of injection. No significant changes were observed in the ratio of the specific radioactivities of the total amino acids of the two hemispheres using either precursor. In vitro , synaptosomes showed a large increase in incorporation into proteins after treatment with electrical pulses, both with [14C]glucose and with [U-14C]acetate as precursors.  相似文献   

13.
Abstract: The effect of tetanus toxin on the uptake and release of radiolabelled transmitters from slices prepared from substantia nigra (SN) and striatum of rats has been investigated. Tetanus toxin-500–750 mouse lethal doses (MLD)-injected into the SN 6 h before preparing the slices significantly reduced the calcium-dependent, potassium-evoked release of [3H]GABA. Endogenous GABA levels in the SN and [3H]GABA uptake by nigral slices were unaffected by pretreatment with the toxin. Injections of tetanus toxin (1000–2000 MLD) into the striatum significantly reduced the calcium-dependent, potassium-evoked release of [14C]GABA and also [3H]dopamine, but had no effect on the K+-evoked release of [3H]5-hydroxytryptamine or [14C]acetylcholine. It is concluded that tetanus toxin inhibits GABA release directly and not by interference with synthesis or inactivation processes.  相似文献   

14.
This study was undertaken to determine the mode of transport of the essential (n-3) fatty acids docosahexaenoic acid 22:6(n-3) and linolenic acid 18:3(n-3). Male weanling Sprague-Dawley rats received a mixture of corn oil and [14C]18:3(n-3) or [14C]22:6(n-3) by gavage. At periods of 1 to 4 days after the injection, four rats per time point were killed and samples of blood were taken via heart puncture and the livers and retinas were collected. Blood lipoproteins and plasma proteins were separated by ultracentrifugation and analyzed by HPLC. Lipids were extracted and saponified and the fatty acids were converted to phenacyl esters for separation of individual fatty acids. After 1 and 2 h, radioactivity from 18:3(n-3) and 22:6(n-3) was observed primarily in the chylomicron/very low density lipoprotein fraction. By 4 h, radioactivity in the lipoprotein fraction was greatly decreased, with a small amount of radioactivity associated with albumin in the soluble protein fraction. After 24 h, the total amount of radioactivity associated with lipoprotein was further reduced, with more than half of the remaining label occurring in association with albumin and another unidentified protein. In the liver, 22:6(n-3) was concentrated in triacylglycerols (40.7%) and phospholipids (51.1%), with a maximum specific activity at 4 h. In the rod outer segments (ROS), the specific activity of [14C]22:6(n-3) increased to a maximum at 24 h and maintained a high level even at 4 days. These data suggest that after injection, 18:3(n-3) and 22:6(n-3) are esterified to triglyceride and phospholipid by the intestinal absorptive cells and transported in chylomicrons to the liver. After conversion of 18:3(n-3) to 22:6(n-3) in the liver, the retina accumulates 22:6(n-3) which may be transported from the liver via albumin and another unidentified protein, and is retained by the rod outer segments.  相似文献   

15.
ABSTRACT. Major fatty acid components of Acanthamoeba castellanii lipids extracted after growth at 30°C include myristate, palmitate, stearate and the polyunsaturates linoleate, eicosadienoate, eicosatrienoate and arachidonate, with oleate as the sole major monounsaturated fatty acid. By comparison, growth at 15°C gave increased linoleate, eicosatrienoate and arachidonate, but decreased oleate and palmitate. When the growth temperature was shifted downwards from 30°C to 15°C, increased lipid unsaturation occurred over a period of 24 h; thus decreases of oleate and eicosadienoate were accompanied by increases in linoleate, eicosatrienoate, arachidonate and eicosapentaenoate. An upwards shift from 15°C to 30°C gave negligible alterations in fatty acid composition over a similar period. At 15°C organisms rapidly use [1-14C] acetate for de novo fatty acid synthesis; stearate is converted via oleate to further desaturation and chain elongation products. Similar short term experiments at 30°C indicate only de novo synthesis and Δ9-desaturation; synthesis of polyunsaturates was a much slower process. Rapid incorporation of [1-14C] oleate at 30°C was not accompanied by metabolic conversion over two hours, whereas at 15°C n-6 desaturation to linoleate was observed. Temperature shift of organisms from 15°C to 30°C in the presence of [1-14C] acetate revealed that over half of the fatty acids in newly-synthesised lipids were saturated, but the proportions of unsaturated fatty acids increased with time until the total polyenoate components reached 17% after 22 h. A shift of temperature in the reverse direction gave a corresponding figure of 60% for polyunsaturated fatty acids. These results emphasize the importance of n-6 desaturation in the low temperature adaptation of Acanthamoeba castellanii .  相似文献   

