首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Self-diffusion of methanol, ethanol, 1-propanol and 2-propanol has been studied by molecular dynamics simulation in the temperature range between the melting pressure curve and 478 K at pressures up to 300 MPa. The simulation results on self-diffusion of methanol, ethanol and 2-propanol (for 2-propanol, at high temperatures) agree well with experiment, which suggests that the simulation method is a powerful tool to obtain self-diffusion coefficients over wide range of temperature and pressure, under which it is rather difficult for experiments. The local structures of methanol, ethanol and 2-propanol are investigated by calculating the radial distribution functions, H-bond numbers, coordination numbers and the ratios of H-bond number divided by coordination number. The correlation between self-diffusion and structural properties, and the influence of temperature and pressure on them are discussed. The degree of forming H-bond space network in methanol, ethanol and water is higher than that in 2-propanol, and they are all higher than those in ammonia and methylamine. The simulation results demonstrate that the effect of hydrogen bonding on the translational dynamics in methanol and ethanol is more pronounced than that in 2-propanol.  相似文献   

2.
The immediate effects of externally added alcohols on CO2 production and O2 consumption of suspensions of washed, aerated baker's yeast were studied by stopped-flow membrane inlet mass spectrometry. Glucose-supported fermentation was progressively inhibited by increasing ethanol concentration (0-20%, v/v). The inhibition by ethanol was quite different from that observed for acetaldehyde; thus it is unlikely that toxicity of the latter can account for the observed effects. For five different alkanols (methanol, ethanol, 1-propanol, 2-propanol and 1-butanol) increasing inhibition of anaerobic fermentation was correlated with increased partition coefficients into a hydrophobic milieu. This suggests that the action of ethanol is primarily located at a hydrophobic site, possibly at a membrane. Results for respiratory activities were not as definite as for those for anaerobic metabolism because some alkanols act as respiratory substrates as well as giving inhibitory effects.  相似文献   

3.
The chiral recognition mechanism of amylose CSPs has been described by achieving the enantiomeric resolution of (+/-)-nebivolol on Chiralpak AD and Chiralpak AD-RH columns with methanol, ethanol, 1-propanol, 2-propanol, 1-butanol as mobile phases at different flow rates. The energies of interactions of methanol, ethanol, 1-propanol, 2-propanol and 1-butanol with both phases were calculated. The (+)-RRRS enantiomer eluted first when using methanol, ethanol and 1-propanol, while the elution order was reversed when using 2-propanol and 1-butanol as the mobile phases. It has been concluded that the reversal elution order observed was due in part to the chiral cavities on the amylose CSP which were responsible for the bondings of different magnitude between chiral stationary phase and enantiomers, which are influenced with the type of alcohol used as mobile phase on the conformation of the 3,5-dimethyl phenyl carbamate moiety on the pyranose ring system of the amylose.  相似文献   

4.
A procedure for the determination of acetaldehyde, acetone, methanol, ethanol, 1-propanol and 2-propanol in blood was developed. Separation of analytes was carried out on DB-wax capillary column (l = 30 m, I.D. = 0.32 mm, dF = 0.5 microm) at 40 degrees C, hydrogen was used as a carrier gas (at 30 kPa) and FID as a detector. Quantification was performed with the use of 2-butanol as an internal standard. Headspace solid-phase microextraction was applied as the sample preparation technique. The usefulness of most commercially available fiber coatings was checked and 65 microm Carbowax/DVB proved most effective. Microextraction was carried out from the headspace at 60 degrees C for 10 min. The sample was stirred at 750 rpm. In order to improve the extraction efficiency of analytes, salting-out agents were also applied. Potassium carbonate turned out to be the most efficient. A 1.0-g amount of this salt and 0.1 ml of I.S. were added to 0.5 ml of sample. Validation of the worked-out method was performed. For each analyte, the limits of detection and quantification, linearity, working range, accuracy and precision were determined or tested.  相似文献   

