首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Six tRNA(Leu) isoacceptors from yellow lupin seeds were purified, sequenced, and their readthrough properties over the UAG stop codon were tested using TMV RNA as a messenger. The tested tRNAs(Leu) did not show amber suppressor activity. The partial structure of tRNA(Gln), a minor species in yellow lupin, was also determined. Comparison of the nucleotide sequence of all known isoacceptors of tRNA(Tyr), tRNA(Gln) and tRNA(Leu) from plants, mammals and ciliates enabled us to find general structural requirements for tRNA to be a UAG suppressor. From the partial sequence of lupin tRNA(Gln) we suggest that it will have readthrough properties.  相似文献   

2.
Analysis of the nucleoside composition of five lysine tRNAs from lupin seeds has shown their general similarity to other eukaryotic lysine tRNAs, except that lupin lysine tRNAs do not contain either t6A, Tm, or thioderivatives of uridine. It is assumed that each of the lupin tRNALys is coded for by a separate gene. The acceptor activity of the analysed tRNAs ranged from about 1200 (tRNA3Lys, tRNA4Lys, tRNA5Lys) to 1470 (tRNA2Lys) pmoles of lysine per one A260 unit of tRNA.  相似文献   

3.
4.
Transfer RNAs isolated from lupin chloroplasts and mitochondria were compared by two-dimensional gel electrophoresis. Twenty chloroplast and 24 mitochondrial tRNA species were identified. The saturation hybridization between lupin chloroplast DNA and 125I-labelled lupin chloroplast tRNAs pointed to the presence of about 34 tRNA genes in lupin chloroplast DNA. The number of mitochondrial tRNA genes estimated by the same method was about 30 genes. EcoRI restriction digest of lupin mitochondrial DNA probed with 32P-labelled lupin mitochondrial tRNAs revealed only a small number of positive restriction fragments. Some of these mitochondrial restriction fragments hybridized with 32P-labelled chloroplast tRNA.  相似文献   

5.
Site specificities of three transfer RNA methyltransferases from yeast   总被引:3,自引:0,他引:3  
The site specificities of two distinct tRNA(m1G)methyltransferases and one tRNA(m2G)methyltransferase from yeast have been investigated by heterologous methylation and analysis of purified Escherichia coli tRNAs. The two tRNA(m1G)methyltransferases were found to be specific for sites 9 and 37, respectively. The tRNA(m2G)methyltransferase was specific for site 10. Two of the enzymes were purified by affinity chromatography on tRNA-Sepharose.  相似文献   

6.
In Bacillus subtilis, selenocysteine tRNA has not been identified in a total genome sequence so far (1). To explore the system of selenocysteine incorporation in B. subtilis, we screened serine-acceptable tRNAs to find an unknown tRNA for selenocysteine by the combined method of specific biotinylation of aa-tRNA (2) and RT-PCR (3). cDNAs obtained from the serine-acceptable tRNA pool were amplified and cloned into plasmid to read its sequence. This procedure gave cDNA library corresponding known serine tRNAs, but no candidate for selenocysteine has been found. Thus, this result, together with the previous data (4), might reveal that there is no selenocysteine tRNA in B. subtilis and/or metabolism of selenium is considerably different from known one as seen in other bacteria.  相似文献   

7.
In contrast to Escherichia coli, where all tRNAs have the CCA motif encoded by their genes, two classes of tRNA precursors exist in the Gram-positive bacterium Bacillus subtilis. Previous evidence had shown that ribonuclease Z (RNase Z) was responsible for the endonucleolytic maturation of the 3' end of those tRNAs lacking an encoded CCA motif, accounting for about one-third of its tRNAs. This suggested that a second pathway of tRNA maturation must exist for those precursors with an encoded CCA motif. In this paper, we examine the potential role of the four known exoribonucleases of B.subtilis, PNPase, RNase R, RNase PH and YhaM, in this alternative pathway. In the absence of RNase PH, precursors of CCA-containing tRNAs accumulate that are a few nucleotides longer than the mature tRNA species observed in wild-type strains or in the other single exonuclease mutants. Thus, RNase PH plays an important role in removing the last few nucleotides of the tRNA precursor in vivo. The presence of three or four exonuclease mutations in a single strain results in CCA-containing tRNA precursors of increasing size, suggesting that, as in E.coli, the exonucleolytic pathway consists of multiple redundant enzymes. Assays of purified RNase PH using in vitro-synthesized tRNA precursor substrates suggest that RNase PH is sensitive to the presence of a CCA motif. The division of labor between the endonucleolytic and exonucleolytic pathways observed in vivo can be explained by the inhibition of RNase Z by the CCA motif in CCA-containing tRNA precursors and by the inhibition of exonucleases by stable secondary structure in the 3' extensions of the majority of CCA-less tRNAs.  相似文献   

