共查询到20条相似文献,搜索用时 0 毫秒
1.
It is well documented that the effects of excitatory amino acid (EAA) agonists on phosphoinositide hydrolysis involve a GTP-binding protein-linked or "metabotropic" receptor mechanism. The mechanisms by which EAAs alter cyclic AMP levels in brain slices, however, are not yet clear. In this study, the selective metabotropic EAA agonist trans-(+-)-1-aminocyclopentane-1,3-dicarboxylic acid and its isomers were examined for effects on basal and forskolin-stimulated cyclic AMP formation in slices of the rat hippocampus. Trans-(+-)-1-Aminocyclopentane-1,3-dicarboxylic acid had little effect on basal cyclic AMP but inhibited forskolin-stimulated cyclic AMP formation in a biphasic manner. The 1S,3R isomer of 1-aminocyclopentane-1,3-dicarboxylic acid produced potent but only partial (approximately 50%) inhibition of forskolin-stimulated cyclic AMP formation. 1R,3S-1-Aminocyclopentane-1,3-dicarboxylic acid fully inhibited forskolin-stimulated cyclic AMP but with lower potency than the 1S,3R isomer. These results show that in addition to the formation of phosphoinositide-derived second messengers, the cellular consequences of selectively activating hippocampal metabotropic EAA receptors include an alteration of cellular cyclic AMP levels. 相似文献
2.
Abstract: Glutamate activates a family of receptors, known as metabotropic glutamate receptors (mGluRs), that are coupled to various second messenger systems through G proteins. All mGluR subtypes characterized to date in rat brain slices are activated by the glutamate analogue 1-aminocyclopentane-1 S ,3 R -dicarboxylic acid (1 S ,3 R -ACPD). However, few agonists are available that selectively activate specific mGluR subtypes. We report that the glutamate analogue ( R,S )-4-bromohomoibotenate (BrHI) stimulates phosphoinositide hydrolysis in rat cerebral cortical slices in a concentration-dependent manner (EC50 = 190 µ M ). The response to BrHI is stereoselective and is not blocked by ionotropic glutamate receptor antagonists. It is interesting that the responses to BrHI and 1 S ,3 R -ACPD are completely additive, suggesting that these responses are mediated by different receptor subtypes. Consistent with this, the response to BrHI is insensitive to l -2-amino-3-phosphonopropionic acid ( l -AP3), whereas the response to 1 S ,3 R -ACPD is partially blocked by l -AP3. BrHI does not activate metabotropic receptors coupled to changes in cyclic AMP accumulation or activation of phospholipase D. Thus, BrHI seems to activate specifically a phosphoinositide hydrolysis-linked mGluR that is insensitive to 1 S ,3 R -ACPD. This compound may prove useful as a tool for elucidating the roles of different mGluR subtypes in mammalian brain. 相似文献
3.
Phosphorylation of Mitogen-Activated Protein Kinase in Cultured Rat Cortical Glia by Stimulation of Metabotropic Glutamate Receptors 总被引:3,自引:3,他引:3
Abstract: Activation of metabotropic glutamate receptors (mGluRs) in glia results in significant physiological effects for both the glia and the neighboring neurons; but in many cases, the mGluR subtypes and signal transduction mechanisms mediating these effects have not been determined. In this study, we report that mGluR activation in primary cultures of rat cortical glia results in tyrosine phosphorylation of several proteins, including p44/p42 mitogen-activated protein kinases, also referred to as extracellular signal-regulated kinases (ERK1/2). Incubation of glial cultures with the general mGluR agonist 1-aminocyclopentane-1 S ,3 R -dicarboxylate and the mGluR group I-selective agonists ( RS )-3,5-dihydroxyphenylglycine (DHPG) and l -quisqualate resulted in increased tyrosine phosphorylation of ERK1/2. The group II-selective agonist (2 S ,2' R ,3' R )-2-(2',3'-dicarboxycyclopropyl)glycine and group III-selective agonist l (+)-2-amino-4-phosphonobutyric acid had no effect on tyrosine phosphorylation. DHPG-induced ERK1/2 phosphorylation could be inhibited by an antagonist that acts at group I or group II mGluRs but not by antagonists for group II and group III mGluRs. Protein kinase C (PKC) activators also induced ERK1/2 phosphorylation, but the PKC inhibitor bisindolylmaleimide I did not inhibit DHPG-induced ERK1/2 phosphorylation at a concentration that inhibited the response to phorbol 12,13-dibutyrate. These data suggest that mGluR activation of ERK1/2 in cultured glia is mediated by group I mGluRs and that this effect is independent of PKC activation. Furthermore, immunoblots with antibodies against various mGluR subtypes show expression of mGluR5, but no other mGluRs in our cultures. Taken together, these results suggest that mGluR5 stimulation results in tyrosine phosphorylation of ERK1/2 and other glial proteins. 相似文献
4.