5.
Monoethanolamine (MEA) is the most typical alkanolamine and its aqueous solutions are widely used for CO2 absorption with mature technology, but the regeneration process is energy consuming. To reduce the energy demand, non-aqueous solvents, such as methanol and ethanol are proposed to substitute water in amine solutions. To understand the influence of the aqueous and non-aqueous solvents on CO2 capture process, the chemical reactions of MEA absorbing CO2 were conducted via ab initio calculations. The non-aqueous solvents discussed in this paper are methanol, ethanol, 1-propanol and 2-propanol. The reaction patterns were investigated and energy barriers were observed. The results show that zwitterion formation and the followed intermolecular hydrogen transfer are proven to be the most possible reaction pattern in both aqueous and non-aqueous solvents. The energy analysis shows that the forward reaction energy barriers increase while the backward barriers decrease as the solvent changes from water to methanol, ethanol, 1-propanol and 2-propanol in turn. The decreases of the energy barriers for backward processes are much higher than the corresponding increases for forward processes. These results indicate that lower energies are required in non-aqueous solvents than in water during the desorption reactions and the non-aqueous solvents are very promising to reduce the regeneration energy consumption in MEA capturing CO2 process. Moreover, the reaction energy gaps between different solvation effects were found to have linear relationship with the logarithm of the dielectric constant difference, which could provide an easy way to theoretically predict the reaction energies of monoethanolamine absorbing CO2 in other solvation effect and can be used to screen appropriate CO2 capture solvent.  相似文献   

6.
Poly(L-lysine) exists as a random-coil at neutral pH, an alpha-helix at alkaline pH, and a beta-sheet when the alpha-helix poly(L-lysine) is heated. The present Fourier-transform infrared (FTIR) study showed that short-chain alcohols (methanol, ethanol, and 2-propanol) partially transformed alpha-helix poly(L-lysine) to beta-sheet when their concentrations were low. At higher concentrations, however, these alcohols reversed the reaction, and the alcohol-induced beta-sheet was transformed back to alpha-helix structure. The reversal occurred at 1.40 M methanol, 0.96 M ethanol, and 0.55 M 2-propanol. The alcohol effects on the secondary structure were further investigated by circular dichroism (CD) on the thermally induced beta-sheet poly(L-lysine). Methanol, ethanol, and 1-propanol, but not 1-butanol, shifted the negative mean-residue ellipticity at 217 nm of the beta-sheet poly(L-lysine) to the positive side at low concentrations of the alcohols and to the negative side at high concentrations. With 1-butanol, only the positive-side shift was observed. The positive-side shift at low concentrations of alcohols indicates enhancement of the hydrophobic interactions among the side chains of the polypeptide in the beta-sheet conformation. The negative-side shift indicates a partial transformation to alpha-helix. The shift from the positive to negative side occurred at 7.1 M methanol, 4.6 M ethanol, and 3.1 M 1-propanol. The alcohol concentrations for the beta-to-alpha transition were higher in the CD study than in the IR study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Phytochrome-enhanced germination of curled dock (Rumex crispus L.) seeds is further stimulated by pretreatments in solutions of 0.5 to 2 molar methanol and 0.03 to ≥ 0.3 molar 2-propanol during a 2-day 20°C imbibition. Similar pretreatments in 0.1 molar ethanol, acetaldehyde, and n-propanol inhibit phytochrome-enhanced germination. If exposure to ethanol is delayed until 16 hours after a red irradiation, seeds escape the ethanol inhibition indicating a mechanism other than toxicity. The rate of escape from ethanol inhibition roughly parallels the escape from phytochrome control in seeds held in water only, indicating possible ethanol effects on phytochrome. It was found that ethanol pretreatment prevents the far-red absorbing form of phytochrome (Pfr) from acting but does not accelerate dark decay or prevent transformation. Ethanol inhibition may be prevented if ethanol pretreatment is at 10°C instead of 20°C, or may be overcome by transferring ethanol-pretreated seeds to 10°C in water. Similarly, ethanol inhibition can be overcome by a 2-hour 40°C temperature shift concluding the pretreatment. It is proposed that the ethanol causes perturbations at a membrane which prevent Pfr from acting.  相似文献   

