首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of 12-0-tetradecanoylphorbol-13-acetate (TPA) to mouse skin leads to the induction of ornithine decarboxylase (EC 4.1.1.17) and the accumulation of putrescine. The relevance of these TPA-induced changes to the mechanism of tumor promotion was determined using α-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase. α-Difluoromethylornithine applied to the skin of mice or administered in drinking water in conjunction with applications of TPA to 7,12-dimethylbenz[a]anthracene-initiated mouse skin inhibited the formation of mouse skin papillomas by 50 and 90% respectively; TPA-induced ornithine decarboxylase activity and the accumulation of putrescine were almost completely inhibited.  相似文献   

2.
Ornithine decarboxylase was purified at least 1500-fold from mouse epidermis pretreated with five consecutive doses of 12-O-tetradecanoylphorbol-13-acetate and 3-isobutyl-1-methylxanthine at 3- to 4-day intervals. Following DEAE-cellulose chromatography and ammonium sulfate precipitation, ornithine decarboxylase was purified further by affinity chromatography. Ornithine decarboxylase was then radioactively labeled by covalently binding [3H]-alpha-difluromethylornithine to the enzyme following polyacrylamide gel electrophoresis under non-denaturing conditions. Following sodium dodecyl sulfate polyacrylamide gel electrophoresis and silver staining of protein, a band was identified that corresponded to a molecular weight of approx. 56,000, coincident with a peak of radioactivity. This is the first study to purify ornithine decarboxylase from mouse epidermis.  相似文献   

3.
ABSTRACT

In general, chronotherapy is desirable for a more effective and/or safe dosage regimen. In this study, a daily rhythm of skin vitamin D receptor (VDR) and chronotherapeutic profiles of maxacalcitol, a vitamin D analogue, were evaluated using mice with skin inflammation induced by topical 12-O-tetradecanoylphorbol-13-acetate (TPA). This study showed that skin nuclear VDR expression in TPA-treated mice has a daily rhythm with the peak at the middle of active period. The effects of maxacalcitol were greater after dosing during early to middle of active period than those after dosing during early to middle of inactive period. These data suggest that chronotherapeutic profiles of maxacalcitol partly depend on the daily rhythm of skin nuclear VDR in TPA-treated mice. Because TPA-treated mice are considered as one of animal models of psoriasis, these animal data might be helpful for establishing chronotherapeutic approach of maxacalcitol in clinical practice.  相似文献   

4.
To investigate the inhibition of DNA replication by tumor promoters, we incubated HeLa cells with 12-O-tetradecanoylphorbol-13-acetate (TPA; 10?8 to 10?5 g/ml) and quantified DNA synthesis on alkaline sucrose gradients. TPA was found to selectively inhibit replicon initiation without affecting DNA chain elongation in replicons that had already initiated. No inhibition of DNA synthesis was seen when cells were exposed to the nonpromoting derivative of TPA, 4-α-phorbol 12,13-didecanoate. Superoxide dismutase did not prevent the TPA-induced inhibition of initiation.  相似文献   

