首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In 1998, the Japan’s Ministry of Economy, Trade, and Industry (METI) launched a five-year national project entitled ‘Development of Life Cycle Impact Assessment for Products’ (commonly known as ‘the LCA Project’). The purpose of the project is to develop common LCA methodology as well as a highly reliable database that can be shared in Japan. Activities over these five years have resulted in the supply of LCI data on some 250 products. Industrial associations voluntarily provided data. The results of these activities are currently being made available on the Internet on a trial basis in the form of an LCA database. In addition, a method entitled ‘Life-cycle Impact assessment Method based on Endpoint modeling (LIME)’ was developed. It is expected that these results will be widely used in Japan in the future. This paper presents an outline of the results of the research and development that has been conducted in the LCA Project in Japan.  相似文献   

2.
Background, aim, and scope  As the sustainability improvement becomes an essential business task of industry, a number of companies are adopting IT-based environmental information systems (EIS). Life cycle assessment (LCA), a tool to improve environmental friendliness of a product, can also be systemized as a part of the EIS. This paper presents a case of an environmental information system which is integrated with online LCA tool to produce sets of hybrid life cycle inventory and examine its usefulness in the field application of the environmental management. Main features  Samsung SDI Ltd., the producer of display panels, has launched an EIS called Sustainability Management Initiative System (SMIS). The system comprised modules of functions such as environmental management system (EMS), green procurement (GP), customer relation (e-VOC), eco-design, and LCA. The LCA module adopted the hybrid LCA methodology in the sense that it combines process LCA for the site processes and input–output (IO) LCA for upstream processes to produce cradle-to-gate LCA results. LCA results from the module are compared with results of other LCA studies made by the application of different methodologies. The advantages and application of the LCA system are also discussed in light of the electronics industry. Results and discussion  LCA can play a vital role in sustainability management by finding environmental burden of products in their life cycle. It is especially true in the case of the electronics industry, since the electronic products have some critical public concerns in the use and end-of-life phase. SMIS shows a method for hybrid LCA through online data communication with EMS and GP module. The integration of IT-based hybrid LCA in environmental information system was set to begin in January 2006. The advantage of the comparing and regular monitoring of the LCA value is that it improves the system completeness and increases the reliability of LCA. By comparing the hybrid LCA and process LCA in the cradle-to-gate stage, the gap between both methods of the 42-in. standard definition plasma display panel (PDP) ranges from 1% (acidification impact category) to −282% (abiotic resource depletion impact category), with an average gap of 68.63%. The gaps of the impact categories of acidification (AP), eutrophication (EP), and global warming (GWP) are relatively low (less than 10%). In the result of the comparative analysis, the strength of correlation of three impact categories (AP, EP, GWP) shows that it is reliable to use the hybrid LCA when assessing the environmental impacts of the PDP module. Hybrid LCA has its own risk on data accuracy. However, the risk is affordable when it comes to the comparative LCA among different models of similar product line of a company. In the results of 2 years of monitoring of 42-in. Standard definition PDP, the hybrid LCA score has been decreased by 30%. The system also efficiently shortens man-days for LCA study per product. This fact can facilitate the eco-design of the products and can give quick response to the customer's inquiry on the product's eco-profile. Even though there is the necessity for improvement of process data currently available, the hybrid LCA provides insight into the assessments of the eco-efficiency of the manufacturing process and the environmental impacts of a product. Conclusions and recommendations  As the environmental concerns of the industries increase, the need for environmental data management also increases. LCA shall be a core part of the environmental information system by which the environmental performances of products can be controlled. Hybrid type of LCA is effective in controlling the usual eco-profile of the products in a company. For an industry, in particular electronics, which imports a broad band of raw material and parts, hybrid LCA is more practicable than the classic LCA. Continuous efforts are needed to align input data and keep conformity, which reduces data uncertainty of the system.  相似文献   