Little is known about the in vivo function of the GTP-binding protein-coupled "metabotropic" excitatory amino acid (EAA) receptor. In vitro studies on agonist-induced brain phosphoinositide hydrolysis have shown that (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid is a highly selective and efficacious metabotropic EAA agonist. We have recently reported that in vivo unilateral intrastriatal injection of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid induces transient extrapyramidal motor activation that manifests itself as contralateral turning. In this study, we fully characterized the onset of turning behavior following intrastriatal (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid injection and the possible involvement of striatal dopamine neurons in the mediation of this effect. Rats were anesthetized with the short-acting agent halothane to allow for rapid surgical recovery and thus early behavioral measurements. Intrastriatal (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1 mumol/2 microliters) produced an incremental increase in contralateral turning starting at 1 h and plateauing 3-6 h after injection (peak effect, 39.1 +/- 6.7 rotations per 5 min). Dopamine depletion with alpha-methyl-DL-p-tyrosine (250 mg/kg i.p., 80% depletion) resulted in greater than 85% inhibition of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid-induced contralateral turning. The dopamine antagonist haloperidol (0.3 mg/kg i.p.) produced 48% inhibition of the (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid response. In time course studies, turning behavior correlated with increases in levels of the dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid. These results suggest a functional interaction between the metabotropic EAA receptor and the dopaminergic system in the striatum. 相似文献
5.
Tasca Carla I. Cardoso Luciana F. Martini Lúcia H. Ramírez Galo Souza Diogo O. 《Neurochemical research》1998,23(2):183-188
Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity via G-proteins. In the present study we report similar results to the previously observed in the literature, showing that glutamate and the metabotropic agonists, 1S,3R-ACPD or quisqualate induced cAMP accumulation in hippocampal slices of young rats. Moreover, guanine nucleotides GTP, GDP or GMP, inhibited the glutamate-induced cAMP accumulation. By measuring LDH activity in the buffer surrounding the slices, we showed that the integrity of the slices was maintained, indicating that the effect of guanine nucleotides was extracellular. GMP, GDP-S or Gpp(NH)p abolished quisqualate-induced cAMP accumulation. GDP-S or Gpp(NH)p but not GMP inhibited 1S,3R-ACPD-induced cAMP accumulation. The response evoked by glutamate was also abolished by the mGluR antagonists: L-AP3 abolished glutamate-induced cAMP accumulation in a dose-dependent manner and MCPG was effective only at the 2 mM dose. DNQX was ineffective. We are reporting here, an inhibition induced by guanine nucleotides, via an extracellular site (s), similar to the observed with classical glutamate antagonists on a cellular response evoked by mGluR agonists. 相似文献
6.
Abstract: The functional efficacies of inhibitors of l -glutamate uptake for altering second messenger formation in baby hamster kidney cells expressing subtypes mGluR1a, mGluR2, and mGluR4 of the metabotropic glutamate receptor family were examined. l -Serine-O-sulfate was an agonist at mGluR1a (EC50 = 70 µM), mGluR2 (EC50 = 25 µM), and mGluR4 (EC50 = 324 µM). l -Cysteine sulfinate, 1-aminocyclobutane-trans-1,3-dicarboxylate, l -cysteine, and dl -threo-3-methylaspartate stimulated phosphoinositide hydrolysis in mGluR1a cells with EC50 values of 43, 64, 463, and 488 µM, respectively, and displaced l -[3H]glutamate binding from membranes prepared from these cells with respective IC50 values of 48, 44, 79, and 139 µM. However, d -aspartate,l -trans-pyrrolidine-2,4-dicarboxylate, l -threo-3-hydroxyaspartate, and l -aspartate-β-hydroxamate stimulated phosphoinositide hydrolysis in mGluR1a cells (respective EC50 values of 73, 54, 57, and 430 µM) but did not displace l -[3H]glutamate binding. These compounds inhibited Na+-dependent l -glutamate uptake into baby hamster kidney cells with IC50 values similar to those for stimulation of phosphoinositide hydrolysis in mGluR1a cells. Phosphoinositide hydrolysis in mGluR1a cells, as stimulated by inhibitors of (or substrates for) this l -glutamate transporter, was significantly attenuated in the presence of l -glutamate decarboxylase (EC 4.1.1.15) or l -alanine aminotransferase (EC 2.6.1.2). Furthermore, incubation with 1 mMl -trans-pyrrolidine-2,4-dicarboxylate for 30 min increased the basal levels of free glutamate (1.5 ± 0.2 µM) in the assay buffer four- to fivefold as measured by HPLC analysis. Thus, heteroexchange with endogenous l -glutamate may lead to erroneous estimations of the functional efficacies at mGluR1a. 相似文献
7.
