首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5.8 S RNA-protein complexes were prepared using purified yeast 5.8 S RNA and proteins from the large ribosomal subunit of rat liver. Formation of such hybrid complexes, as measured by Millipore filtration, was dependent on protein concentration. Binding of proteins to the RNA could approach saturation. Such complexes were isolated from sucrose density gradient centrifugation and shown to contain proteins L6, L8, L19, L35 and L35a. These proteins were identified by their molecular weights on polyacrylamide gels containing dodecylsulfate and their mobilities on two dimensional polyacrylamide gels.  相似文献   

2.
E. coli ribosomal proteins are retained by nitrocellulose filters. In contrast, 16S RNA passes through nitrocellulose filters. We have found that specific protein-RNA complexes involving single proteins also pass through nitrocellulose filters. Thus, by utilizing radioactively labeled r-proteins, nitrocellulose filtration can be used to study directly and sensitively the stoichiometry of r-protein-RNA association. The filtration process maintains near equilibrium conditions, making it applicable to weak as well as strong protein-RNA associations. We have used nitrocellulose filtration to obtain saturation binding curves for the association of proteins S4, S7, S8 and S20 with 16S RNA. In each case, the stoichiometry of binding was one mole of protein or less per mole of RNA. The stoichiometry of protein S8 binding to 16S RNA measured by filtration is comparable to that observed by sucrose gradient centrifugation. Association constants for the binding of proteins S4, S8 and S20 to 16S RNA have been determined by analysis of the saturation binding curves and were found to range from .3-6 X 10(7)M-1.  相似文献   

3.
Rat liver 60S ribosomal subunits were irradiated with 254-nm ultraviolet light (1.26 X 10(4) quanta/subunit), under conditions which preserved their functional activity. Cross-linked RNA-protein complexes were recovered after unreacted proteins had been removed by repeated acetic acid extractions. Proteins linked to the whole rRNA, to 5S RNA and to 28-5.8 S RNAs were identified by two-dimensional gel electrophoresis after RNA hydrolysis by ribonucleases T1 and A. Our results showed that numerous proteins interact with rRNAs (at least ten with 28-5.8 S RNA, eight with 5S RNA and among these three are common to both) and have been discussed in the light of all the available data.  相似文献   

4.
At a high concentration of MgCl2 (30 mM) and a low concentration of proteins from the 50-S subunit (0.2 mg/ml), only three proteins, L15, L18 and L25, bind to 5-S RNA in significant amounts. On the other hand, in a buffer containing only 1 mM Mg Cl2, but otherwise at the same ionic strength (0.2 M), or at a protein concentration about 1.5 mg/ml, a large, stable complex can form between immobilized 5-S RNA and 50-S ribosomal proteins. This complex contains proteins L2, L3, L5, L15, L16, L17, L18, L21, L22, L25, L33 and L34, and it possess properties relevant to the function of the 50-S subunit; it has a binding site for deacylated tRNA, with a dissociation constant of 4.5 x 10(-7) M. The complex formed with 5-S RNA immobilized on an affinity column interacts also with 30-S subunits. The 5-S RNA-protein complex is interpreted as a sub-ribosomal domain which includes a considerable fraction of the peptidyl transferase center of the Escherichia coli ribosome.  相似文献   

5.
Rat liver 5S rRNA and 5.8S rRNA were end-labelled with 32P at 5'-end or 3'-end of the polynucleotide chain and partially digested with single-strand specific S1 nuclease and double-strand specific endonuclease from the cobra Naja naja oxiana venom. The parallel use of these two structure-specific enzymes in combination with rapid sequencing technique allowed the exact localization of single-stranded and double-stranded regions in 5S RNA and 5.8 S RNA. The most accessible regions to S1 nuclease in 5S RNA are regions 33-42, 74-78, 102-103 and in 5.8 S RNA 16-20, 26-29, 34-36, 74-80 and a region around 125-130. The cobra venom endonuclease cleaves the following areas in 5S RNA: 7-8, 17-20, 28-30, 49-51, 56-57, 60-64, 69-70, 81-82, 95-97, 106-112. In 5.8S RNA the venom endonuclease cleavage sites are 4-7, 10-13, 21-22, 33-35, 43-45, 51-55, 72-74, 85-87, 98-99, 105-106, 114-115, 132-135. According to these results the tRNA binding sequences proposed by Nishikawa and Takemura [(1974) FEBS Lett. 40, 106-109], in 5S RNA are located in partly single-stranded region, but in 5.8S RNA in double-stranded region.  相似文献   

