首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstitution experiments with a chemically synthesized core light-harvesting (LH1) beta-polypeptide analogue having 3-methylhistidine instead of histidine in the position that normally donates the coordinating ligand to bacteriochlorophyll (Bchl) have provided the experimental data needed to assign to B820 one of the two possible alphabeta.2Bchl pairs that are observed in the crystal structure of LH2 from Phaeospirillum (formerly Rhodospirillum) molischianum, the one with rings III and V of Bchl overlapping. Consistent with the assigned structure, experimental evidence is provided to show that significant stabilizing interactions for both the subunit complex (B820) and LH1 occur between the N-terminal regions of the alpha- and beta-polypeptides. On the basis of the results with the chemically synthesized polypeptides used in this study, along with earlier results with protease-modified polypeptides, mutants, and chemically synthesized polypeptides, the importance of a stretch of 9-13 amino acids at the N-terminal end of the alpha- and beta-polypeptides is underscored. A progressive loss of interaction with the LH1 beta-polypeptide was found as the first three N-terminal amino acids of the LH1 alpha-polypeptide were removed. The absence of the N-terminal formylmethionine (fMet), or conversion of the sulfur in this fMet to the sulfoxide, resulted in a decrease in LH1 formation. In addition to the removal of fMet, removal of the next two amino acids also resulted in a decrease in K(assoc) for B820 formation and nearly eliminated the ability to form LH1. It is suggested that the first three amino acids (fMetTrpArg) of the LH1 alpha-polypeptide of Rhodospirillum rubrum form a cluster that is most likely involved in close interaction with the side chain of His -18 (see Figure 1 for numbering of amino acids) of the beta-polypeptide. The results provide evidence that the folding motif of the alpha- and beta-polypeptides in the N-terminal region observed in crystal structures of LH2 is also present in LH1 and contributes significantly to stabilizing the complex.  相似文献   

2.
The light-harvesting complex of Rhodospirillum rubrum was reversibly dissociated into its component parts: bacteriochlorophyll and two 6-kilodalton polypeptides. The dissociation of the complex by n-octyl beta-D-glucopyranoside was accompanied by a shift of the absorbance maximum from 873 to 820 nm (a stable intermediate form) and finally to 777 nm. In the latter state, bacteriochlorophyll was shown to be free from the protein. Complexes absorbing at 820 and 873 nm could be re-formed from the fully dissociated state with over 80% yield by dilution of the detergent. Absorbance and circular dichroism properties of the re-formed B820 complex were essentially identical with those of B820 formed from chromatophores. Phospholipids and higher concentrations of complex were required to obtain the in vivo circular dichroism spectrum for reassociated B873. Reconstitution of the light-harvesting complexes from separately isolated alpha- and beta-polypeptides and bacteriochlorophyll was also demonstrated. Absorbance and circular dichroism spectra of these complexes were identical with those of complexes formed by the reassociation of the dissociated complex. Bacteriochlorophyll and the beta-polypeptide alone formed a complex that had an absorbance at 820 nm, but an 873-nm complex could not be formed without addition of the alpha-polypeptide. The alpha-polypeptide alone with bacteriochlorophyll did not form any red-shifted complex. In preliminary structure-function studies, some analogues of bacteriochlorophyll were also tested for reconstitution.  相似文献   

3.
Electron micrographs of photosynthetic membranes of the BChla-containing bacterium Rp. marina showed a quasi-crystalline structure. The photoreceptor units are arranged in a hexagonal lattice with a reaction center to reaction center distance of 102 +/- 3 A. Purified B880-complex was concentrated up to an OD880 of 60 which induced the formation of large protein vesicles. The protein complexes within these vesicles were highly ordered and showed a hexagonal lattice with the same center to center distance of 102 +/- 3 A as was observed in the native membranes. Image processing of the micrographs revealed a ring-like structure of the B880-complex at 26 A resolution and suggests that the B880-complex consists of 5 or 6 subunits. For the first time it can be shown that an isolated core-complex is in a stable, ring-like structure even without the reaction center which is supposed to be located in the middle of the B880-ring. The data indicate that the isolated B880-complex exhibits the same structure as in the native membrane.  相似文献   

