首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diaphragmatic O2 and lactate extraction were examined in seven healthy ponies during maximal exercise (ME) carried out without, as well as with, inspiratory resistive breathing. Arterial and diaphragmatic venous blood were sampled simultaneously at rest and at 30-s intervals during the 4 min of ME. Experiments were carried out before and after left laryngeal hemiplegia (LH) was produced. During ME, normal ponies exhibited hypocapnia, hemoconcentration, and a decrease in arterial PO2 (PaO2) with insignificant change in O2 saturation. In LH ponies, PaO2 and O2 saturation decreased well below that in normal ponies, but because of higher hemoglobin concentration, arterial O2 content exceeded that in normal ponies. Because of their high PaCO2 during ME, acidosis was more pronounced in LH animals despite similar lactate values. Diaphragmatic venous PO2 and O2 saturation decreased with ME to 15.5 +/- 0.9 Torr and 18 +/- 0.5%, respectively, at 120 s of exercise in normal ponies. In LH ponies, corresponding values were significantly less: 12.4 +/- 1.3 Torr and 15.5 +/- 0.7% at 120 s and 9.8 +/- 1.4 Torr and 14.3 +/- 0.6% at 240 s of ME. Mean phrenic O2 extraction plateaued at 81 and 83% in normal and LH animals, respectively. Significant differences in lactate concentration between arterial and phrenic-venous blood were not observed during ME. It is concluded that PO2 and O2 saturation in the phrenic-venous blood of normal ponies do not reach their lowest possible values even during ME. Also, the healthy equine diaphragm, even with the added stress of inspiratory resistive breathing, did not engage in net lactate production.  相似文献   

2.
To determine whether O2 availability limited diaphragmatic performance, we subjected unanesthetized sheep to severe (n = 11) and moderate (n = 3) inspiratory flow resistive loads and studied the phrenic venous effluent. We measured transdiaphragmatic pressure (Pdi), systemic arterial and phrenic venous blood gas tensions, and lactate and pyruvate concentrations. In four sheep with severe loads, we measured O2 saturation (SO2), O2 content, and hemoglobin. We found that with severe loads Pdi increased to 74.7 +/- 6.0 cmH2O by 40 min of loading, remained stable for 20-30 more min, then slowly decreased. In every sheep, arterial PCO2 increased when Pdi decreased. With moderate loads Pdi increased to and maintained levels of 40-55 cmH2O. With both loads, venous PO2, SO2, and O2 content decreased initially and then increased, so that the arteriovenous difference in O2 content decreased as loading continued. Hemoglobin increased slowly in three of four sheep. There were no appreciable changes in arterial or venous lactate and pyruvate during loading or recovery. We conclude that the changes in venous PO2, SO2, and O2 content may be the result of changes in hemoglobin, blood flow to the diaphragm, or limitation of O2 diffusion. Our data do not support the hypothesis that in sheep subjected to inspiratory flow resistive loads O2 availability limits diaphragmatic performance.  相似文献   

3.
High hemoglobin affinity for O2 [low PO2 at 50% saturation of hemoglobin (P50)] could degrade exercise performance in normoxia by lowering mean tissue PO2 but could enhance O2 transport in hypoxic exercise by increasing arterial O2 saturation. We measured O2 transport at rest and at graded levels of steady-state exercise in tracheostomized dogs with normal P50 (28.8 +/- 1.8 Torr) and again after P50 was lowered (19.5 +/- 0.7 Torr) by sodium cyanate infusions. Measurements were made during ventilation with room air (RA), 12% O2 in N2, or 10% O2 in N2. Cardiac output (QT) as a function of O2 consumption (VO2) was not altered by low P50 at any inspired O2 fraction (P greater than 0.05). With RA exercise, arterial content (CaO2) and O2 delivery (QT X CaO2) were unchanged at low P50, whereas mixed venous PO2 was reduced at each level of VO2. With exercise in hypoxia, CaO2 and O2 delivery were significantly improved at low P50 (P less than 0.05). Mixed venous PO2 was lower than control during 12% O2 (P less than 0.05) but not different from control during 10% O2 exercise at low P50. Despite a presumed decrease in tissue PO2 during RA and 12% O2 exercise, exercise performance and base excess decline were not significantly worse than control levels. We conclude that, in canine steady-state exercise, hemoglobin P50 is not an important determinant of tissue O2-extraction capacity during normoxia or moderate hypoxia. In extreme hypoxia, low P50 may help to maintain tissue PO2 by enhancing systemic O2 delivery at each level of QT.  相似文献   