3.
Life cycle assessment (LCA) databases and software evolve. We analyzed to which extent software and evolving life cycle inventory databases affect the comparison of technology alternatives, using a comparative LCA on permanent magnets as a case study, with two selected software tools: CMLCA and Brightway LCA. We migrated the system models from the CMLCA to Brightway LCA software and alternated between the ecoinvent database versions 2.2 and 3.1 to 3.6 in the system background. When using ecoinvent v3.6 instead of v2.2, the change of the indicator results ranged from 34 % $ - 34{\rm{\% }}$ to 283%. The evolution of the ecoinvent database impacted the absolute amounts of the characterized results and the relative performance between alternatives. The impact category with the highest variability was ionizing radiation, which even showed a ranking inversion with ecoinvent v3.4. In contrast, the impact of using CMLCA or Brightway was negligible because the same data and modeling assumptions caused percentage differences below 0.4%. During the semi-automated data migration to Brightway, we identified 23 environmental flows in the CMLCA model that were not paired with their corresponding characterization factors in the published study of reference. This error had led to an underestimation of 63% in the photochemical oxidation indicator of one of the alternatives. This underestimation relates to an interoperability issue regarding the nomenclature of environmental flows in software alternatives and is a matter of data implementation rather than an issue intrinsic to the selected software. Finally, we identified improvement opportunities for the transparency and reusability of LCA models. This article met the requirements for a Gold-Gold JIE data openness badge described at http://jie.click/badges .   相似文献   

4.
Attributional and consequential LCA of milk production   总被引:1,自引:1,他引:0  
Background, aim and scope  Different ways of performing a life cycle assessment (LCA) are used to assess the environmental burden of milk production. A strong connection exists between the choice between attributional LCA (ALCA) and consequential LCA (CLCA) and the choice of how to handle co-products. Insight is needed in the effect of choice on results of environmental analyses of agricultural products, such as milk. The main goal of this study was to demonstrate and compare ALCA and CLCA of an average conventional milk production system in The Netherlands. Materials and methods  ALCA describes the pollution and resource flows within a chosen system attributed to the delivery of a specified amount of the functional unit. CLCA estimates how pollution and resource flows within a system change in response to a change in output of the functional unit. For an average Dutch conventional milk production system, an ALCA (mass and economic allocation) and a CLCA (system expansion) were performed. Impact categories included in the analyses were: land use, energy use, climate change, acidification and eutrophication. The comparison was based on four criteria: hotspot identification, comprehensibility, quality and availability of data. Results  Total environmental burdens were lower when using CLCA compared with ALCA. Major hotspots for the different impact categories when using CLCA and ALCA were similar, but other hotspots differed in contributions, order and type. As experienced by the authors, ALCA and use of co-product allocation are difficult to comprehend for a consequential practitioner, while CLCA and system expansion are difficult to comprehend for an attributional practitioner. Literature shows concentrates used within ALCA will be more understandable for a feeding expert than the feed used within CLCA. Outcomes of CLCA are more sensitive to uncertainties compared with ALCA, due to the inclusion of market prospects. The amount of data required within CLCA is similar compared with ALCA. Discussion  The main cause of these differences between ALCA and CLCA is the fact that different systems are modelled. The goal of the study or the research question to be answered defines the system under study. In general, the goal of CLCA is to assess environmental consequences of a change in demand, whereas the goal of ALCA is to assess the environmental burden of a product, assuming a status-quo situation. Nowadays, however, most LCA practitioners chose one methodology independent of their research question. Conclusions  This study showed it is possible to perform both ALCA (mass and economic allocation) and CLCA (system expansion) of milk. Choices of methodology, however, resulted in differences in: total quantitative outcomes, hotspots, degree of understanding and quality. Recommendations and perspectives  We recommend LCA practitioners to better distinguish between ALCA and CLCA in applied studies to reach a higher degree of transparency. Furthermore, we recommend LCA practitioners of different research areas to perform similar case studies to address differences between ALCA and CLCA of the specific products as the outcomes might differ from our study.  相似文献   