4.
Although the polypeptides of core light-harvesting complexes (LH1) from many purple nonsulfur bacteria have been well characterized, little information is available on the polypeptides of LH1 from purple sulfur photosynthetic organisms. We present here the results of isolation and characterization of LH1 polypeptides from two purple sulfur bacteria, Thermochromatium (Tch.) tepidum and Allochromatium (Ach.) vinosum. Native LH1 complexes were extracted and purified in a reaction center (RC)-associated form with the Qy absorption at 914 nm and 889 nm for Tch. tepidum and Ach. vinosum, respectively. Three components were confirmed from reverse-phase HPLC for the LH1 apopolypeptides of Tch. tepidum. The beta-polypeptide was found to be methylated at N-terminus, and two alpha-polypeptides were identified with one of them being modified by a formyl group at the N-terminal methionine residue. Two alpha- and two beta-polypeptides were confirmed for the LH1 complex of Ach. vinosum, and their primary structures were precisely determined. Homologous and hybrid reconstitution abilities were examined using bacteriochlorophyll a and separated alpha- and beta-polypeptides. The beta-polypeptide from Tch. tepidum was capable of forming uniform structural subunit not only with the alpha-polypeptide of Tch. tepidum but also with the alpha-polypeptide from a nonsulfur bacterium Rhodospirillum rubrum. The alpha-polypeptide alone or beta-polypeptide alone appeared only to result in incomplete subunits in the reconstitution experiments.  相似文献   

5.
We have determined the solution structures of the core light-harvesting (LH1) alpha and beta-polypeptides from wild-type purple photosynthetic bacterium Rhodospirillum rubrum using multidimensional NMR spectroscopy. The two polypeptides form stable alpha helices in organic solution. The structure of alpha-polypeptide consists of a long helix of 32 amino acid residues over the central transmembrane domain and a short helical segment at the N terminus that is followed by a three-residue loop. Pigment-coordinating histidine residue (His29) in the alpha-polypeptide is located near the middle of the central helix. The structure of beta-polypeptide shows a single helix of 32 amino acid residues in the membrane-spanning region with the pigment-coordinating histidine residue (His38) at a position close to the C-terminal end of the helix. Strong hydrogen bonds have been identified for the backbone amide protons over the central helical regions, indicating a rigid property of the two polypeptides. The overall structures of the R.rubrum LH1 alpha and beta-polypeptides are different from those previously reported for the LH1 beta-polypeptide of Rhodobacter sphaeroides, but are very similar to the structures of the corresponding LH2 alpha and beta-polypeptides determined by X-ray crystallography. A model constructed for the structural subunit (B820) of LH1 complex using the solution structures reveals several important features on the interactions between the LH1 alpha and beta-polypeptides. The significance of the N-terminal regions of the two polypeptides for stabilizing both B820 and LH1 complexes, as clarified by many experiments, may be attributed to the interactions between the short N-terminal helix (Trp2-Gln6) of alpha-polypeptide and a GxxxG motif in the beta-polypeptide.  相似文献   

6.
Végh AP  Robert B 《FEBS letters》2002,528(1-3):222-226
The core light-harvesting complex (LH1) of Rhodospirillum rubrum is constituted of multiple heterodimeric subunits, each containing two transmembrane polypeptides, alpha and beta. The detergent octylglucoside induces the stepwise dissociation of LH1 into B820 (an alphabeta dimer) and B777 (monomeric polypeptides), both of which still retain their bound bacteriochlorophyll molecules. We have investigated the absorption properties of B820 as a function of temperature, whereby a spectral population called 'B851' has been characterised. We show evidence that it is a dimer of the B820 complex. This may represent an intermediate oligomeric form in the process of the LH1 ring formation, as its existence was predicted from global analysis of the absorption spectra of the LH1/B820 equilibrium [Pandit et al. (2001) Biochemistry 40, 12913-12924]. Stabilisation of this dissociated form of LH1 may help in understanding both the electronic properties and the association process of these integral membrane proteins.  相似文献   