16.
The ability of juvenile turbot, Scophthalmus maximus (L.), to elongate and desaturate various polyunsaturated fatty acids (PUFA) was examined in relation to their lipid composition. Triacylglycerols were the most abundant lipid class present in the fish and phosphatidylcholine was the predominant phospholipid. In all lipid classes examined the levels of (n-3) PUFA exceeded that of (n-6) PUFA. 18C PUFA were minor components in comparison with 20:5(n-3) and 22:6(n-3). 20:4(n-6) was present in highest concentration in phosphatidylinositol in which it accounted for 16.9% of the fatty acids. When the fish were injected with either 14C-labelled 18:2(n-6), 18:3(n-3), 20:4(n-6), 20:5(n-3) or 22:6(n-3) the highest percentage recovery of radioactivity (69%) in body lipid was observed with 22:6(n-3). With all labelled substrates free fatty acids contained only a small proportion of the total recovered radioactivity whereas triacylglycerols were highly labelled. Phosphatidylcholine/sphingomyelin was the most highly labelled polar lipid fraction. With 14C-20:4(n-6) as injected substrate, 23.2% of the radioactivity recovered in total lipid was present in phosphatidylinositol in comparison with less than 6% with the other substrates. Only small proportions of radioactivity from 14C-18:2(n-6) and 14C-18:3(n-3) were recovered in the 20 and 22C fatty acids of triacylglycerols and total polar lipid. With 14C-20:5(n-3) as substrate, 27 and 33% of the total radioactivity recovered in the fatty acids of triacylglycerols and polar lipids respectively was present in 22C fatty acids. The corresponding values for l4C-20:4(n-6) as substrate were 19 and 18%. The results confirm the limited capacity of turbot to convert 18C PUFA to longer chain PUFA but demonstrate their ability to synthesize 22C PUFA from 20C PUFA. They also suggest a small but specific requirement for 20:4(n-6).  相似文献   

17.
Abstract— —In the head of the caudate nucleus, the relative specific activity of glutamine (glutamic acid specific activity = 1) was less than 1 with intravenous [14C]leucine as the tracer metabolite. This is in contrast to observations made in other brain areas (cortex, hippocampus, thalamus, pons, and medulla) where the relative specific activity of glutamine was greater than 1. This is also in contrast to findings when [l-14C]acetate was utilized as the tracer; under these conditions, in all brain areas, including the head of the caudate nucleus, the relative specific activity of glutamine was greater than 1. It is inferred that the differences in metabolism of [14C]leucine and [14C]acetate in the head of the caudate from that in other brain areas reflect differences in compartmentation of the glutamate-glutamine system.  相似文献   

18.
1. The direct effects of temperature on the metabolism of [1-14C]18:2(n-6), [1-14C]18:3(n-3), [1-14C]20:4(n-6) and [1-14C]20:5(n-3) were studied in isolated brain cells from rainbow trout, Oncorhynchus mykiss. 2. Recovery of radioactivity from all the polyunsaturated fatty acids (PUFA) in total lipid was significantly greater at 5 and 15 degrees C than at 25 degrees C. 3. The lower incubation temperatures decreased the relative net incorporation of all the 14C-labelled PUFA into phosphatidylcholine (PC) and increased the relative incorporation of the PUFA into the other phosphoglycerides, especially phosphatidylethanolamine (PE). 4. The effects on PC were generally more significant between 25 and 15 degrees C, whereas the effects on PE were generally significant both between 25 and 15 degrees C and between 15 and 5 degrees C. 5. This suggests that the lysophospholipid acyltransferases responsible for the incorporation of PUFA into different phosphoglycerides may have differential sensitivities to temperature. 6. In contrast, the acyltransferase activities showed fatty acyl preferences that were independent of temperature. 7. Although a trend towards decreased activity at 5 degrees C was apparent, temperature generally had little significant effect on the relative percentages of the PUFA metabolized via the desaturase pathways.  相似文献   

19.
Methanolic extracts of Zea mays L. cv. Fronica root segments which had been incubated in [14C] indole-3-acetie acid were analysed by reverse-phase high-performance liquid chromatography. Metabolism of indole-3-acetic acid was found to be rapid and extensive with at least 11 products apparent after a 2 h incubation. A comparison of metabolites of [1-14C]– and [2-14C] IAA, calculations of 14CO2 evolution, and data on the polarity of products indicated that decarboxylation had not occurred. An average of 34% of the radioactivity remained associated with the indole-3-acetic acid peak.  相似文献   

20.
Uridine and cytidine are major nucleosides and are produced as catabolites of pyrimidine nucleotides. To study the metabolic fates and role of these nucleosides in plants, we have performed pulse (2 h) and chase (12 h) experiments with [2-14C]uridine and [2-14C]cytidine and determined the activities of some related enzymes using tubers and fully expanded leaves from 10-week-old potato plants ( Solanum tuberosum L.). In tubers, more than 94% of exogenously supplied [2-14C]uridine and [2-14C]cytidine was converted to pyrimidine nucleotides and RNA during 2-h pulse, and radioactivity in these salvage products still remained at 12 h after the chase. Little degradation of pyrimidine was found. A similar pyrimidine salvage was operative in leaves, although more than 20% of the radioactivity from [2-14C]uridine and [2-14C]cytidine was released as 14CO2 during the chase. Enzyme profile data show that uridine/cytidine kinase (EC 2.7.1.48) activity is higher in tubers than in leaves, but uridine nucleosidase (EC 3.2.2.3) activity was higher in leaves. In leaves, radioactivity from [U-14C]uracil was incorporated into β-ureidopropionic acid, CO2, β-alanine, pantothenic acid and several common amino acids. Our results suggest two functions of uridine and cytidine metabolism in leaves; these nucleosides are not only substrates for the classical pyrimidine salvage pathways but also starting materials for the biosynthesis of β-alanine. Subsequently, some β-alanine units are utilized for the synthesis of pantothenic acid in potato leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号