5.
Ornithine decarboxylase is the rate-limiting enzyme in the biosynthesis of polyamines, which are believed to play an essential role in diverse biological processes including cell proliferation and differentiation. We have previously reported [J. Bomser, K. Singletary, M. Wallig, M. Smith, Inhibition of TPA-induced tumor promotion in CD-1 mouse epidermis by a polyphenolic fraction from grape seeds, Cancer Letters 135 (1999) 151-157] that pre-application of a grape polyphenolic fraction (GPF) to mouse skin epidermis inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ornithine decarboxylase (ODC) activity, as well as 7, 12-dimethylbenz[a]anthracene (DMBA)-initiated, TPA-promoted mouse skin tumorigenesis. The present studies were designed to further characterize the effect of time and dose of application of GPF on TPA-induced ODC activity and protein expression, and on protein kinase C activity in mouse skin epidermis. In addition, the effect of GPF on ODC kinetics in vitro was examined. Application of 5, 10, and 20 mg of GPF 20 min prior to treatment with TPA resulted in a significant decrease in epidermal ODC activity of 54, 53, 90%, respectively, compared with controls. Yet, ODC protein levels (Western blot) in the 10 and 20 mg GPF groups were significantly increased by 1.8 and 1.9-fold, respectively, compared with controls. A similar response was observed with the ODC inhibitor 2-difluoromethylornithine (DFMO), which served as a positive control. Application of grape polyphenolics (20 mg) at 60 and 30 min prior to treatment with TPA inhibited ODC activity by 62 and 68%, respectively, compared with controls (P<0.05). In contrast, application of grape polyphenolics (20 mg) at 60, 120 and 240 min after treatment with TPA resulted in no significant changes in ODC activity. A similar increase in epidermal ODC protein was observed in these GPF-treated animals, similar to that observed when GPF application preceded TPA. When applied to mouse skin prior to TPA, GPF was associated with a decrease in subsequent PKC activity compared with controls at 10 and 30 min following TPA treatment. The GPF-associated decrease in PKC activity preceded the decrease in ODC activity. In a separate in vitro study, kinetic analyses indicated that GPF is a competitive inhibitor of ODC activity. Collectively these data suggest that the grape polyphenolic fraction is effective as an inhibitor of ODC activity when applied before TPA, and that the magnitude of inhibition is independent of epidermal ODC protein content. In addition, GPF is a competitive inhibitor of ODC activity in vitro. The decrease in TPA-induced ODC activity due to GPF treatment is preceded by an inhibition of TPA-induced PKC activity. Thus, the polyphenolic fraction from grapes warrants further examination as a skin cancer chemopreventive agent that interferes with cellular events associated with TPA promotion.  相似文献   

6.
An enzymatic activity has been found in cytosolic preparations from mouse epidermis which catalyzes the formation of 8-hydroperoxyeicosatetraenoic acid/8-hydroxyeicosatetraenoic acid (8-HPETE/8-HETE) from arachidonate. In contrast to 12-lipoxygenase this enzyme activity was not detectable in normal (untreated) mouse skin but only after in vivo treatment with the phorbol ester tumor promoter TPA (12-O-tetradecanoylphorbol-13-acetate). The induction showed a maximum at 24 h after TPA treatment strictly depended on the age of the mice and the TPA dose and was prevented by cycloheximide. The primary product formed from arachidonic acid was 8-HPETE, and the enzyme seems not to possess a significant peroxidase activity. This result as well as studies with specific inhibitors and its cytosolic localization indicates this enzyme to be a member of the lipoxygenase family. Most of the 8-lipoxygenase activity is located in cells of the suprabasal compartment of the epidermis. In spite of being a cytosolic enzyme 8-lipoxygenase appeared to be lipophilic to some extent and was activated by lecithin. The enzyme did not require calcium ions or ATP and showed a pH optimum at 7.5-8.0. 8-HPETE/8-HETE levels in mouse epidermis in vivo were determined by gas chromatography-mass spectrometry and found to be strongly increased after phorbol ester treatment, in agreement with the induction of 8-lipoxygenase observed.  相似文献   

7.
8.
Lee SH  Kim DW  Eom SA  Jun SY  Park M  Kim DS  Kwon HJ  Kwon HY  Han KH  Park J  Hwang HS  Eum WS  Choi SY 《BMB reports》2012,45(6):354-359
We examined that the protective effects of ANX1 on 12-O-tetradecanoylphorbol- 13-acetate (TPA)-induced skin inflammation in animal models using a Tat-ANX1 protein. Topical application of the Tat-ANX1 protein markedly inhibited TPAinduced ear edema and expression levels of cyclooxygenase-2 (COX-2) as well as pro-inflammatory cytokines such as interleukin- 1 beta (IL-1 β), IL-6, and tumor necrosis factor-alpha (TNF-α). Also, application of Tat-ANX1 protein significantly inhibited nuclear translocation of nuclear factor-kappa B (NF-κ B) and phosphorylation of p38 and extracellular signalregulated kinase (ERK) mitogen-activated protein kinase (MAPK) in TPA-treated mice ears. The results indicate that Tat-ANX1 protein inhibits the inflammatory response by blocking NF-κ B and MAPK activation in TPA-induced mice ears. Therefore, the Tat-ANX1 protein may be useful as a therapeutic agent against inflammatory skin diseases.  相似文献   