7.
The B820 subunit is an integral pigment-membrane protein complex and can be obtained by both dissociation of the core light-harvesting complex (LH1) in photosynthetic bacteria and reconstitution from its component parts in the presence of n-octyl beta-D-glucopyranoside (OG). Intrinsic size of the B820 subunit from Rhodospirillum rubrum LH1 complex was measured by small-angle neutron scattering in perdeuterated OG solution and evaluated by Guinier analysis. Both the B820 subunits prepared by dissociation of LH1 and reconstitution from apopolypeptides and pigments were shown to have a molecular weight of 11,400 +/- 500 and radius of gyration of 11.0 +/- 1.0 A, corresponding to a heterodimer consisting of one pair of alphabeta-polypeptides and two bacteriochlorophyll a molecules. Molecular weights of micelles formed by OG alone in solutions were determined in a range from 30,000 to 50,000 over concentrations of 1-5% (w/v), and thus are much larger than that of the B820 subunit. Similar measurement on the pigment-depleted apopolypeptides revealed highly heterogeneous behavior in the OG solutions, indicating that aggregates with various sizes were formed. The result provides evidence that bacteriochlorophyll a molecules play a crucial role in stabilizing and maintaining the B820 subunits in the dimeric state in solution. Further measurements on individual alpha- and beta-polypeptides exhibited a marked difference in aggregation property between the two polypeptides. The alpha-polypeptides appear to be uniformly dissolved in OG solution in a monomeric form, whereas the beta-polypeptides favor a self-associated form and tend to form large aggregates even in the presence of detergent. The difference in aggregation tendency was discussed in relation to the different behavior between alpha- and beta-polypeptides in reconstitution with bacteriochlorophyll a molecules.  相似文献   

8.
We investigated the oligomerization of the core light-harvesting complex (LH1) of Rhodospirillum rubrum from the separated alpha beta BChl(2) subunits (B820) and the oligomerization of the B820 subunit from its monomeric peptides. The full LH1 complex was reversibly associated from B820 subunits by either varying the temperature in the range 277-300 K or by varying the detergent concentration in the buffer from 0.36 to 0.52% n-octyl-beta-D-glucopyranoside. Temperature-induced transition measurements showed hysteresis: raising the temperature induced dissociation of B873 directly into B820 subunits whereas upon recooling an intermediate spectral form was observed with an absorption maximum located around 850 nm. This intermediate form was also observed in detergent-induced transitions. It is speculated that the B850 form is a small aggregate of B820, for instance a dimer. Additionally, during a temperature-mediated transition at low detergent concentration, a set of spectral forms with maxima slightly blue-shifted from 873 nm were observed, possibly due to opened rings with one or only a few alpha beta BChl(2) units missing. The temperature-induced transition of LH1 is discussed in terms of a simple assembly model. It is concluded that a moderately cooperative assembly explains the formation of small aggregates of B820 as well as of incomplete rings. Furthermore, the B820 subunits were reversibly dissociated into the monomeric B777 form by increasing either the temperature or the detergent concentration. Estimations of the enthalpy and entropy changes for the dimeric association reaction of B777 into B820 yielded an enthalpy change of -216 kJ mol(-1) and an entropy change of -0.59 kJ mol(-1)K(-1), at a detergent concentration of 0.8% n-octyl-beta-D-glucopyranoside.  相似文献   

9.
The light-harvesting complex B 880 from Rhodospirillum rubrum S 1 (wild type) and B 870 from the carotenoidless mutant G-9+ was shown to consist mainly of an organic solvent-(chloroform/methanol-) soluble and an organic solvent-insoluble polypeptide. The isolation and separation of these two low-molecular-mass polypeptides (Mr 6101 and Mr 6079) were achieved by a two-step extraction procedure of chromatophores using in the first step chloroform/methanol containing 0.1M ammonium acetate. Following Sephadex LH-60 chromatography of this first extract a light-harvesting polypeptide (B 870-alpha) was isolated and its complete amino acid sequence was determined (R. Brunisholz et al. (1981) FEBS Lett. 129/1, 150-154, B 880-alpha: G. Gogel et al. (1983) Biochim. Biophys. Acta 746, 32-39). Upon reextraction of the chromatophore pellet with chloroform/methanol/ammonium acetate containing in addition acetic acid a second low-molecular-mass polypeptide (B 880-beta of B 870-beta) was generated. The complete amino acid sequences of the chloroform/methanol-insoluble light-harvesting polypeptide of Rs. rubrum S 1 (B 880-beta) and of Rs. rubrum G-9+ (B 870-beta) were determined. They are identical and consist of 54 amino acid residues. The conserved histidine residue within the hydrophobic stretch raises more evidence for ligand complexation of bacteriochlorophyll to this specific histidine residue which therefore possibly plays the key role in pigment-protein interactions. Both polypeptides (B 880-alpha and B 880-beta) are part of the light-harvesting complex B 880 in an apparent ratio of 1:1. Based on the primary structure data a possible arrangement of both light-harvesting polypeptides within the membrane will be discussed.  相似文献   