4.
Cerebral blood flow and O2 delivery during exercise are important for well-being at altitude but have not been studied. We expected flow to increase on arrival at altitude and then to fall as O2 saturation and hemoglobin increased, thereby maintaining cerebral O2 delivery. We used Doppler ultrasound to measure internal carotid artery flow velocity at sea level and on Pikes Peak, CO (4,300 m). In an initial study (1987, n = 7 men) done to determine the effect of brief (5-min) exercises of increasing intensity, we found at sea level that velocity [24.8 +/- 1.4 (SE) cm/s rest] increased by 15 +/- 7, 30 +/- 6, and 22 +/- 8% for cycle exercises at 33, 71, and 96% of maximal O2 uptake, respectively. During acute hypobaric hypoxia in a decompression chamber (inspired PO2 = 83 Torr), velocity (23.2 +/- 1.4 cm/s rest) increased by 33 +/- 6, 20 +/- 5, and 17 +/- 9% for exercises at 45, 72, and 98% of maximal O2 uptake, respectively. After 18 days on Pikes Peak (inspired PO2 = 87 Torr), velocity (26.6 +/- 1.5 cm/s rest) did not increase with exercise. A subsequent study (1988, n = 7 men) of the effect of prolonged exercise (45 min at approximately 100 W) found at sea level that velocity (24.8 +/- 1.7 cm/s rest) increased by 22 +/- 6, 13 +/- 5, 17 +/- 4, and 12 +/- 3% at 5, 15, 30, and 45 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The objective of these experiments was to determine whether living and training in moderate hypoxia (MHx) confers an advantage on maximal normoxic exercise capacity compared with living and training in normoxia. Rats were acclimatized to and trained in MHx [inspired PO2 (PI(O2)) = 110 Torr] for 10 wk (HTH). Rats living in normoxia trained under normoxic conditions (NTN) at the same absolute work rate: 30 m/min on a 10 degrees incline, 1 h/day, 5 days/wk. At the end of training, rats exercised maximally in normoxia. Training increased maximal O2 consumption (VO2 max) in NTN and HTH above normoxic (NS) and hypoxic (HS) sedentary controls. However, VO2 max and O2 transport variables were not significantly different between NTN and HTH: VO2 max 86.6 +/- 1.5 vs. 86.8 +/- 1.1 ml x min(-1) x kg(-1); maximal cardiac output 456 +/- 7 vs. 443 +/- 12 ml x min(-1) x kg(-1); tissue blood O2 delivery (cardiac output x arterial O2 content) 95 +/- 2 vs. 96 +/- 2 ml x min(-1) x kg(-1); and O2 extraction ratio (arteriovenous O2 content difference/arterial O2 content) 0.91 +/- 0.01 vs. 0.90 +/- 0.01. Mean pulmonary arterial pressure (Ppa, mmHg) was significantly higher in HS vs. NS (P < 0.05) at rest (24.5 +/- 0.8 vs. 18.1 +/- 0.8) and during maximal exercise (32.0 +/- 0.9 vs. 23.8 +/- 0.6). Training in MHx significantly attenuated the degree of pulmonary hypertension, with Ppa being significantly lower at rest (19.3 +/- 0.8) and during maximal exercise (29.2 +/- 0.5) in HTH vs. HS. These data indicate that, despite maintaining equal absolute training intensity levels, acclimatization to and training in MHx does not confer significant advantages over normoxic training. On the other hand, the pulmonary hypertension associated with acclimatization to hypoxia is reduced with hypoxic exercise training.  相似文献   