5.
Conclusion  In conclusion, LCA that is conducted and used appropriately is an indispensable tool to assist decision-makers in making an informed decision about the environmental impacts of their activities, products or services. A global effort towards LCA use should be encouraged and countries in the Asian/Pacific Regions should not be left out. LCA-related activities reported in the symposium were described  相似文献   

6.
A survey of unresolved problems in life cycle assessment   总被引:5,自引:3,他引:2  
Background, aims, and scope  Life cycle assessment (LCA) stands as the pre-eminent tool for estimating environmental effects caused by products and processes from ‘cradle to grave’ or ‘cradle to cradle.’ It exists in multiple forms, claims a growing list of practitioners and remains a focus of continuing research. Despite its popularity and codification by organizations such as the International Organization for Standardization and the Society of Environmental Toxicology and Chemistry, life cycle assessment is a tool in need of improvement. Multiple authors have written about its individual problems, but a unified treatment of the subject is lacking. The following literature survey gathers and explains issues, problems and problematic decisions currently limiting LCA’s impact assessment and interpretation phases. Main features  The review identifies 15 major problem areas and organizes them by the LCA phases in which each appears. This part of the review focuses on the latter eight problems. It is meant as a concise summary for practitioners interested in methodological limitations which might degrade the accuracy of their assessments. For new researchers, it provides an overview of pertinent problem areas toward which they might wish to direct their research efforts. Having identified and discussed LCA’s major problems, closing sections highlight the most critical problems and briefly propose research agendas meant to improve them. Results and discussion  Multiple problems occur in each of LCA’s four phases and reduce the accuracy of this tool. Considering problem severity and the adequacy of current solutions, six of the 15 discussed problems are of paramount importance. In LCA’s latter two phases, spatial variation and local environmental uniqueness are critical problems requiring particular attention. Data availability and quality are identified as critical problems affecting all four phases. Conclusions and recommendations  Observing that significant efforts by multiple researchers have not resulted in a single, agreed upon approach for the first three critical problems, development of LCA archetypes for functional unit definition, boundary selection and allocation is proposed. Further development of spatially explicit, dynamic modeling is recommended to ameliorate the problems of spatial variation and local environmental uniqueness. Finally, this paper echoes calls for peer-reviewed, standardized LCA inventory and impact databases, and it suggests the development of model bases. Both of these efforts would help alleviate persistent problems with data availability and quality.
Bert BrasEmail:
  相似文献   