This investigation was performed to evaluate the effects of ACPD [(1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid], a metabotropic glutamate receptor agonist, on cerebral O2 consumption during focal cerebral ischemia. Male Wistar rats were placed in control (n = 7) and ACPD (n = 7) groups under isoflurane anesthesia. Twenty minutes after middle cerebral artery (MCA) occlusion, gauze sponges with 10–5 M ACPD or normal saline were placed on the ischemic cortex (IC) for a period of 40 min and were changed every 10 min. One hour after MCA occlusion, regional cerebral blood flow (rCBF) was determined using the C14-iodoantipyrine autoradiographic technique. Regional arterial and venous oxygen saturation were determined using microspectrophotometry. There were no statistical differences in vital signs, blood gases, and hemoglobin between the groups. In the control group, the cerebral blood flow and oxygen consumption of the IC were significantly lower than the contralateral cortex (rCBF: 45 ± 11 vs. 110 ± 11 ml/min/100 g, O2 consumption: 2.9 ± 0.4 vs. 5.4 ± 1.1 ml O2/min/100 g). ACPD did not change regional cerebral blood flow of the IC, but did significantly increase the oxygen extraction (7.8 ± 0.2 vs. 6.9 ± 0.3 ml O2/100 ml) and oxygen consumption of the IC (4.3 ± 1.5 vs. 2.9 ± 0.4) compared to the control IC. Our data demonstrated that topical application of 10–25 M ACPD to the ischemic area worsened cerebral O2 balance. These data suggest that metabotropic glutamate receptors are not maximally activated during ischemia in the temporal cortex. 相似文献
8.
Melinda A. Musgrave Maureen A. Madigan Brian M. Bennett Joanne W. Goh 《Journal of neurochemistry》1994,62(6):2316-2324
Abstract: To determine the subcellular distribution of cyclic AMP-coupled metabotropic glutamate receptors (mGluRs), the effects of glutamate agonists on adenylyl cyclase activity were examined using two hippocampal membrane preparations. These were synaptosomes (SY), which are composed of presynaptic terminals, and synaptoneurosomes (SN), which are composed of both pre-and postsynaptic elements. In SY, a water-soluble analogue of forskolin (7β-forskolin) increased enzyme activity ˜ 10-fold at the highest concentration tested. The selective metabotropic receptor agonist (1S,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3 R -ACPD) inhibited enzyme activity as did glutamate and quisqualate. l -Amino-4-phosphobutanoate ( l -AP4) had no effect on enzyme activity at any concentration tested. The metabotropic receptor antagonist l -2-amino-3-phosphopropionic acid ( l -AP3) was not effective in the SY in antagonizing the agonist-induced decreases in adenylyl cyclase activity by glutamate or 1S,3 R -ACPD. It was, however, effective at antagonizing quisqualate-induced decreases in enzyme activity. In SN, at the highest concentration tested, 7β-forskolin produced a 60-fold increase in adenylyl cyclase activity. As was observed in SY, glutamate decreased adenylyl cyclase activity in SN. In contrast, 1S,3 R -ACPD, quisqualate, and l -AP4 increased adenylyl cyclase activity. In the SN, l -AP3 was ineffective in antagonizing any agonist-induced increases (1S,3 R -ACPD, l -AP4, and quisqualate) or decreases (glutamate) in adenylyl cyclase activity. The data suggest that postsynaptic metabotropic glutamate receptor activation results in stimulation of adenylyl cyclase activity, whereas inhibition of this enzyme appears to be mediated at least partly through presynaptic mechanisms. 相似文献
9.