6.
A decrease in maximal O2 uptake has been demonstrated with increasing altitude. However, direct measurements of individual links in the O2 transport chain at extreme altitude have not been obtained previously. In this study we examined eight healthy males, aged 21-31 yr, at rest and during steady-state exercise at sea level and the following inspired O2 pressures (PIO2): 80, 63, 49, and 43 Torr, during a 40-day simulated ascent of Mt. Everest. The subjects exercised on a cycle ergometer, and heart rate was recorded by an electrocardiograph; ventilation, O2 uptake, and CO2 output were measured by open circuit. Arterial and mixed venous blood samples were collected from indwelling radial or brachial and pulmonary arterial catheters for analysis of blood gases, O2 saturation and content, and lactate. As PIO2 decreased, maximal O2 uptake decreased from 3.98 +/- 0.20 l/min at sea level to 1.17 +/- 0.08 l/min at PIO2 43 Torr. This was associated with profound hypoxemia and hypocapnia; at 60 W of exercise at PIO2 43 Torr, arterial PO2 = 28 +/- 1 Torr and PCO2 = 11 +/- 1 Torr, with a marked reduction in mixed venous PO2 [14.8 +/- 1 (SE) Torr]. Considering the major factors responsible for transfer of O2 from the atmosphere to the tissues, the most important adaptations occurred in ventilation where a fourfold increase in alveolar ventilation was observed. Diffusion from alveolus to end-capillary blood was unchanged with altitude. The mass circulatory transport of O2 to the tissue capillaries was also unaffected by altitude except at PIO2 43 Torr where cardiac output was increased for a given O2 uptake. Diffusion from the capillary to the tissue mitochondria, reflected by mixed venous PO2, was also increased with altitude. With increasing altitude, blood lactate was progressively reduced at maximal exercise, whereas at any absolute and relative submaximal work load, blood lactate was higher. These findings suggest that although glycogenolysis may be accentuated at low work loads, it may not be maximally activated at exhaustion.  相似文献   

7.
The role of ATP-sensitive K(+) (K(ATP)(+)) channels in vasomotor tone regulation during metabolic stimulation is incompletely understood. Consequently, we studied the contribution of K(ATP)(+) channels to vasomotor tone regulation in the systemic, pulmonary, and coronary vascular bed in nine treadmill-exercising swine. Exercise up to 85% of maximum heart rate increased body O(2) consumption fourfold, accommodated by a doubling of both cardiac output and body O(2) extraction. Mean aortic pressure was unchanged, implying that systemic vascular conductance (SVC) also doubled, whereas pulmonary artery pressure increased almost in parallel with cardiac output, so that pulmonary vascular conductance (PVC) increased only 25 +/- 9% (both P < 0.05). Myocardial O(2) consumption tripled during exercise, which was paralleled by an equivalent increase in O(2) supply so that coronary venous PO(2) was maintained. Selective K(ATP)(+) channel blockade with glibenclamide (3 mg/kg iv), decreased SVC by 29 +/- 4% at rest and by 10 +/- 2% at 5 km/h (both P < 0.05), whereas PVC was unchanged. Glibenclamide decreased coronary vascular conductance and hence myocardial O(2) delivery, necessitating an increase in O(2) extraction from 76 +/- 2% to 86 +/- 2% at rest and from 79 +/- 2% to 83 +/- 1% at 5 km/h. Consequently, coronary venous PO(2) decreased from 25 +/- 1 to 17 +/- 1 mmHg at rest and from 23 +/- 1 to 20 +/- 1 mmHg at 5 km/h (all values are P < 0.05). In conclusion, K(ATP)(+) channels dilate the systemic and coronary, but not the pulmonary, resistance vessels at rest and during exercise in swine. However, opening of K(ATP)(+) channels is not mandatory for the exercise-induced systemic and coronary vasodilation.  相似文献   