10.
During cotranslational translocation of proteins into the endoplasmic reticulum (ER) translating ribosomes bind to Sec61-complexes. Presently two models exist how these membrane protein complexes might form protein-conducting channels. While electron microscopic data suggest that a ring-like structure consisting of four Sec61-complexes build the channel, the recently solved crystal structure of a homologous bacterial protein complex led to the speculation that the actual tunnel is formed by just one individual Sec61-complex. Using protease protection assays together with quantitative immunoblotting we directly examined the structure of mammalian protein-conducting channels. We found that in native ER-membranes one single Sec61alpha-molecule is preferentially protected by a membrane bound ribosome, both, in the presence and absence of nascent polypeptides. In addition we present evidence that the nascent polypeptide destabilizes the ring-like translocation apparatus formed by four Sec61-complexes. Moreover, we found that after solubilization of ER-membranes a single Sec61-complex is sufficient to protect the nascent polypeptide chain against added proteases. Finally, we could show that this single Sec61-complex allows the movement of the nascent chain, when it has been released from the ribosome by puromycin treatment. Collectively, our data suggest that the active protein-conducting channel in the ER is formed by a single Sec61-complex.  相似文献   

11.
An active photosystem I (PSI) complex was isolated from the thermophilic cyanobacterium Synechococcus elongatus by a procedure consisting of three steps: First, extraction of photosystem II from the thylakoids by a sulfobetaine detergent yields PSI-enriched membranes. Second, the latter are treated with Triton X-100 to extract PSI particles, which are further purified by preparative isoelectric focusing. Third, anion-exchange chromatography is used to remove contaminating phycobilisome polypeptides. The purified particles show three major bands in sodium dodecyl sulfate gel electrophoresis of apparent molecular mass of 110, 15, and 10 kDa. Charge separation was monitored by the kinetics of flash-induced absorption changes at 820 nm. A chlorophyll/P700 ratio of 60 was found. When the particles are stored at 4 degrees C, charge separation was stable for weeks. The molecular mass of the PSI particles, determined by measurement of zero-angle neutron scattering intensity, was 217,000 Da. The PSI particles thus consist of one heterodimer of the 60-80-kDa polypeptides and presumably one copy of the 15- and 10-kDa polypeptides, respectively.  相似文献   

12.
Arluison V  Seguin J  Robert B 《Biochemistry》2002,41(39):11812-11819
The core light-harvesting protein from Rhodospirillum rubrum is of particular interest for studying membrane polypeptide association, as it can be reversibly dissociated in the presence of n-octyl-beta-D-glucopyranoside (betaOG) into smaller subunit forms, which exhibit dramatically blue-shifted absorption properties (Miller et al. (1987) Biochemistry 26, 5055-5062). During this dissociation/reassociation process, two main spectroscopic forms are observed, absorbing at 820 (B820) and 777 (B777) nm, respectively. By using polyacrylamide gel electrophoresis in the presence of betaOG, these forms were characterized from a biochemical point of view. B777 consist of a mixture of alpha or beta polypeptide chains, retaining their bound bacteriochlorophyll (BChl) molecules. The absorption properties of the BChl molecules bound to the monomeric polypeptides do not depend on the chemical nature of the polypeptides they are bound to. B820 is more complex and consist of equilibrium between alphabeta-containing oligomers and beta only containing dimers, all exhibiting very similar electronic absorption properties. Resonance Raman spectroscopy indicates that the binding site provided by the beta-only B820 to the BChl molecules is very similar to that provided by the alphabeta B820. This, together with the observation that the alpha polypeptide alone is unable to form B820, suggests that the local organization of the BChl molecules tightly depends on BChl-protein interactions. On the other hand, our results suggest that the affinity of the beta-BChl complexes for itself and for the alpha-BChl ones are of the same order of magnitude, the formation of heterodimeric complexes being mainly driven by the inability of alpha-BChl complexes to self-associate.  相似文献   