7.
LCA of soybean meal   总被引:2,自引:0,他引:2  
Background, Aim and Scope  Soybean meal is an important protein input to the European livestock production, with Argentina being an important supplier. The area cultivated with soybeans is still increasing globally, and so are the number of LCAs where the production of soybean meal forms part of the product chain. In recent years there has been increasing focus on how soybean production affects the environment. The purpose of the study was to estimate the environmental consequences of soybean meal consumption using a consequential LCA approach. The functional unit is ‘one kg of soybean meal produced in Argentina and delivered to Rotterdam Harbor’. Materials and Methods  Soybean meal has the co-product soybean oil. In this study, the consequential LCA method was applied, and co-product allocation was thereby avoided through system expansion. In this context, system expansion implies that the inputs and outputs are entirely ascribed to soybean meal, and the product system is subsequently expanded to include the avoided production of palm oil. Presently, the marginal vegetable oil on the world market is palm oil but, to be prepared for fluctuations in market demands, an alternative product system with rapeseed oil as the marginal vegetable oil has been established. EDIP97 (updated version 2.3) was used for LCIA and the following impact categories were included: Global warming, eutrophication, acidification, ozone depletion and photochemical smog. Results  Two soybean loops were established to demonstrate how an increased demand for soybean meal affects the palm oil and rapeseed oil production, respectively. The characterized results from LCA on soybean meal (with palm oil as marginal oil) were 721 gCO2 eq. for global warming potential, 0.3 mg CFC11 eq. for ozone depletion potential, 3.1 g SO2 eq. for acidification potential, −2 g NO3 eq. for eutrophication potential and 0.4 g ethene eq. for photochemical smog potential per kg soybean meal. The average area per kg soybean meal consumed was 3.6 m2year. Attributional results, calculated by economic and mass allocation, are also presented. Normalised results show that the most dominating impact categories were: global warming, eutrophication and acidification. The ‘hot spot’ in relation to global warming, was ‘soybean cultivation’, dominated by N2O emissions from degradation of crop residues (e.g., straw) and during biological nitrogen fixation. In relation to eutrophication and acidification, the transport of soybeans by truck is important, and sensitivity analyses showed that the acidification potential is very sensitive to the increased transport distance by truck. Discussion  The potential environmental impacts (except photochemical smog) were lower when using rapeseed oil as the marginal vegetable oil, because the avoided production of rapeseed contributes more negatively compared with the avoided production of palm oil. Identification of the marginal vegetable oil (palm oil or rapeseed oil) turned out to be important for the result, and this shows how crucial it is in consequential LCA to identify the right marginal product system (e.g., marginal vegetable oil). Conclusions  Consequential LCAs were successfully performed on soybean meal and LCA data on soybean meal are now available for consequential (or attributional) LCAs on livestock products. The study clearly shows that consequential LCAs are quite easy to handle, even though it has been necessary to include production of palm oil, rapeseed and spring barley, as these production systems are affected by the soybean oil co-product. Recommendations and Perspectives  We would appreciate it if the International Journal of Life Cycle Assessment had articles on the developments on, for example, marginal protein, marginal vegetable oil, marginal electricity (related to relevant markets), marginal heat, marginal cereals and, likewise, on metals and other basic commodities. This will not only facilitate the work with consequential LCAs, but will also increase the quality of LCAs.  相似文献   

8.
Background, Goal and Scope  System expansion is a method used to avoid co-product allocation. Up to this point in time it has seldom been used in LCA studies of food products, although food production systems often are characterised by closely interlinked sub-systems. One of the most important allocation problems that occurs in LCAs of agricultural products is the question of how to handle the co-product beef from milk production since almost half of the beef production in the EU is derived from co-products from the dairy sector. The purpose of this paper is to compare different methods of handling co-products when dividing the environmental burden of the milk production system between milk and the co-products meat and surplus calves. Main Features  This article presents results from an LCA of organic milk production in which different methods of handling the co-products are examined. The comparison of different methods of co-product handling is based on a Swedish LCA case study of milk production where economic allocation between milk and meat was initially used. Allocation of the co-products meat and surplus calves was avoided by expanding the milk system. LCA data were collected from another case study where the alternative way of producing meat was analysed, i.e. using a beef cow that produces one calf per annum to be raised for one and a half year. The LCA of beef production was included in the milk system. A discussion is conducted focussing on the importance of modelling and analysing milk and beef production in an integrated way when foreseeing and planning the environmental consequences of manipulating milk and beef production systems. Results  This study shows that economic allocation between milk and beef favours the product beef. When system expansion is performed, the environmental benefits of milk production due to its co-products of surplus calves and meat become obvious. This is especially connected to the impact categories that describe the potential environmental burden of biogenic emissions such as methane and ammonia and nitrogen losses due to land use and its fertilising. The reason for this is that beef production in combination with milk can be carried out with fewer animals than in sole beef production systems. Conclusion, Recommendation and Perspective  Milk and beef production systems are closely connected. Changes in milk production systems will cause alterations in beef production systems. It is concluded that in prospective LCA studies, system expansion should be performed to obtain adequate information of the environmental consequences of manipulating production systems that are interlinked to each other.  相似文献   