8.
A transplantable rat tumor, mammary adenocarcinoma 13762, accumulates tRNA which can be methylated in vitro by mammalian tRNA (adenine-1) methyltransferase. This unusual ability of the tumor RNA to serve as substrate for a homologous tRNA methylating enzyme is correlated with unusually low levels of the A58-specific adenine-1 methyltransferase. The nature of the methyl-accepting RNA has been examined by separating tumor tRNA on two-dimensional polyacrylamide gels. Comparisons of ethidium bromide-stained gels of tumor vs. liver tRNA show no significant quantitative differences and no accumulation of novel tRNAs or precursor tRNAs in adenocarcinoma RNA. Two-dimensional separations of tumor RNA after in vitro [14C]methylation using purified adenine-1 methyltransferase indicate that about 25% of the tRNA species are strongly methyl-accepting RNAs. Identification of six of the tRNAs separated on two-dimensional gels has been carried out by hybridization of cloned tRNA genes to Northern blots. Three of these, tRNALys3, tRNAGln and tRNAMeti, are among the adenocarcinoma methyl-accepting RNAs. The other three RNAs, all of which are leucine-specific tRNAs, show no methyl-accepting properties. Our results suggest that low levels of a tRNA methyltransferase in the adenocarcinoma cause selected species of tRNA to escape the normal A58 methylation, resulting in the appearance of several mature tRNAs which are deficient in 1-methyladenine. The methyl-accepting tRNAs from the tumor appear as ethidium bromide-stained spots of similar intensity to those seen for RNA from rat liver; therefore, methyladenine deficiency does not seem to impair processing of these tRNAs.  相似文献   

9.
10.
During germination of lupin seeds, the levels of in-vivo tRNA aminoacylation increase in different ways, depending on the species of tRNA. Column chromatography of tRNA on reverse-phase-chromatography (RPC-5) has shown the presence of 4 peaks of isoleucyl-tRNA, 5 of leucyl-tRNA, 5 of lysyl-tRNA, 2 of tyrosyl-tRNA, and 4 of valyl-tRNA. Cochromatography of periodate treated and control tRNA preparations, labeled with radioactive amino acids, indicates identical aminoacylation in vivo of isoaccepting tRNAs during plant development. One isoacceptor of isoleucine tRNA changes its elution profile after periodate treatment.Abbreviation RPC-5 reverse-phase-chromatography  相似文献   

11.
The activity of tRNA methyltransferases present in the cerebellum of 6- and 21-day-old nonicteric and icteric Gunn rats was compared using purifiedE. coli tRNAs as substrates. At 6 days the tRNA methyltransferases of the icteric animals were significantly more effective in methylating tRNAGlu 2 and tRNAPhe than were those of their nonicteric counterparts. This relationship reversed itself at 21 days. The action of the tRNA methyltransferases from the 6-day-old icteric animals led to higher proportions of 1-methyladenine in tRNAGlu 2 and tRNAPhe than were obtained using the corresponding enzymes of the nonicteric animals. The proportion ofN 2-methylguanine was also higher, yet only in tRNAfMet and not in tRNAPhe. The study reveals much more extensive fluctuations in the activity and in the substrate recognition specificity among the cerebellar tRNA methyltransferases of the icteric than among those of the nonicteric controls during the crucial 6–21 day period of cerebellar development.  相似文献   

12.
Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed.  相似文献   

13.
Changes in chromatographic profiles of tyrosyl-, leucyl-, tryptophanyl-, and lysyl-transfer ribonucleic acids (tRNAs) are presented as a function of the growth stage in Bacillus subtilis. All of the tRNA groups investigated expressed different temporal patterns of change in isoaccepting species. Tyrosyl-tRNAs were the earliest to change and were followed by changes in leucyl- and then tryptophanyl-tRNAs. Lysyl-tRNAs were unique in having two times of change: one early and one very late. As an aid in understanding the temporal aspect of tRNA alterations during sporulation, the chromatographic profiles of aminoacyl tRNAs from an early blocked asporogenous mutant were studied. The asporogenous mutant used was blocked at the axial filament stage, stage 0 of sporulation. Nevertheless, those tRNAs which showed differences between the spore and cells in exponential growth exhibited similar changes in the asporogenous mutant after 24 h of growth. The data suggest that several tRNA changes occur during development in B. subtilis but that the events leading to these changes are either independent of, or occur before, stage 0 of sporulation, except in the case of lysyl-tRNA.  相似文献   