13.
B820 subunits from a purple sulfur bacterium Ectothiorhodospira haloalkaliphila strain ATCC 51935T were obtained by treatment of carotenoid free LH1-RC complexes of this bacterium with ß-octylglucopyranoside (ß-OG). The same complexes with 100% carotenoid content were unable to dißsociate to B820 subunits, but disintegrated to monomeric bacteriochlorophyll (BChl) regardless of their carotenoid composition. The degree of dissociation of the LH1-RC complexes with an intermediate content of carotenoids (the B820 formation) was directly dependent on the quantity of carotenoids in the samples. The resulting B820 subunits did not contain carotenoids. B820 subunits easily aggregated to form a complex with an absorption peak at 880 nm at decreased ß-OG concentration. Analysis of the spectra of the LH1-RC complexes isolated from the cells with different levels of carotenogenesis inhibition led to the conclusion of the heterogeneity of the samples with a predominance of them in (a) the fraction with 100% of carotenoids and (b) the fraction of carotenoid-free complexes.  相似文献   

14.
Gerken U  Lupo D  Tietz C  Wrachtrup J  Ghosh R 《Biochemistry》2003,42(35):10354-10360
The effect of the interaction of the reaction center (RC) upon the geometrical arrangement of the bacteriochlorophyll a (BChla) pigments in the light-harvesting 1 complex (LH1) from Rhodospirillum rubrum has been examined using single molecule spectroscopy. Fluorescence excitation spectra at 1.8 K obtained from single detergent-solubilized as well as single membrane-reconstituted LH1-RC complexes showed predominantly (>70%) a single broad absorption maximum at 880-900 nm corresponding to the Q(y) transition of the LH1 complex. This absorption band was independent of the polarization direction of the excitation light. The remaining complexes showed two mutually orthogonal absorption bands in the same wavelength region with moderate splittings in the range of DeltaE = 30-85 cm(-1). Our observations are in agreement with simulated spectra of an array of 32 strongly coupled BChla dipoles arranged in perfect circular symmetry possessing only a diagonal disorder of 相似文献   

15.
16.
Summary The SOD-like activity of Cu(III) -complexes with polypeptides poly-L-lysine and poly-L-glutamic acid respectively was investigated. The Cu(II)-polypeptide complexes were first oxidized by K2IrCl6 to give the corresponding Cu(III) -compounds.The oxidation of Cu(II) and the corresponding Cu(II)/Cu(III) potential was evaluated by cyclic voltammetry (c.v.), UV-Vis and EPR spectroscopic (r.t.) experiments. Spin trapping EPR spectra were also conducted to confirm the formation of the superoxide radical. The SOD-like activity of each Cu(III)-complex was proved using the nitro blue tetrazolium (NBT) method slightly modified.  相似文献   

17.
A solubilized preparation of the major Rhodospirillum rubrum antenna complex (B880) was obtained by a described procedure and its polypeptide composition was analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Only two polypeptides of molecular weights close to 7000 were detected after staining the gels with Coomassie brilliant blue. However, several other constituents could be visualized by silver staining or by an immunochemical method. When the preparation was chromatographed on Sephacryl, some of the resulting fractions exhibited the characteristic B880 absorption spectrum and contained only the two proteins that were detectable with Coomassie brilliant blue. In those fractions the A 280/A 880ratio was 0.4, which indicated a significant improvement of the bacteriochlorophyll to protein ratio over the unchromatographed preparation (A 280/A 880=0.7). Other chromatography fractions lacked bacteriochlorophyll and contained a carotenoid which seemed to be bound to protein. The macromolecular constituents present in these latter fractions differed from those associated to the purified B880 complex in their electrophoretic moblities and/or in their staining properties. That suggested the possible existence of a carotenoprotein that did not result from the B880 complex upon loss of bacteriochlorophyll.  相似文献   