†Wiebke Sihver Karl-Johan Fasth Mattias Ögren ‡Håkan Bivehed Mats Bergström §Agneta Nordberg †Yasuyoshi Watanabe Bengt Långström 《Journal of neurochemistry》1998,71(4):1750-1760
Abstract: The binding characteristics of the novel 11C-labeled nicotinic ligands (R,S)-1-methyl-2-(3-pyridyl) azetidine (MPA) and (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT-418) were investigated in comparison with those of (S)-[11C]nicotine in vitro in the rat brain to be able to predict the binding properties of the new ligands for positron emission tomography studies in vivo. The data from time-resolved experiments for all ligands indicated fast binding kinetics, with the exception of a slower dissociation of [11C]MPA in comparison with (S)-[11C]nicotine and [11C]ABT-418. Saturation experiments revealed for all ligands two nicotinic receptor binding sites with affinity constants (KD values) of 2.4 and 560 nM and binding site densities (Bmax values) of 65.5 and 223 fmol/mg of protein for (S)-[11C]nicotine, KD values of 0.011 and 2.2 nM and Bmax values of 4.4 and 70.7 fmol/mg of protein for [11C]MPA, and KD values of 1.3 and 33.4 nM and Bmax values of 8.8 and 69.2 fmol/mg of protein for [11C]ABT-418. In competing with the 11C-ligands, epibatidine was most potent, followed by cytisine. A different rank order of potencies was found for (?)-nicotine, (+)-nicotine, MPA, and ABT-418 displacing each of the 11C-ligands. Autoradiograms displayed a similar pattern of receptor binding for all ligands, whereby [11C]MPA showed the most distinct binding pattern and the lowest nonspecific binding. We conclude that the three 11C-labeled nicotinic ligands were suitable for characterizing nicotinic receptors in vitro. The very high affinity of [11C]MPA to nicotinic acetylcholine receptors, its low nonspecific binding, and especially the slower dissociation kinetics of the [11C]MPA from the putative high-affinity nicotinic acetylcholine receptor binding site compared with (S)-[11C]nicotine and [11C]ABT-418 raise the level of interest in [11C]MPA for application in positron emission tomography. 相似文献
10.
G. Casabona A. A. Genazzani M. Di Stefano M. A. Sortino F. Nicoletti 《Journal of neurochemistry》1992,59(3):1161-1163
Metabotropic glutamate receptors (mGluRs) have been recently described as a family of guanine nucleotide-binding regulatory protein-coupled receptors with multiple signal transduction pathways. At least one of these receptors appears to be negatively coupled to adenylyl cyclase when stably expressed in transfected cells. We have studied how activation of native mGluRs modulates cyclic AMP (cAMP) formation in brain slices prepared from rats at different ages. 1S,3R-1-Aminocyclopentane-1,3-dicarboxylic acid (1S,1R-ACPD), a selective agonist of mGluRs, slightly increased basal cAMP formation but reduced forskolin-stimulated cAMP formation in adult hippocampal slices, in agreement with previous results. The action of 1S,3R-ACPD on basal cAMP formation was not reproduced by the ionotropic receptor agonists N-methyl-D-aspartate, kainate, and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and was antagonised by L-2-amino-3-phosphonopropionate (L-AP-3). L-AP-3, however, did not prevent but rather mimicked the inhibitory action of 1S,3R-ACPD on forskolin-stimulated cAMP formation. In hippocampal slices from 1-, 8-, or 15-day-old rats, 1S,3R-ACPD increased basal cAMP formation but failed to reduce the action of forskolin. A similar development pattern of modulation was observed in hypothalamic slices with the difference that 1S,3R-ACPD did not stimulate basal cAMP formation in the hypothalamus of adult animals. These results suggest that inhibition of forskolin-stimulated cAMP formation by 1S,3R-ACPD is mediated by a specific mGluR subtype that is preferentially expressed in the adult. 相似文献
11.