14.
ATP (CTP):tRNA nucleotidyltransferase (EC 2.7.7.25) was purified to apparent homogeneity from a crude extract of Lupinus albus seeds. Purification was accomplised using a multistep protocol including ammonium sulfate fractionation and chromatography on anion-exchange, hydroxylapatite and affinity columns. The lupin enzyme exhibited a pH optimum and salt and ion requirements that were similar to those of tRNA nucleotidyltransferases from other sources. Oligonucleotides, based on partial amino acid sequence of the purified protein, were used to isolate the corresponding cDNA. The cDNA potentially encodes a protein of 560 amino acids with a predicted molecular mass of 64164 Da in good agreement with the apparent molecular mass of the pure protein determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The size and predicted amino acid sequence of the lupin enzyme are more similar to the enzyme from yeast than from Escherichia coli with some blocks of amino acid sequence conserved among all three enzymes. Functionality of the lupin cDNA was shown by complementation of a temperature-sensitive mutation in the yeast tRNA nucleotidyltransferase gene. While the lupin cDNA compensated for the nucleocytoplasmic defect in the yeast mutant it did not enable the mutant strain to grow at the non-permissive temperature on a non-fermentable carbon source.  相似文献   

15.
tRNA (adenine-1) methyltransferase occurs in Bacillus subtilis. Eucaryotic tRNAThr and tRNATyr from yeast in which 1-methyladenosine (m1A) is already present in the TpsiC loop, can be methylated in vitro with S-adenosylmethionine and B. subtilis extracts. Each of the specific tRNAs accepts 1 mol of methyl groups per mol tRNA. The enzyme transforms into m1A the 3'-terminal adenylic acid residue of the dihydrouridine loop, a new position for a modified adenosine residue in tRNA. Both tRNAs have the sequence Py-A-A-G-G-C-m2(2)G in the D-loop and D-stem region. Other tRNAs with the same sequence in this region also serve as substrates for the tRNA (adenine-1) methyltransferase.  相似文献   

16.
It has been shown that tRNA-Sepharose, a chromatographic adsorbent containing unfractionated tRNA bound to a Sepharose matrix, is a useful, group-specific adsorbent for fractionation of the plant aminoacyl-tRNA synthetases. Conditions are described in which Val-, Trp-, Phe-, Leu- and Ile-tRNA synthetases from yellow lupin seeds can be separated from each other on the tRNA-Sepharose columns. Factors affecting affinity chromatography on the t-RNA-Sepharose columns are discussed. The affinity chromatography procedure for the purification of lupin Ser-tRNA synthetase to homogenity is described.  相似文献   

17.
18.
During isolation of total ribonucleic acids from white lupin (Lupinus albus) and their subsequent separation by 10% polyacrylamide gel electrophoresis, a fast migrating RNA band is very well separated. The nucleotide sequence analysis of 76 nucleotide long sequence with many modified nucleosides was found to be identical with that of tyrosine specific tRNA of yellow lupin seeds (Lupinus luteus) and wheat germ (Triticum aestivum). Also this tRNA(Tyr) is identical with plant amber suppressor tRNA. The presented approach offers a very rapid method of purification of plant tRNA with UAG suppressor activity.  相似文献   

19.
A study on globulins, major storage proteins in yellow lupin seeds, called conglutins, was conducted using SDS polyacrylamide gel electrophoresis. In this paper, an extensive and not yet published list of yellow lupin conglutins is presented. The patterns of subunits of major conglutins in seeds of three yellow lupin cultivars were similar to each other, varying only in the level of some polypeptides. Investigations of seeds of cultivar Parys showed considerable quantitative differences in major subunits. Some minor subunits occurred only in some seeds and were absent in the others. Great differences were shown between single individuals in the amount of subunits of conglutin which is of the most nutritional value due to high content of methionine.  相似文献   

20.
Arginyl-tRNA synthetase has been purified approximately 550 fold from crude extract of human placenta by the following purification steps: Ammonium sulfate fractionation, chromatographies of DEAE-cellulose and CM-Sephadex and Sephadex G-100 gel filtration. Final preparation of this enzyme has specific activity of 123 nmole of arginyl-tRNA formed per mg of protein and was free from other aminoacyl-tRNA synthetase activities. Recognition of various arginine tRNAs with this enzyme was studied using kinetic analysis of arginylation of arginine tRNA and also arginine tRNA dependent ATP-PPi exchange reaction. Affinity of this enzyme with arginine tRNA was determine from Vmas/Km values and it was in the order of rabbit, Chum salmon, B. subtilis, E. coli and yeast in both systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号