18.
pH-induced transitions in cholera toxin conformation: a fluorescence study   总被引:1,自引:0,他引:1  
Determination of the ratio of intrinsic fluorescence with dibrominated Bry 96 (F) relative to that with unbrominated Bry 96 (F0), at neutral pH and in the presence of 0.2 M NaCl, reveals that the A subunit of cholera toxin (CT A) has a somewhat higher affinity for this mild detergent than intact cholera toxin (CT) and its B subunit (CT B). Receptor (GM1 or oligo-GM1) binding has no influence on the very low detergent binding of CT and CT B. Activation of CT A by treatment with dithiothreitol (20 mM) also does not affect detergent binding. The weak hydrophobic nature of CT A is also reflected by the negative modulatory action of anionic phospholipids and deoxycholate on its mono-ADP-ribosyltransferase activity and the ability of the former to decrease its intrinsic fluorescence intensity in a salt-resistant way. Detergent binding of CT A is only slightly pH dependent whereas, upon lowering the pH, detergent binding to CT or CT B becomes significant. In the pH range 6.5-4.2 a gradual increase in detergent binding to CT and CT B occurs. In the narrow pH range 4.2-4.0 a sharp and time-dependent enhancement of brominated Bry 96 quenching is observed. The increase in detergent binding upon lowering the pH is fully reversible, salt dependent, and complete within 10 min (t1/2 = 2 min at 25 degrees C). Solute quenching experiments with the neutral polar quencher acrylamide reveal that upon lowering the pH to 5.0 a marked increase in the exposure of the lone Trp-88 residue in each beta-polypeptide chain of CT B occurs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Gall A  Robert B 《Biochemistry》1999,38(16):5185-5190
In this paper we demonstrate that the spectroscopically different peripheral light-harvesting complexes from Rhodopseudomonas palustris, strain 2.6.1, isolated from high- and low-light grown cells have widely differing bacteriochlorophyll a (BChl a) resonance Raman spectra in the high-frequency carbonyl region (1550-1750 cm-1). Complexes synthesized in low-light grown cells exhibit Raman spectra characteristic of B800-850 and B800-820 complexes, depending on the excitation conditions. The in vivo strategy for low-light adaptation in this bacterium is thus somewhat different from that generally encountered in the Rhodospirillaceae. In these bacteria, as typified by Rps. acidophila and Rps. cryptolactis, low-light conditions induce the synthesis of B800-820 only complexes in which the hydrogen bonds between the acetyl carbonyl and the B850 binding pocket are broken, inducing changes in the absorption properties of the monomeric bacteriochlorophylls. In the case of Rps. palustris, additional spectral effects occur due to the coupling of the electronic levels of the differently interacting dimers. The extensive use of differential alpha/beta-polypeptide expression [Tadros et al. (1993) Eur. J. Biochem. 217, 867-875] thus allows Rps. palustris to alter its BChl a binding site environments causing the observed spread of BChl a Qy transitions, ranging from 801 to 856 nm.  相似文献   

20.
An additional component in the purified core light-harvesting complex (LH1) from wild-type purple photosynthetic bacterium Rhodospirillum rubrum has been identified as an oxidized species of alpha-polypeptide by MALDI-TOF mass spectrometry. This component appears as a slightly earlier-eluting peak in the RP-HPLC chromatogram compared with the authentic alpha-polypeptide. The oxidation site has been determined to be the N-terminal methionine residue by high-resolution NMR spectroscopy, where the methionine is oxidized to methionine sulfoxide in a diastereoisomeric form. Interconversion between the oxidized and authentic alpha-polypeptides has been confirmed by selective oxidation and reduction. The oxidative modification of methionine is shown to have discernible effects on the ability to form B820 subunit with beta-polypeptide and bacteriochlorophyll a, and on the stability of the reconstituted B820 subunit. Both the ability and the stability for the samples using the oxidized alpha-polypeptide are moderately reduced, indicating that the oxidation-induced conformational change in the N-terminal domain of alpha-polypeptide may affect the pigment-binding environment through a long-range interaction. The MALDI-TOF mass results also reveal that the N-terminus of alpha-polypeptide is formylated and no phosphorylation has occurred in this polypeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号