9.
Goal, Scope and Background  Two methods of simplified LCA were evaluated and compared to the results of a quantitative LCA. These are the Environmentally responsible product assessment matrix developed by Graedel and Allenby and the MECO-method developed in Denmark. Methods  We used these in a case study and compared the results with the results from a quantitative LCA. The evaluation also included other criteria, such as the field of application and the level of arbitrariness. Results and Discussion  The MECO-method has some positive qualities compared to the Environmentally responsible product assessment matrix. Examples of this are that it generates information complementary to the quantitative LCA and provides the possibility to consider quantitative information when such is available. Some of the drawbacks with the Environmentally responsible product assessment matrix are that it does not include the whole lifecycle and that it allows some arbitrariness. Conclusions  Our study shows that a simplified and semi-quantitative LCA (such as the MECO-method) can provide information that is complementary to a quantitative LCA. In this case the method generates more information on toxic substances and other impacts, than the quantitative LCA. We suggest that a simplified LCA can be used both as a pre-study to a quantitative LCA and as a parallel assessment, which is used together with the quantitative LCA in the interpretation. Recommendations and Outlook  A general problem with qualitative analyses is how to compare different aspects. Life cycle assessments are comparative. The lack of a quantitative dimension hinders the comparison and can thereby hinder the usefulness of the qualitative method. There are different approaches suggested to semiquantify simplified methods in order to make quantitative comparisons possible. We think that the use of fabricated scoring systems should be avoided. If quantitative information is needed, one should consider performing a simplified quantitative LCA instead.  相似文献   

10.
The Ministry of International Trade and Industry (MITI) has launched a national project, ‘Development of Assessment Technology of Life Cycle Environmental Impacts of Products’ (commonly known as the LCA Project). The activities of this project will be continued for 5 yeas since fiscal 1998 with an overall budget of total 850 million yen. The LCA Project aims to develop a highly reliable LCA database and LCA methodology which can be readily used throughout Japan. In this paper, the overall plans and current activities of project are indicated.  相似文献   

11.
A survey of unresolved problems in life cycle assessment   总被引:2,自引:2,他引:0  
Background, aims, and scope  Life cycle assessment (LCA) stands as the pre-eminent tool for estimating environmental effects caused by products and processes from ‘cradle to grave’ or ‘cradle to cradle.’ It exists in multiple forms, claims a growing list of practitioners, and remains a focus of continuing research. Despite its popularity and codification by organizations such as the International Organization for Standards and the Society of Environmental Toxicology and Chemistry, life cycle assessment is a tool in need of improvement. Multiple authors have written about its individual problems, but a unified treatment of the subject is lacking. The following literature survey gathers and explains issues, problems and problematic decisions currently limiting LCA’s goal and scope definition and life cycle inventory phases. Main features  The review identifies 15 major problem areas and organizes them by the LCA phases in which each appears. This part of the review focuses on the first 7 of these problems occurring during the goal and scope definition and life cycle inventory phases. It is meant as a concise summary for practitioners interested in methodological limitations which might degrade the accuracy of their assessments. For new researchers, it provides an overview of pertinent problem areas toward which they might wish to direct their research efforts. Results and discussion  Multiple problems occur in each of LCA’s four phases and reduce the accuracy of this tool. Considering problem severity and the adequacy of current solutions, six of the 15 discussed problems are of paramount importance. In LCA’s first two phases, functional unit definition, boundary selection, and allocation are critical problems requiring particular attention. Conclusions and recommendations  Problems encountered during goal and scope definition arise from decisions about inclusion and exclusion while those in inventory analysis involve flows and transformations. Foundational decisions about the basis of comparison (functional unit), bounds of the study, and physical relationships between included processes largely dictate the representativeness and, therefore, the value of an LCA. It is for this reason that problems in functional unit definition, boundary selection, and allocation are the most critical examined in the first part of this review.
Bert BrasEmail:
  相似文献   