6.
7.
Selected groups of isolated 14C-labelled proteins from E. coli 30S ribosomal subunits were reconstituted with 32P-labelled 16S RNA, and the reconstituted complexes were partially digested with ribonuclease A. RNA fragments protected by the proteins were separated by gel electrophoresis and subjected to sequence analysis. Complexes containing proteins S7 and S19 protected an RNA region comprising helices 29 to 32, part of helix 41, and helices 42 and 43 of the 16S RNA secondary structure. Addition of protein S9 had no effect. When compared with previous data for proteins S7, S9, S14 and S19, these results suggest that S14 interacts with helix 33, and that S9 and S14 together interact with the loop-end of helix 41. Complexes containing proteins S8, S15 and S17 protected helices 7 to 10 as well as the "S8-S15 binding site" (helices 20, 22 and parts of helices 21 and 23). When protein S15 was omitted, S8 and S18 showed protection of part of helix 44 in addition to the latter regions. The results are discussed in terms of our model for the detailed arrangement of proteins and RNA in the 30S subunit.  相似文献   

8.
A ribosomal protein binding site in the eukaryotic 5S rRNA has been delineated by examining the effect of sequence variation and nucleotide modification on the RNA's ability to exchange into the EDTA-released, yeast ribosomal 5S RNA-protein complex. 5S RNAs of divergent sequence from a variety of eukaryotic origins could be readily exchanged into the yeast complex but RNA from bacterial origins was rejected. Nucleotide modifications in any of three analogous helical regions in eukaryotic 5S RNAs of differing origin reduced the ability of this RNA molecule to form homologous or heterologous RNA-protein complexes. Because sequence comparisons did not indicate common nucleotide sequences in the interacting helical regions, a model is suggested in which the eukaryotic 5S RNA binding protein does not simply recognize specific nucleotide sequences but interacts with three strategically oriented helical domains or functional groups within these domains. Two of the domains bear a limited sequence homology with each other and contain an unpaired nucleotide or "bulge" similar to that recently reported for one of the 5S RNA binding proteins in Escherichia coli (Peattie, D.A., Douthwaite, S., Garrett, R.A. and Noller, H.F. (1981) Proc. Natl. Acad. Sci. 78, 7331-7335). The results further indicate that the single ribosomal protein of eukaryotic 5S RNA-protein complexes interacts with the same region of the 5S rRNA molecule as do the multiple protein components in complexes of prokaryotic origin.  相似文献   

9.
Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20° C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloroplast 30S ribosomal subunits. A set of only 7 proteins was bound to chloroplast rRNA in stringent conditions: chloroplast S6, S10, S11, S14, S15, S17 and S22. They also bound to E. coli 16S rRNA. This set includes 4 chloroplast-synthesized proteins: S6, S11, S15 and S22. The core particles obtained after treatment by LiCl of chloroplast 30S ribosomal subunit contained 3 proteins (S6, S10 and S14) which are included in the set of 7 binding proteins. This set of proteins probably play a part in the early steps of the assembly of the chloroplast 30S ribosomal subunit.  相似文献   

10.
5S RNA-protein complexes were prepared in vitro using partially purified E. coli 5S RNA and total E. coli 70S ribosomal proteins. The complexes were isolated from sucrose gradients and shown to contain proteins L5, L18, L25 and a fourth protein not heretofore characterized and designed L31. The complexes were treated with the crosslinking reagents dimethyl suberimidate and dimethyl-3,3'-dithiobispropionimidate. Both reagents gave identical patterns of crosslinked proteins when analyzed by one-dimensional polyacrylamide/dodecylsulfate gel electrophoresis. Dimers of L5-L31', L5-L18 and L18-L18 and a trimer containing L5, L18 and L31' were identified by diagonal polyacrylamide/dodecylsulfate gel electrophoresis of the proteins crosslinked with dimethyl-3,3'-dithiobispropionimidate. No crosslinking was detected between L25 and the other three proteins.  相似文献   

11.
Yeast 5.8 S rRNA is released from purified 26 S rRNA when it is dissolved in water or low salt buffer (50 mM KCl, 10mM Tris-HCl, pH 7.5); it is not released from 60 S ribosomal subunits under similar conditions. The 5.8 S RNA component together with 5 S rRNA can be released from subunits or whole ribosomes by brief heat treatment or in 50% formamide; the Tm for the heat dissociation of 5.8 S RNA is 47 degrees C. This Tm is only slightly lower when 5 S rRNA is released first with EDTA treatment prior to heat treatment. No ribosomal proteins are released by the brief heat treatment. A significant portion of the 5.8 S RNA reassociates with the 60 S subunit when suspended in a higher salt buffer (e.g.0.4 m KCl, 25 mM Tris-HCl, pH 7.5, 6 mM magnesium acetate, 5 mM beta-mercaptoethanol). The Tm of this reassociated complex is also 47 degrees C. The results indicate that in yeast ribosomes the 5.8 S-26 S rRNA interaction is stabilized by ribosomal proteins but that the association is sufficiently loose to permit a reversible dissociation of the 5.8 S rRNA molecule.  相似文献   