Abstract: Displacement of [3 H]glutamate by 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid and quisqualate (in the presence of saturating concentrations of ionotropic glutamate receptor agonists) was used to characterize optimal ionic conditions, distribution, and the ontogeny of glutamate receptor binding sites in rat brain. Using rat forebrain membranes or receptor autoradiography, optimal 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive [3 H]glutamate binding was found in the presence of 100 m M bromide ions and in the absence of calcium ions. Under these conditions, [3 H]glutamate binding was relatively quisqualate insensitive. In regions of the neonatal (11-day-old) and adult rat brain, this [3 H]glutamate binding was highest in forebrain (striatum, cerebral cortex, and hippocampus) and hypothalamus/midbrain but was lower in the cerebellum, olfactory bulb, and pons/medulla regions. 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid-sensitive and quisqualate-insensitive [3 H]glutamate binding was present in the rat forebrain at 1 day of age and gradually increased more than twofold by day 50 (adult). Thus, in the presence of bromide ions and in the absence of calcium ions, [3 H]glutamate labels a subpopulation of metabotropic glutamate receptors that are sensitive to 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid but insensitive to quisqualate. Expression of [3 H]glutamate binding under these conditions was both regionally and developmentally regulated in rat brain, suggesting that [3 H]glutamate is labeling a distinct population of metabotropic glutamate receptors. 相似文献
12.
Abstract : The binding of L-2-[3 H]amino-4-phosphonobutyrate ([3 H]L-AP4) was examined in brain sections of wild-type mice and mice lacking the mGluR4 subtype of metabotropic glutamate receptors (mGluRs). Very high relative densities of [3 H]L-AP4 binding were observed in the molecular layer of the cerebellar cortex, the nucleus basalis, the outer layer of the superior colliculus, and the substantia nigra. In mGluR4 knock-out mice, very low levels of binding were observed in these regions. The moderate levels of binding observed with wild-type mice in the molecular layer of the hippocampal dentate gyrus and in the thalamus were absent in mGluR4 knock-out mice. In contrast, the moderate levels observed in most of the cerebral cortex, caudate putamen, and globus pallidus were not different in mGluR4 knock-out mice compared with wild-type. In these regions, mGluR8 is likely to be labeled by [3 H]L-AP4 because mGluR8 is expressed in such brain regions and, like mGluR4, has high affinity for L-AP4. We conclude that mGluR4 contributes substantially to the high-affinity binding site for [3 H]L-AP4 in several regions of mouse brain, including cerebellar cortex, nucleus basalis, thalamus, superior colliculus, substantia nigra, and hippocampal dentate gyrus. 相似文献
13.
Abstract: A pharmacological approach was used to investigate the cellular mechanism and metabotropic glutamate receptor (mGluR) subtypes that mediate stimulation of basal cyclic AMP (cAMP) formation in slices of the neonatal rat hippocampus. (1 S ,3 R )-1-Aminocyclopentane-1,3-dicarboxylic acid (1 S ,3 R -ACPD), which is an agonist for phosphoinositide-coupled and inhibitory-coupled cAMP-linked mGluRs in cloned and in situ preparations, produced prominent stimulations of basal cAMP levels (five- to 10-fold). However, the agonists 3,5-dihydroxyphenylglycine (DHPG) and (2 R ,4 R )-4-aminopyrrolidine-2,4-dicarboxylate (2 R ,4 R -APDC), which selectively act on phosphoinositide-coupled and inhibitory cAMP-coupled mGluRs, respectively, only weakly increased cAMP levels. When these two mGluR subtype-selective agonists were added in combination, robust increases in cAMP levels, similar to those observed for 1 S ,3 R -ACPD, were found. Stimulations of cAMP content evoked by 1 S ,3 R -ACPD and combined additions of DHPG plus 2 R ,4 R -APDC occurred at concentrations of these agents that directly couple to other mGluR second messenger responses. However, these stimulatory cAMP responses were prevented by the presence of adenosine deaminase and 8- p -sulfophenyltheophylline (an adenosine receptor antagonist), as well as (+)-α-methyl-4-carboxyphenylglycine (an mGluR receptor antagonist). Thus, 1 S ,3 R -ACPD-induced increases in cAMP formation in the neonatal rat hippocampus are mediated by a synergistic interaction between mGluRs coupled to phosphoinositide (group 1) and inhibitory cAMP (group 2), which are indirectly expressed by potentiation of cAMP responses to other agonists (in this case, endogenous adenosine). 相似文献
14.