8.
Rhizomorph Formation in Fungi   总被引:1,自引:0,他引:1  
The effect on growth and rhizomorph formation of 12 alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butyl alcohol, tert-butyl alcohol, 1-pentanol, iso-amyl alcohol, ethylene glycol and glycerol) at different concentrations has been examined for 2 isolates of Armillaria mellea (Vahl ex Fr.) Quél. and 1 of Clitocybe geotropa (Bull. ex Fr.) Quél. The fungi were cultivated for 28 days on a synthetic, liquid glucose medium with the alcohols as supplement. The following alcohols strongly stimulated growth and rhizomorph formation: ethanol, 1-propanol and 1-butanol. A great variation was demonstrated between the isolates in relation to rhizomorph production, morphology, and ability to be stimulated by different alcohols.  相似文献   

9.
The enantioseparation of albendazole sulfoxide (ABZSO) by chiral supercritical-fluid chromatography (SFC) on two columns, based on the polysaccharide derivatives Chiralpak AD and Chiralcel OD, was studied. The effect of different modifiers, methanol, ethanol, 2-propanol, and acetonitrile, was examined. The results showed that ABZSO can be separated on both columns, using an alcohol-type modifier. Using the Chiralpak AD column, the best results were obtained with 2-propanol and, in the case of the Chiralcel OD, with methanol.  相似文献   

10.
Cytochrome c can be readily adsorbed onto mesoporous silicates at high loadings of up to 10 mmol g(-)(1) of silicate. The adsorbed protein retains its peroxidative activity, with no diffusional limitations being observed. The protein can be adsorbed onto the external surface of the silicate or, provided that the pore diameter is sufficiently large, into the channels. In aqueous buffer, the catalytic activity of the adsorbed protein (for the oxidation of ABTS) decreased with increasing temperature, with the decrease being less marked for cytochrome c held within the silicate channels. Similar results were obtained in 95% methanol. Analysis of kinetic data showed that significant increases in k(cat)/K(M) occurred in methanol, ethanol, and formamide, with slight decreases occurring in 1-methoxy-2-propanol. The observed increases were primarily a result of substantial increases in k(cat), while the results in 1-methoxy-2-propanol can be ascribed to increases in K(M). Resonance Raman spectroscopy indicated that the structure of the heme environment of the adsorbed protein was essentially unchanged, in aqueous buffer and in the nonaqueous solvents, methanol, 1-methoxy-2-propanol, and ethanol. In addition, Raman spectra of the lyophilized protein indicated that there were no apparent changes in the heme structure.  相似文献   

11.
Two types of mesophilic, methanogenic bacteria were isolated in pure culture from anaerobic freshwater and marine mud with 2-propanol as the hydrogen donor. The freshwater strain (SK) was a Methanospirillum species, the marine, salt-requiring strain (CV), which had irregular coccoid cells, resembled Methanogenium sp. Stoichiometric measurements revealed formation of 1 mol of CH4 by CO2 reduction, with 4 mol of 2-propanol being converted to acetone. In addition to 2-propanol, the isolates used 2-butanol, H2, or formate but not methanol or polyols. Acetate did not serve as an energy substrate but was necessary as a carbon source. Strain CV also oxidized ethanol or 1-propanol to acetate or propionate, respectively; growth on the latter alcohols was slower, but final cell densities were about threefold higher than on 2-propanol. Both strains grew well in defined, bicarbonate-buffered, sulfide-reduced media. For cultivation of strain CV, additions of biotin, vitamin B12, and tungstate were necessary. The newly isolated strains are the first methanogens that were shown to grow in pure culture with alcohols other than methanol. Bioenergetic aspects of secondary and primary alcohol utilization by methanogens are discussed.  相似文献   