12.
RNA-protein cross-links were introduced into E. coli 30S ribosomal subunits by treatment with bis-(2-chloroethyl)-methylamine. After partial nuclease digestion of the RNA moiety, a number of cross-linked RNA-protein complexes were isolated by a new three-step procedure. Protein and RNA analysis of the individual complexes gave the following results: proteins S4 and S9 are cross-linked to the 16S RNA at positions 413 and 954, respectively. Proteins S11 and S21 are both cross-linked to the RNA within an oligonucleotide encompassing positions 693-697, and proteins S17, S10, S3 and S7 are cross-linked within oligonucleotides encompassing positions 278-280, 1139-1144, 1155-1158, and 1531-1542, respectively. A cross-link to protein S18 was found by a process of elimination to lie between positions 845 and 851.  相似文献   

13.
1. This paper describes a standard procedure for the preparation and purification of RNA from the post-mitochondrial supernatants of a number of eukaryotes. 2. Cytoplasmic RNA was fractionated by NaCl precipitation. The 28S (26S), 18S and 5.8S rRNA, and 9S RNA, in the NaCl insoluble fraction were separated by a two-step sucrose gradient fractionation procedure. Poly(A)-containing mRNA in hen 9S RNA was purified by affinity chromatography. The 5S rRNA and tRNA in the NaCl-soluble fraction were fractionated by gel filtration. 3. Polyacrylamide gel electrophoresis showed that the above RNA species were remarkably stable and homogeneous. Differences were found in the 26-28S rRNA, 5.8S rRNA, and 9S RNA of different eukaryotes, but other cytoplasmic RNA species were identical.  相似文献   

14.
We have investigated protein-rRNA cross-links formed in 30S and 50S ribosomal subunits of Escherichia coli and Bacillus stearothermophilus at the molecular level using UV and 2-iminothiolane as cross-linking agents. We identified amino acids cross-linked to rRNA for 13 ribosomal proteins from these organisms, namely derived from S3, S4, S7, S14, S17, L2, L4, L6, L14, L27, L28, L29 and L36. Several other peptide stretches cross-linked to rRNA have been sequenced in which no direct cross-linked amino acid could be detected. The cross-linked amino acids are positioned within loop domains carrying RNA binding features such as conserved basic and aromatic residues. One of the cross-linked peptides in ribosomal protein S3 shows a common primary sequence motif--the KH motif--directly involved in interaction with rRNA, and the cross-linked amino acid in ribosomal protein L36 lies within the zinc finger-like motif of this protein. The cross-linked amino acids in ribosomal proteins S17 and L6 prove the proposed RNA interacting site derived from three-dimensional models. A comparison of our structural data with mutations in ribosomal proteins that lead to antibiotic resistance, and with those from protein-antibiotic cross-linking experiments, reveals functional implications for ribosomal proteins that interact with rRNA.  相似文献   

15.
Proteins of the large ribosomal subunit of rat liver (TP 60) were immobilized by diffusion transfer onto nitrocellulose after two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Incubation of the TP 60 blots with 32P-labeled 5 S RNA under defined ionic conditions (300 mM KCl, 20 mM MgCl2) resulted in specific binding to a limited set of ribosomal proteins consisting of proteins L3, L4, L6, L13/15 and--to a lesser extent--L7 and L19. Under identical conditions, blots with proteins of the small ribosomal subunit (TP 40) did not bind 5 S RNA.  相似文献   

16.
70S ribosomes from E. coli were chemically cross-linked under conditions of in vitro protein biosynthesis. The ribosomal RNAs were extracted from reacted ribosomes and separated on sucrose gradients. The 5S RNA was shown to contain the ribosomal protein L25 covalently bound. After total RNase T1 hydrolysis of the covalent RNA-protein complex several high molecular weight RNA fragments were obtained and identified by sequencing. One fragment, sequence region U103 to U120, was shown to be directly linked to the protein first by protein specific staining of the particular fragment and second by phosphor cellulose chromatography of the covalent RNA-protein complex. The other two fragments, U89 to G106 and A34 to G51, could not be shown to be directly linked to L25 but were only formed under cross-linking conditions. While the fragment U89 to G106 may be protected from RNase T1 digestion because of a strong interaction with the covalent RNA-protein complex, the formation of the fragment A34 to G51 is very likely the result of a double monovalent modification of two neighbouring guanosines in the 5S RNA. The RNA sequences U103 to U120 established to be in direct contact to the protein L25 within the ribosome falls into the sequence region previously proposed as L25 binding site from studies with isolated 5S RNA-protein complexes.  相似文献   