Claire Monne Daniel Robic Genevive Campion Richard Bourbouze Alain Rimbault Michle Masure Valrie Langlois Patrick Hemery Philippe Guerin 《Chirality》1996,8(4):300-304
(2S,3S)-3-methyl- and 3-isopropylaspartic acids were synthesized by bioconversion of the corresponding alkylfumarates (mesaconate and 3-isopropylfumarate) using β-methylaspartase from cell-free extracts of Clostridium tetanomorphum. Optically pure (2S,3S)-3-alkylaspartic acids were transformed in several steps to benzyl (3S,4R)-3-alkylmalolactonates without any racemization of the two chiral centers. These optically active α,β-substituted-β-lactones were polymerized by anionic ring opening polymerization yielding optically active semi-crystalline polyesters. 13C NMR analysis of poly[benzyl β-3-isopropylmalate] in CDCl3 has shown that only the iso-type stereosequence is present in the polymer, indicating that the macromolecular chain is constituted by the only units of benzyl β-(2S,3S)-3-isopropylmalate monomer. The polymerization reaction was done without any racemization of the two stereogenic centers as in the case of benzyl (3S,4R)-3-methylmalolactonate. © 1996 Wiley-Liss, Inc. 相似文献
15.
Young Ho Suh Ji-Young Park Sangwook Park Ilo Jou Paul A. Roche Katherine W. Roche 《The Journal of biological chemistry》2013,288(24):17544-17551
The metabotropic glutamate receptor type 7 (mGluR7) is the predominant group III mGluR in the presynaptic active zone, where it serves as an autoreceptor to inhibit neurotransmitter release. Our previous studies show that PKC phosphorylation of mGluR7 on Ser-862 is a key mechanism controlling constitutive and activity-dependent surface expression of mGluR7 by regulating a competitive interaction of calmodulin and protein interacting with C kinase (PICK1). As receptor phosphorylation and dephosphorylation are tightly coordinated through the precise action of protein kinases and phosphatases, dephosphorylation by phosphatases is likely to play an active role in governing the activity-dependent or agonist-induced changes in mGluR7 receptor surface expression. In the present study, we find that the serine/threonine protein phosphatase 1 (PP1) has a crucial role in the constitutive and agonist-induced dephosphorylation of Ser-862 on mGluR7. Treatment of neurons with PP1 inhibitors leads to a robust increase in Ser-862 phosphorylation and increased surface expression of mGluR7. In addition, Ser-862 phosphorylation of both mGluR7a and mGluR7b is a target of PP1. Interestingly, agonist-induced dephosphorylation of mGluR7 is regulated by PP1, whereas NMDA-mediated activity-induced dephosphorylation is not, illustrating there are multiple signaling pathways that affect receptor phosphorylation and trafficking. Importantly, PP1γ1 regulates agonist-dependent Ser-862 dephosphorylation and surface expression of mGluR7. 相似文献
16.
Daisuke Okada 《Journal of neurochemistry》1992,59(4):1203-1210
The selective agonists for the metabotropic glutamate receptor and the ionotropic non-N-methyl-D-aspartate (NMDA) glutamate receptor, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) and (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), respectively, increased the cyclic GMP (cGMP) content in cerebellar slices prepared from adult rats. The ACPD-induced rise in cGMP level was blocked by compounds known to antagonize metabotropic glutamate receptors, such as DL-2-amino-3-phosphonopropionic acid and L-2-amino-4-phosphonobutyric acid, but not by ionotropic glutamate receptor antagonists, D-2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), whereas the AMPA-induced rise in cGMP level was suppressed by CNQX. Both rises in cGMP level involved nitric oxide synthase (NOS), because NG-methyl-L-arginine (NMLA), an inhibitor of NOS, blocked both cGMP level rises, and excess L-arginine reversed the effect of NMLA. After lithium chloride treatment, which could exhaust phosphatidylinositol phosphates, ACPD no longer increased cGMP levels, whereas AMPA was still effective. In a calcium-free medium, ACPD still induced a rise in cGMP level, whereas AMPA did not. When the molecular layer was isolated to determine the cGMP content separately from that in the rest of the cerebellar cortex, it was found that ACPD raised the cGMP level mainly in the molecular layer, whereas AMPA raised it in both sections.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
The pharmacokinetics of (S)-propranolol were compared after the oral administration of a 40 mg dose of the pure enantiomer and an 80 mg dose of a racemic mixture of (R,S)-propranolol. The results of this study indicate that the bioavailability of (S)-propranolol, as expressed by the mean area under the concentration-time curve (AUC) and maximum serum concentration, is lower after 40 mg of the optically pure drug than after the racemic drug. 相似文献
18.