12.
Background, Goal and Scope  For the life cycle assessment (LCA) tool to provide maximum benefit for decision makers, the uncertainty of its results should be reported. Several methods for assessing uncertainty have been developed, but despite recent efforts, there remains disagreement about their merits. Objectives  The objectives of the study were to review several assessment methods for estimating numerical and qualitative uncertainty of impact scores and recommend an appropriate uncertainty assessment scheme. The methods review has been conducted on the basis of an LCA case study regarding the comparison of the use of either brown or black coals in Australian electricity generation. Results and Discussion  Each assessment method indicated greater uncertainty in the impact scores calculated for black coal use than for brown coal use. Due to overlap of the uncertainty ranges in calculated impact scores neither of the coals could be regarded environmentally preferred. Conclusions  Both qualitative and quantitative methods were found to provide useful information about the uncertainty of calculated impact scores for the case study. Methods that combine qualitative and quantitative uncertainty provided no additional benefits, and obscured much of the information gained from using qualitative methods. Recommendation and Outlook  It is recommended that LCA results should include separate numerical (using Monte-Carlo simulation) and qualitative uncertainty assessments. When the ranges of calculated impact scores for compared options overlap, the normalised difference method is recommended.  相似文献   

13.
14.
Background and Aims  Recently, Life Cycle Assessment (LCA) has been recognized as an effective tool for evaluating the environmental impacts of regional activities. The main issue, when applying LCA to region-based studies, is how best to consider and reflect the regional characteristics, as they need to be as close to reality as possible. Several Life Cycle Inventory (LCI) analysis and Life Cycle Impact Assessment (LCIA) studies have been undertaken to study site-specific considerations. However, due to practicalities, very few attempts have been made at identifying the regions affected by regional activities and consider their regional characteristics. Therefore, the purpose of this study is to suggest the direction of a forthcoming study by showing the necessity of regional characteristic consideration in regional evaluation, and to suggest a synthetic, region-based LCA method which can reflect the differences of regional characteristics for direct and indirect effects of regional activities. Methods  In this study, the Life Cycle Region-specific Assessment Method (LCRAM) was proposed as a new site-specific LCA method. As an example, we used LCRAM to observe the effects of 4 environmental burdens (CO2, NOx, SOx, and SPM) to human health (DALY) in 47 regions (prefectures in Japan). LCRAM consists of a regional database and an analysis method (EIOM). In order to reflect the regional characteristics, including structural (regional production and consumption, interregional trade, and the structure of energy consumption) and environmental features (geographical location, climate, natural conditions, and population density), we first constructed a regional database. This includes an Interregional Trade Matrix (ITM), Regional Environmental Burden Coefficients (REBC), and Regional Damage Factors (RDF). Second, for considering the regional characteristics by using the regional database to the each region, it is a necessary to identify the environmental burden emitting regions (Emitting Regions) of indirect effects due to regional activity. To do this, we developed the Expanded Interregional Input Output Method (EIOM) to take the place of the Multi-Regional Input Output method (Multi-Regional IO) by applying the Two-Regional IO method and the ITM. This is because it is difficult to apply Multi-Regional IO to many regions and industries owing to practical constraints. Results and Discussion  Upon comparison between the regional database, it was found to show considerable differences due to regional characteristics. It is possible to identify how much the difference of REBC influences the evaluation results by calculating the Deviation Effect Index with REBC and, thus, it was found that the effects from the iron and steel, and electric power industries were more than three times that of other industries. Also the size of RDF varies according to the property of the Environmental Burden (EB) and region; and the more site-specific EB, such as SPM in this study shows, the more distinct the difference. Therefore, it seems reasonable to recommend that the proper regional database is applied to the Emitting Regions. Meanwhile, a comparison with a 9-region IO table (a Multi-Regional IO table made by the Ministry of Economy, Trade and Industry in Japan) was performed to verify the reliability of EIOM. The results indicated a high consistency of over 95%, which verifies that EIOM can be used instead of a Multi-Regional IO method. Finally, as a comparison between LCRAM and Region-Generic Method (RGM) for nine activity regions, we confirmed that the results produced by RGM may be an underestimation or overestimation; as an example, the largest difference among the regions for DALY reached 48% of the RGM result. Conclusions and Outlook  In this study, it was clearly shown that the evaluation results will be different depending on the structure and environmental features of each region. It is necessary to reflect the proper regional characteristics to evaluate the actual regional activity. LCRAM is an efficient method to consider the regional characteristics for direct and indirect effects to regions, through all stages of the activities. Also, it is possible to apply a regional evaluation for more regions and more detail in the industry classification. Furthermore, it discusses the interdependence and transportation effects due to interaction between the regions. Thus, it may enable us to make an appropriate decision in region-based evaluations such as nourishment and inducement of industry, infrastructure, recycle system, etc. Finally, it is also expected that further discussion and continuous examination will contribute to enabling us to frame an actual and efficient policy based on the regional structural features and environmental features for a sustainable community.  相似文献   