12.
Zanthoxylum bungeanum extracts were prepared using seven solvents: water, methanol, ethanol, acetic acid, ethyl acetate, chloroform, and benzene. The volatile composition in the extracts was qualitatively analyzed using headspace solid‐phase microextraction coupled with gas chromatography mass spectrometry detection, and the alkylamide composition was determined using high‐performance liquid chromatography. The extract compositions differed with respect to the solvents. A total of 49 volatile components belonging to four groups, terpenoids, alcohols, esters, and ketones, were identified in the extracts. The Z. bungeanum extracts were either ester or terpenoid type, dominated by linalyl acetate. The extracts were divided into three distinct groups based on principal component analysis and hierarchical clustering analysis. Water, methanol, and ethanol extracts could be applied in the food and pharmaceutical industries.  相似文献   

13.
Due to their frequent occurrence in food, cosmetics and pharmaceutical products, and their poor solubility in water, the detection of peroxides in organic solvents has aroused significant interest. For diagnostics or on-site testing, a fast and specific experimental approach is required. Although aqueous peroxide biosensors are well known, they are usually not suitable for nonaqueous applications due to their instability. Here we describe an organic phase biosensor for hydrogen peroxide based on horseradish peroxidase immobilized in an Eastman AQ 55 polymer matrix. Rotating disc amperometry was used to examine the effect of the solvent properties, the amount and pH of added buffer, the concentration of peroxide and ferrocene dimethanol, and the amount of Eastman AQ 55 and of enzyme on the response of the biosensor to hydrogen peroxide. The response of the biosensor was limited by diffusion. Linear responses (with detection limits to hydrogen peroxide given in parentheses) were obtained in methanol (1.2 microM), ethanol (0.6 microM), 1-propanol (2.8 microM), acetone (1.4 microM), acetonitrile (2.6 microM), and ethylene glycol (13.6 microM). The rate of diffusion of ferrocene dimethanol was more constrained than the rate of diffusion of hydrogen peroxide, resulting in a comparatively narrow linear range. The main advantages of the sensor are its ease of use and a high degree of reproducibility, together with good operational and storage stability.  相似文献   

14.
The early cancer diagnosis increases the possibility of total recovery. The infection of Helicobacter pylori is associated with gastric cancer, the second most common cancer in the world. The determination of volatile organic compounds (VOCs) excreted by stomach tissue and bacteria culture has been investigated. Solid-phase microextraction (SPME) was used for preconcentration and the determination was accomplished by gas chromatography coupled with mass spectrometry (GC/MS). The samples of tissue were taken from five patients (ten samples) with stomach cancer and normal (non-cancerous) segments from other parts of the stomach were used as a control. Eighteen compounds were identified in stomach tissue and seven of them were present both in healthy and cancer tissue. These compounds assumed to be endogenous and acetone ratio (AR) was calculated for ethanol, butane, carbon disulfide, 1-propanol, 2-butanone and 2-pentanone. The data shows that amount of 1-propanol and carbon disulfide in the gaseous composition is higher in cancer tissue than in normal tissue. Eight compounds were identified both in bacteria and tissue. These data suggest that bacteria present in the stomach might cause the increase in the concentration of 1-propanol and carbon disulfide in emission from cancer tissue.  相似文献   

15.
Following a simple and quick treatment based on dissolving the crude lipase from Candida rugosa in different percentages (v/v) of several polar organic solvents (methanol, ethanol, 1 and 2-propanol, 1 and 2-butanol and acetone) followed by dialysis, different preparations with enhanced activities were obtained. The opening of the lid covering the active site is proposed as the reason for explaining the activity enhancement, both in aqueous and anhydrous organic media.  相似文献   