Girardi ES Canitrot J Antonelli M González NN Coirini H 《Neurochemical research》2007,32(7):1120-1128
Metabotropic glutamate receptors (mGluR) play a role in synaptic transmission, neuronal modulation and plasticity but their
action in epileptic activity is still controversial. On the other hand adenosine acts as a neuromodulator with endogenous
anticonvulsive properties. Since cerebellum from epileptic patients has shown neuronal damage, sometimes associated with Purkinje
cells loss, we have explored the effect of repetitive seizures on two types of mGluR in the cerebellum. Seizures were induced
by the convulsant drug 3-mercaptopropionic acid (MP) and the effect of the adenosine analogue cyclopentyladenosine (CPA) alone
or before MP administration (CPA+MP) were also evaluated. The expression of the receptors subtypes 2/3 (mGluR2/3) and 4a (mGluR4a)
was assessed by immunocitochemistry. Granular cell layer was labeled with mGluR2/3 antibody and increased immunoreactivity
was observed after MP (60%), CPA (53%) and CPA + MP (85%) treatments. Control cerebellum slices showed mGluR4a reactivity
around Purkinje cells, while MP, CPA and CPA+MP treatment decreased this immunostaining. Repetitive administration of MP and
CPA induces an increased cerebellar mGluR2/3 and a decreased mGluR4a immunostaining, suggesting a distinct participation of
both receptors that may be related to the type of cell involved. A protective action and /or an apoptotic effect may not be
discarded. CPA repetitive administration although increase seizure latency, cannot prevent seizure activity. 相似文献
19.
Marie-Maud Bear Claire Monne Daniel Robic Genevive Campion Valrie Langlois Alain Rimbault Richard Bourbouze Philippe Guerin 《Chirality》1998,10(8):727-733
β-methylaspartate ammonia-lyase, EC 4.3.1.2, (β-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b , respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)- 3a yielded the α,β-substituted β-lactone (3R,4R) 6 with a very high diastereoisomeric excess (>95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl β-(2R,3S)-3-methylmalate] 8 , prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7 , to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of β-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions. Chirality 10:727–733, 1998. © 1998 Wiley-Liss, Inc. 相似文献
20.
Vincent Mutel Geo Adam Sylvie Chaboz John A. Kemp Agnés Klingelschmidt Jürg Messer Jürgen Wichmann Thomas Woltering John Grayson Richards 《Journal of neurochemistry》1998,71(6):2558-2564
Abstract: [(2S,2′R,3′R)-2-(2′,3′-[3H]Dicarboxycyclopropyl)glycine ([3H]DCG IV) binding was characterized in vitro in rat brain cortex homogenates and rat brain sections. In cortex homogenates, the binding was saturable and the saturation isotherm indicated the presence of a single binding site with a KD value of 180 ± 33 nM and a Bmax of 780 ± 70 fmol/mg of protein. The nonspecific binding, measured using 100 µM LY354740, was <30%. NMDA, AMPA, kainate, l (?)-threo-3-hydroxyaspartic acid, and (S)-3,5-dihydroxyphenylglycine were all inactive in [3H]DCG IV binding up to 1 mM. However, several compounds inhibited [3H]DCG IV binding in a concentration-dependent manner with the following rank order of potency: LY341495 = LY354740 > DCG IV = (2S,1′S,2′S)-2-(2-carboxycyclopropyl)glycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (2S,1′S,2′S)-2-methyl-2-(2-carboxycyclopropyl)glycine > l -glutamate = ibotenate > quisqualate > (RS)-α-methyl-4-phosphonophenylglycine = l (+)-2-amino-3-phosphonopropionic acid > (S)-α-methyl-4-carboxyphenylglycine > (2S)-α-ethylglutamic acid > l (+)-2-amino-4-phosphonobutyric acid. N-Acetyl-l -aspartyl-l -glutamic acid inhibited the binding in a biphasic manner with an IC50 of 0.2 µM for the high-affinity component. The binding was also affected by GTPγS, reducing agents, and CdCl2. In parasagittal sections of rat brain, a high density of specific binding was observed in the accessory olfactory bulb, cortical regions (layers 1, 3, and 4 > 2, 5, and 6), caudate putamen, molecular layers of the hippocampus and dentate gyrus, subiculum, presubiculum, retrosplenial cortex, anteroventral thalamic nuclei, and cerebellar granular layer, reflecting its preferential (perhaps not exclusive) affinity for pre- and postsynaptic metabotropic glutamate mGlu2 receptors. Thus, the pharmacology, tissue distribution, and sensitivity to GTPγS show that [3H]DCG IV binding is probably to group II metabotropic glutamate receptors in rat brain. 相似文献