15.
Life-cycle assessment (LCA) is being used more and more as a decision making tool to compare alternative systems of providing a given product or service. Each system is theoretically made up of a near infinite number of elements or unit processes to produce the product or service. In practice, time and resources to complete an LCA are limited, hence the need to draw practical boundaries on the systems being analyzed. However, how does the LCA practitioner draw fair boundaries on two or more different systems being compared? In other words, how does one decide which unit processes to include in each system? A consistent quantitative method of selecting boundaries is essential for comparative LCA studies. This paper first outlines the requirements for a system boundary selection methodology and then demonstrates the shortfalls of existing methods. The primary objective is to present the Relative Mass-Energy-Economic (RMEE) method for system boundary selection. This concise, repeatable and quantitative method for selecting system boundaries for LCA is demonstrated on a life-cycle system for ethanol fuel. Unlike many other methods of selecting system boundaries, the RMEE method is practical to use and quantitatively ensures different systems have similar system boundaries to ensure a fair comparison between options. The RMEE method has been designed specifically for LCA studies of energy systems  相似文献   

16.

Background  

The analysis of biological data is greatly enhanced by existing or emerging databases. Most existing databases, with few exceptions are not designed to easily support large scale computational analysis, but rather offer exclusively a web interface to the resource. We have recognized the growing need for a database which can be used successfully as a backend to computational analysis tools and pipelines. Such database should be sufficiently versatile to allow easy system integration.  相似文献   

17.
Background, aim, and scope  Management of the medical waste produced in hospitals or health care facilities has raised concerns relating to public health, occupational safety, and the environment. Life cycle assessment (LCA) is a decision-supporting tool in waste management practice; but relatively little research has been done on the evaluation of medical waste treatment from a life cycle perspective. Our study compares the environmental performances of two dominant technologies, hazardous waste incineration (HWI) as a type of incineration technology and steam autoclave sterilization with sanitary landfill (AL) as a type of non-incineration technology, for specific medical waste of average composition. The results of this study could support the medical waste hierarchy. Materials and methods  This study implemented the ISO 14040 standard. Data on steam autoclave sterilization were obtained from an on-site operations report, while inventory models were used for HWI, sanitary landfill, and residues landfill. Background data were from the ecoinvent database. The comparative LCA was carried out for five alternatives: HWI with energy recovery efficiencies of 0%, 15%, and 30% and AL with energy recovery efficiencies of 0% and 10%. Results  The assumptions on the time frame for landfill markedly affect the impact category scores; however, the orders of preference for both time frames are almost the same. HWI with 30% energy recovery efficiency has the lowest environmental impacts for all impact categories, except freshwater ecotoxicity. Incineration and sanitary landfill processes dominate global warming, freshwater aquatic ecotoxicity, and eutrophication of incineration and non-incineration alternatives, respectively. Dioxin emissions contribute about 10% to human toxicity in HWI without energy recovery alternatives, and a perturbation analysis yielded identical results. As regards eutrophication, non-incineration treatments have an approximately sevenfold higher impact than incineration treatments. Discussion  The differences between short-term and long-term time frame assumptions mainly are decided by heavy metals dissolved in the future leachate. The high heat value of medical waste due to high contents of biomass, plastic, and rubber materials and a lower content of ash, results in a preference for incineration treatments. The large eutrophication difference between incineration and non-incineration treatments is caused by different N element transformations. Dioxin emission from HWI is not the most relevant to human toxicity; however, large uncertainties could exist. Conclusions  From a life cycle perspective, the conventional waste hierarchy, implying incineration with energy recovery is better than landfill, also applies to the case of medical waste. The sanitary landfill process is the key issue in non-incineration treatments, and HWI and the subsequent residues landfill processes are key issues in incineration treatments. Recommendations and perspectives  Integrating the medical waste hierarchy and constructing a medical waste framework require broader technologies to be investigated further, based on a life cycle approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.