16.
《Carbohydrate research》1987,166(2):283-297
Potato and waxy-maize starches were separately modified for 1 h at 65° with 0.36% hydrochloric acid in methanol, ethanol, 2-propanol, and 1-butanol. All of the modified starches were readily soluble in hot water, to give crystal-clear solutions up to a concentration of at least 20% (w/v). The modified granules were studied by light-microscopy and iodine-iodide staining. All of the modified starches retained their granule appearance, although with various degrees of damage that progressively increased from methanol to 1-butanol. Both hydrolysis and alcoholysis occurred, but to different extents in the different alcohols. The highest proportion of alcoholysis occurred in methanol where 50% of the resulting molecules were glycosides, the lowest in 1-butanol where 6% were glycosides. The number-average molecular weights of the modified starches also progressively decreased from 126,670 for the methanol-modified waxy-maize starch to 4,750 for the 1-butanol-modified potato starch. The methanol- and ethanol-modified potato starches were fractionated into amylose and amylopectin components. The 2-propanol- and 1-butanol-modified potato starches gave only an amylopectin component. The amylose components were characterized by gel-permeation chromatography on Bio-Gel A-5m, and the amylopectin components, on Bio-Gels A-150m and A-0.5m. The molecular sizes of the amylose and amylopectin components progressively decreased from methanol- to 1-butanol-modified starches. Furthermore, the polymodal composition of the amylopectin component was decreased to give a more homogeneous product. Waxy-maize starch was modified in methanol and 2-propanol and gave products that were of lower molecular size and more homogeneous than the polymodal native starch. It is shown that the differential effect of the different alcohols on the modification of the starch granules is produced by effecting different concentrations of acid inside the granule, where hydrolysis occurs in the 10–12% of water contained in the granule. It is postulated that 2-propanol and 1-butanol dissolve the double-helical, crystalline regions in the starch granule to give different types of products under otherwise identical conditions of modification.  相似文献   

17.
When Rhizopus oryzae was grown on medium containing cassava bagasse plus soybean meal (5:5 w/w), CO2 production was at its highest (200 ml.l–1) while highest volatile metabolite production was with amaranth grain as substrate (282.8 ml.l–1). In the headspace, ethanol was the most abundant compound (more than 80%). Acetaldehyde, 1-propanol, ethyl acetate, ethyl propionate and 3-methyl butanol were also present. CO2 and volatile metabolite productions reached their maxima around 20 h and 36 h, respectively. © Rapid Science Ltd. 1998  相似文献   

18.
A headspace gas chromatographic method using a fused-silica capillary column Poraplot Q has been developed and validated for the detection and quantification of ethanol in urine. Under optimized conditions, ethanol was properly separated from acetaldehyde, acetone, isopropanol, methanol and n-propanol. Limits of detection (LODs) and quantification (LOQs) were 0.008 and 0.010 g/l, respectively. The precision studies within-run and between-run, using spiked urine samples (0.08, 0.8 and 2.0 g/l) showed maximum coefficients of variation 5.9 and 6.5%, respectively. Results of ethanol recovery varied from 91.6±0.8 to 103.3±1.8% over the concentration range from 0.01 to 3.20 g/l. The method was appropriate for the detection of ethanol in urine samples. This matrix can be used for monitoring alcohol abuse in the workplace and used in alcohol rehabilitation programs.  相似文献   

19.
A simple and rapid method using liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC/MS/MS) for the simultaneous determination of 130 veterinary drugs and their metabolites in bovine, porcine, and chicken muscle was developed. The drugs (1 to 10 ng/g, in muscle) were extracted from bovine, porcine, or chicken muscles with acetonitrile-methanol (95:5, v/v), and the extracts were delipidated with n-hexane saturated with acetonitrile. The extracts were evaporated, dissolved with methanol, analyzed by liquid chromatography with gradient elution on a C18 column, and determined by electrospray ionization tandem mass spectrometry. The detection limits ranged from 0.03 to 3 ng/g. The quantitation limits ranged from 0.1 to 10 ng/g. One hundred eleven, 122, and 123 drugs from bovine, porcine, and chicken muscle respectively showed recoveries between 70 and 110%.  相似文献   

20.
Coleus forskohlii hairy root cultures were shown to biotransform methanol and ethanol to the corresponding beta-D-glucopyranosides and beta-D-ribo-hex-3-ulopyranosides, and 2-propanol to its beta-D-glucopyranoside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号