9.
Inflammation induced by various stimuli has been found to be associated with increased risk for most types of human cancer. Inflammation facilitates the initiation of normal cells, as well as the growth of initiated cells and their progression to malignancy through production of proinflammatory cytokines and diverse reactive oxygen/nitrogen species. These also activate the signaling molecules that are involved in inflammation and carcinogenesis. Our previous studies have demonstrated that hemin inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-induced bacterial mutagenesis and oxidative DNA damage, reduced the level of DNA-DMBA adduct and 12-O-tetradecanoylphorobl-13-acetate (TPA)-induced tumor formation in DMBA-initiated ICR mouse skin, and inhibited myeloperoxidase and ornithine decarboxylase (ODC) activity and H(2)O(2) formation in TPA-treated mouse skin. In the present study, to further elucidate the molecular mechanisms underlying the chemopreventive activity of hemin, its effect on the expression of ODC and cyclooxygenase (COX)-2, and the activation of nuclear factor-kappa B (NF-kappaB) and mitogen-activated protein kinases (MAPKs) regulating these proteins were explored in mouse skin with TPA-induced inflammation. Topically applied hemin inhibited ear edema and epidermal thickness in mice treated with TPA. Pretreatment with hemin reduced the expression of ODC and COX-2, and also reduced NF-kappaB activation in TPA-stimulated mouse skin. In addition, hemin suppressed the TPA-induced activation of extracellular signal-regulated protein kinase (ERK) and p38 MAPK in a dose-dependent manner. Taken together, hemin inhibited TPA-induced COX-2 expression by altering NF-kappaB signaling pathway via ERK and p38 MAPK, as well as TPA-induced ODC expression in mouse skin. Thereby, hemin may be an attractive candidate for a chemopreventive agent.  相似文献   

10.
11.
In a two-stage skin carcinogenesis model, mice initiated with 7,12-dimethylbenz[a]anthracene and promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 12 weeks developed an average of 15.8 skin tumours per mouse with 100% tumour incidence. Topical application of polysaccharides from soybeans fermented with either Phellinus igniarius or Agrocybe cylindracea together with TPA twice weekly for 12 weeks inhibited the number of skin tumours per mouse by 70 or 88%, respectively, and the percentage of mice with tumours was lowered by 70 or 30%, respectively.  相似文献   

12.
13.
The time course of induction of epidermal ornithine decarboxylase (E.C. 4.1.117) (ODC) activity following a single topical application of 17 nmoles of 12-O-tetradecanoylphorbol-13-acetate (TPA) on hairless mouse skin was established. Prior intraperitoneal (i.p.) administration of a crude epidermal extract prepared from hairless mouse epidermis led to a time-dependent, 50% inhibition of the peak level of TAP-induced ODC activity. Maximum inhibition was observed when the extract was injected 1.5 h before TPA treatment. The crude epidermal extract did not affect ODC activity in vitro. Following the administration of epidermal extracts, the inhibition of the TPA-induced ODC-response correlated positively with the presence of epidermal G2-chalone activity (determined by a stathmokinetic method) whereas myocardial, skeletal muscle, or heat-inactivated epidermal extracts with no epidermal G2-chalone activity, had no effect on TPA-induced ODC activity. These results indicate a possible relationship between ODC-activity and the control of mitotic rate by G2-chalone.  相似文献   

14.
Virchows Archiv B Cell Pathology - In order to study a possible dose/response relationship in the tumorigenic effect of 12-O-tetradecanoyl-phorbol-13-acetate (TPA), groups of hairless mice were...  相似文献   