17.
The primary binding sites for Bacillus stearothermophilus proteins B-L5 and B-L22 and the Escherichia coli proteins E-L5, E-L18 and E-L25 on B. stearothermophilus 5S RNA were determined by limited ribonuclease digestion of the corresponding 5S RNA-protein complexes. The results obtained in this study are in agreement with our previous experiments in which the binding sites of E. coli and B. stearothermophilus proteins were determined for E. coli 5S RNA and lead to the conclusion that the proteins interact with the most conserved regions of 5S RNA. A comparison of the results obtained in this study with those of other published experiments suggest that the proposed interaction of nucleotides 16-21 with those of 58-63 is facilitated by protein binding to 5S RNA.  相似文献   

18.
The capacity of some Escherichia coli (E. coli) ribosomal proteins to bind to tRNA and to hydrolyse their aminoacylated derivatives has been analysed. The following results were obtained: (1) The basic proteins L2, L16 and L33 and S20 bound f[3H]Met-tRNA to a similar extent as the total proteins from 30 S (TP30) or 50 S (TP50) when tested by nitrocellulose filtration, in contrast to the more acidic proteins L7/L12 and S8. (2) The proteins of the peptidyltransferase centre, L2 and L16, showed no distinct specificity, binding various charged tRNAs from E. coli and Saccharomyces cerevisiae (S. cerevisiae). (3) A number of isolated ribosomal proteins hydrolysed aminoacyl-tRNA as assessed by trichloroacetic acid precipitation, in contrast to the TP30 and TP50. (4) The loss of radiolabel from Ac[14C]Phe-tRNA and from [14C]tRNA in the presence of these proteins could not be prevented by RNasin, a ribonuclease inhibitor, whereas that mediated by a sample of non-RNase-free bovine serum albumin was inhibited. (5) When double-labelled, Ac[3H]Phe-[14C]tRNA was incubated with L2 both radiolabels were lost, indicating that this potential candidate for a peptidyltransferase enzyme does not specifically cleave the ester bond between the aminoacyl residue and the tRNA.  相似文献   

19.
The possible location of RNA in the ribosomal attachment site for the eukaryotic elongation factor EF-2 was analysed. Stable EF-2 · ribosome complexes formed in the presence of the non-hydrolysable GTP analogue GuoPP[CH2]P were cross-linked with the short (4 Å between the reactive groups) bifunctional reagent, diepoxybutane. Non-cross-linked EF-2 was removed and the covalent factor-ribosome complex isolated. No interaction between EF-2 and 18 S or 28 S rRNA could be demonstrated. However, density gradient centrifugation of the cross-linked ribosomal complexes showed an increased density (1.25 g/cm3) of the factor, as expected from a covalent complex between EF-2 and a low-molecular-weight RNA species. Treatment of the covalent ribosome-factor complexes with EDTA released approx 50% of the cross-linked EF-2 from the ribosome together with the 5 S rRNA · protein L5 complex. Furthermore, the complex co-migrated with the 5S rRNA · L5 particle in sucrose gradients. Polyacrylamide gel electrophoresis showed that EF-2 was directly linked to 5 S rRNA in the 5 S rRNA · L5 complex, as well as in the complexes isolated by density gradient centrifugation. No traces of 5.8 S rRNA or tRNA could be demonstrated. The data indicate that the ribosomal binding domain for EF-2 contains the 5 S rRNA · protein L5 particle and that EF-2 is located in close proximity to 5 S rRNA within the EF-2 · GuoPP[CH2]P · ribosome complex.  相似文献   

20.
Pancreatic RNase partial digests of 32P-labelled 5 S RNA-protein complexes have been fractionated by electrophoresis on polyacrylamide gels. Specific fragments of the 5 S RNA molecule have been recovered from electrophoresis bands containing polynucleotide-protein complexes. These digestion-resistant complexes are only found if RNase treatment is carried out in the presence of at least one of the two 50 S subunit proteins L18 and L25, which are able to bind to 5 S RNA individually and specifically. The sequences of the isolated fragments have been determined. From the results, it can be concluded that sequence 69 to 120 and, possibly, sequence 1 to 11, are involved in the 5 S RNA-protein interactions which are responsible for the insertion of 5 S RNA in the 50 S subunit structure. Sequence 12 to 68, on the other hand, has no strong interactions with proteins L18 and L25. Each protein certainly binds to several nucleotide residues, which are not contiguous in the primary structure. In particular, good experimental evidence has been obtained in favour of the binding of protein L25 to two distant regions of the 5 S RNA molecule, which must have a bihelical secondary structure. The importance of the 5 S RNA conformation for its proper insertion in the 50 S subunit is thus confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号