Purpose

In an effort to develop a whole building Life Cycle Assessment (LCA) tool, National Institute of Standards and Technology (NIST) is transforming new bottom-up Building for Environmental and Economic Sustainability (BEES) data into a hybrid database in which the strengths of both bottom-up and top-down approaches can be combined. The objective of this paper is to describe the framework and the process under which the hybrid BEES database is being built, with an emphasis on its accounting structure. This paper can support other efforts to build hybrid Life Cycle Inventory (LCI) databases.

Methods

The BEES hybridization utilizes the most detailed supply and use tables (SUTs)??known as item-level data??focusing particularly on the construction sectors. First, the partial SUTs at the item level are constructed and connected to standard SUTs that describe the rest of the economy, which is then followed by balancing and ??redefinition.?? Second, item-level environmental data are compiled and then also balanced and redefined, which completes the compilation of the bi-resolution SUTs with environmental data. Third, the bi-resolution SUTs are integrated with the BEES data that have been converted into matrix form. Because the completely rolled out BEES technology matrix involves a significant number of products, the integration prioritizes the product groups that are potentially the most significant contributors to the LCIA results for buildings.

Results

This step-by-step procedure will enable the creation of a hybridized BEES database, combining the strengths of both the bottom-up, process-based data and the top-down, input-output data with enhanced resolution. The benefit of hybridization at the database level??as opposed to at the individual LCA study level??is that whole-building LCA users can adopt the hybrid BEES approach, with its benefit of a more complete system definition, without the training or effort that would be required to construct a hybrid system from scratch. In addition, reformulation of new BEES data into a matrix structure better facilitates the parametric LCA application that is central to NIST??s vision to develop a tool for assessing the sustainability performance of energy technologies and systems in an integrated building design context.

Conclusions

There are currently a number of initiatives being organized to implement a hybrid approach at the LCI database level. In laying out the methodological framework for efficiently transforming an existing LCI database into a hybrid database, this paper can support future development of hybrid LCI databases.  相似文献   

19.
20.
A relational database linking benthic diatom records, taxonomic nomenclature including synonyms, and corresponding environmental data has been built in MS Access. It allowed flexible and long-term use of a relatively important amount of data (∼3000 records) gathered in the framework of the EC-funded PAEQANN project, gathering precise and documented information both about benthic diatoms and quantitative or semi-quantitative environmental data. Such a database has been shown to be a useful tool for the definition of benthic diatom typology at a multi-regional scale, the prediction of the impact of environmental characteristics on the structure of diatom communities, and additionally for a new insight on the auto-ecology of some taxa. This database could serve as a template for further work on diatoms and, after some implementation, on other freshwater communities. It could also be the basis for wider typology of stream diatoms, extended to other regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号