8.
The contribution of pH to exercise-induced arterial O2 desaturation was evaluated by intravenous infusion of sodium bicarbonate (Bic, 1 M; 200-350 ml) or an equal volume of saline (Sal; 1 M) at a constant infusion rate during a "2,000-m" maximal ergometer row in five male oarsmen. Blood-gas variables were corrected to the increase in blood temperature from 36.5 +/- 0.3 to 38.9 +/- 0.1 degrees C (P < 0.05; means +/- SE), which was established in a pilot study. During Sal exercise, pH decreased from 7.42 +/- 0.01 at rest to 7.07 +/- 0.02 but only to 7.34 +/- 0.02 (P < 0.05) during the Bic trial. Arterial PO2 was reduced from 103.1 +/- 0.7 to 88.2 +/- 1.3 Torr during exercise with Sal, and this reduction was not significantly affected by Bic. Arterial O2 saturation was 97.5 +/- 0.2% at rest and decreased to 89.0 +/- 0.7% during Sal exercise but only to 94.1 +/- 1% with Bic (P < 0.05). Arterial PCO2 was not significantly changed from resting values in the last minute of Sal exercise, but in the Bic trial it increased from 40.5 +/- 0.5 to 45.9 +/- 2.0 Torr (P < 0.05). Pulmonary ventilation was lowered during exercise with Bic (155 +/- 14 vs. 142 +/- 13 l/min; P < 0.05), but the exercise-induced increase in the difference between the end-tidal O2 pressure and arterial PO2 was similar in the two trials. Also, pulmonary O2 uptake and changes in muscle oxygenation as determined by near-infrared spectrophotometry during exercise were similar. The enlarged blood-buffering capacity after infusion of Bic attenuated acidosis and in turn arterial desaturation during maximal exercise.  相似文献   

9.
Alveolar epithelial integrity in athletes with exercise-induced hypoxemia.   总被引:1,自引:0,他引:1  
The effect of incremental exercise to exhaustion on the change in pulmonary clearance rate (k) of aerosolized (99m)Tc-labeled diethylenetriaminepentaacetic acid ((99m)Tc-DTPA) and the relationship between k and arterial PO(2) (Pa(O(2))) during heavy work were investigated. Ten male cyclists (age = 25 +/- 2 yr, height = 180.9 +/- 4.0 cm, mass = 80.1 +/- 9.5 kg, maximal O(2) uptake = 5. 25 +/- 0.35 l/min, mean +/- SD) completed a pulmonary clearance test shortly (39 +/- 8 min) after a maximal O(2) uptake test. Resting pulmonary clearance was completed >/=24 h before or after the exercise test. Arterial blood was sampled at rest and at 1-min intervals during exercise. Minimum Pa(O(2)) values and maximum alveolar-arterial PO(2) difference ranged from 73 to 92 Torr and from 30 to 55 Torr, respectively. No significant difference between resting k and postexercise k for the total lung (0.55 +/- 0.20 vs. 0. 57 +/- 0.17 %/min, P > 0.05) was observed. Pearson product-moment correlation indicated no significant linear relationship between change in k for the total lung and minimum Pa(O(2)) (r = -0.26, P > 0.05). These results indicate that, averaged over subjects, pulmonary clearance of (99m)Tc-DTPA after incremental maximal exercise to exhaustion in highly trained male cyclists is unchanged, although the sampling time may have eliminated a transient effect. Lack of a linear relationship between k and minimum Pa(O(2)) during exercise suggests that exercise-induced hypoxemia occurs despite maintenance of alveolar epithelial integrity.  相似文献   

10.
Neurohumoral responses during prolonged exercise in humans.   总被引:5,自引:0,他引:5  
This study examined neurohumoral alterations during prolonged exercise with and without hyperthermia. The cerebral oxygen-to-carbohydrate uptake ratio (O2/CHO = arteriovenous oxygen difference divided by arteriovenous glucose difference plus one-half lactate), the cerebral balances of dopamine, and the metabolic precursor of serotonin, tryptophan, were evaluated in eight endurance-trained subjects during exercise randomized to be with or without hyperthermia. The core temperature stabilized at 37.9 +/- 0.1 degrees C (mean +/- SE) in the control trial, whereas it increased to 39.7 +/- 0.2 degrees C in the hyperthermic trial, with a concomitant increase in perceived exertion (P < 0.05). At rest, the brain had a small release of tryptophan (arteriovenous difference of -1.2 +/- 0.3 micromol/l), whereas a net balance was obtained during the two exercise trials. Both the arterial and jugular venous dopamine levels became elevated during the hyperthermic trial, but the net release from the brain was unchanged. During exercise, the O2/CHO was similar across trials, but, during recovery from the hyperthermic trial, the ratio decreased to 3.8 +/- 0.3 (P < 0.05), whereas it returned to the baseline level of approximately 6 within 5 min after the control trial. The lowering of O2/CHO was established by an increased arteriovenous glucose difference (1.1 +/- 0.1 mmol/l during recovery from hyperthermia vs. 0.7 +/- 0.1 mmol/l in control; P < 0.05). The present findings indicate that the brain has an increased need for carbohydrates during recovery from strenuous exercise, whereas enhanced perception of effort as observed during exercise with hyperthermia was not related to alterations in the cerebral balances of dopamine or tryptophan.  相似文献   