15.
Polymeric black tea polyphenols (PBPs) have been shown to possess anti-tumor-promoting effects in two-stage skin carcinogenesis. However, their mechanisms of action are not fully elucidated. In this study, mechanisms of PBP-mediated antipromoting effects were investigated in a mouse model employing the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Compared to controls, a single topical application of TPA to mouse skin increased the translocation of protein kinase C (PKC) from cytosol to membrane. Pretreatment with PBPs 1-3 decreased TPA-induced translocation of PKC isozymes (α, β, η, γ, ε) from cytosol to membrane, whereas PBPs 4 and 5 were less effective. The levels of PKCs δ and ζ in cytosol/membrane were similar in all the treatment groups. Complementary confocal microscopic evaluation showed a decrease in TPA-induced PKCα fluorescence in PBP-3-pretreated membranes, whereas pretreatment with PBP-5 did not show a similar decrease. Based on the experiments with specific enzyme inhibitors and phosphospecific antibodies, both PBP-3 and PBP-5 were observed to decrease TPA-induced level and/or activity of phosphatidylinositol 3-kinase (PI3K) and AKT1 (pS473). An additional ability of PBP-3 to inhibit site-specific phosphorylation of PKCα at all three positions responsible for its activation [PKCα (pT497), PKC PAN (βII pS660), PKCα/βII (pT638/641)] and AKT1 at the Thr308 position, along with a decrease in TPA-induced PDK1 protein level, correlated with the inhibition of translocation of PKC, which may impart relatively stronger chemoprotective activity to PBP-3 than to PBP-5. Altogether, PBP-mediated decrease in TPA-induced PKC phosphorylation correlated well with decreased TPA-induced NF-κB phosphorylation and downstream target proteins associated with proliferation, apoptosis, and inflammation in mouse skin. Results suggest that the antipromoting effects of PBPs are due to modulation of TPA-induced PI3K-mediated signal transduction.  相似文献   

16.
TPA, a highly active tumor-promoting agent, is an effective mitogen for primate peripheral blood lymphocytes. Optimal stimulation of human lymphocytes was obtained 4 days after the addition of TPA at a concentration of 7.5 ng/ml. Lymphocyte fractionation experiments demonstrated that both T and B cells incorporated 3H-thymidine significantly in response to TPA. Lymphocyte blastogenesis was not due to the reactivation of latent herpesviruses by the tumor promoter, since similar responses to TPA were obtained with virus-genome positive or negative cells. Increased levels of DNA synthesis were observed when TPA was added to marmoset, baboon, rhesus monkey, or chimpanzee peripheral blood lymphocytes. Canine peripheral blood lymphocytes and spleen cells from guinea pigs, rats, and mice were not stimulated by TPA. These observations suggest that TPA-induced lymphocyte blastogenesis may be useful for studies of lymphocyte activation and of the molecular mechanisms of action of tumor-promoting phorbol esters.  相似文献   

17.

Background  

Skin is the largest organ in the body, and is directly exposed to extrinsic assaults. As such, the skin plays a central role in host defense and the cutaneous immune system is able to elicit specific local inflammatory and systemic immune responses against harmful stimuli. 12-O-tetradecanoylphorbol-13-acetate (TPA) can stimulate acute and chronic inflammation and tumor promotion in skin. TPA-induced dermatitis is thus a useful in vivo pharmacological platform for drug discovery. In this study, the inhibitory effect of briarane-type diterpenes (BrDs) from marine coral Briareum excavatum on TPA-induced dermatitis and dendritic cell (DC) function was explored.  相似文献   

18.
12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulated glycogenolysis in perfused rat liver which was perfused with Krebs-Ringer-bicarbonate buffer containing 1 mM CaCl2 but no substrate. Verapamil (100 microM), diltiazem (100 microM) and trifluoperazin (100 microM), all inhibited the effect of TPA in the presence of CaCl2. Omission of CaCl2 from the perfusate or the addition of EGTA markedly attenuated the effect of TPA. TPA decreased net release of 45Ca from 45Ca-preloaded liver. The effect of maximal concentration of TPA (20 ng/ml) was not additive to that of 0.6 microM A23187. These data suggest that TPA increases calcium influx into hepatocytes and stimulates glycogenolysis through a calcium-calmodulin dependent mechanism.  相似文献   

19.
20.
Summary A low concentration of 12-O-tetradecanoylphorbol-13-acetate (TPA, 1.0 ng/ml) induced a transient inhibition of bud production in hydra which were fed daily. However, when hydra were starved following TPA-treatment, they produced further buds. Phorbol (1.0 ng/ml) and dimethyl sulfoxide (0.001%) did not influence bud production under either feeding or starvation conditions. These results indicate that TPA modulates asexual reproduction in hydra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号