11.
Ten foxhounds were studied during maximal and submaximal exercise on a motor-driven treadmill before and after 8-12 wk of training. Training consisted of working at 80% of maximal heart rate 1 h/day, 5 days/wk. Maximal O2 consumption (VO2max) increased 28% from 113.7 +/- 5.5 to 146.1 +/- 5.4 ml O2 X min-1 X kg-1, pre- to posttraining. This increase in VO2max was due primarily to a 27% increase in maximal cardiac output, since maximal arteriovenous O2 difference increased only 4% above pretraining values. Mean arterial pressure during maximal exercise did not change from pre- to posttraining, with the result that calculated systemic vascular resistance (SVR) decreased 20%. There were no training-induced changes in O2 consumption, cardiac output, arteriovenous O2 difference, mean arterial pressure, or SVR at any level of submaximal exercise. However, if post- and pretraining values are compared, heart rate was lower and stroke volume was greater at any level of submaximal exercise. Venous lactate concentrations during a given level of submaximal exercise were significantly lower during posttraining compared with pretraining, but venous lactate concentrations during maximal exercise did not change as a result of exercise training. These results indicate that a program of endurance training will produce a significant increase in VO2max in the foxhound. This increase in VO2max is similar to that reported previously for humans and rats but is derived primarily from central (stroke volume) changes rather than a combination of central and peripheral (O2 extraction) changes.  相似文献   

12.
The relationship between skeletal muscle intracellular PO(2) (iPO(2)) and progressive muscular work has important implications for the understanding of O(2) transport and utilization. Presently there is debate as to whether iPO(2) falls progressively with increasing O(2) demand or reaches a plateau from moderate to maximal metabolic demand. Thus, using (1)H magnetic resonance spectroscopy of myoglobin (Mb), we studied cellular oxygenation during progressive single-leg knee extensor exercise from unweighted to 100% of maximal work rate in six active human subjects. In all subjects, the Mb peak at 73 ppm was not visible at rest, whereas the peak was small or indistinguishable from the noise in the majority of subjects during progressive exercise from unweighted to 50-60% of maximum work rate. In contrast, beyond this exercise intensity, a Mb peak of consistent magnitude was discernible in all subjects. When a Mb half saturation of 3.2 Torr was used, the calculated skeletal muscle PO(2) was variable before 60% of maximum work rate but in general was relatively high (>18 Torr, the measurable PO(2) with the poorest signal-to-noise ratio, in the majority of cases), whereas beyond this exercise intensity iPO(2) fell to a relatively uniform and invariant level of 3.8 +/- 0.5 Torr across all subjects. These results do not support the concept of a progressive linear fall in iPO(2) across increasing work rates. Instead, this study documents variable but relatively high iPO(2) from rest to moderate exercise and again confirms that from 50-60% of maximum work rate iPO(2) reaches a plateau that is then invariant with increasing work rate.  相似文献   

13.
The present study compared the arteriohepatic venous (a-hv) balance technique and the tracer-dilution method for estimation of hepatic glucose production during both moderate and heavy exercise in humans. Eight healthy young men (aged 25 yr; range, 23-30 yr) performed semisupine cycling for 40 min at 50.4 +/- 1.5(SE)% maximal O(2) consumption, followed by 30 min at 69.0 +/- 2.2% maximal O(2) consumption. The splanchnic blood flow was estimated by continuous infusion of indocyanine green, and net splanchnic glucose output was calculated as the product of splanchnic blood flow and a-hv blood glucose concentration differences. Glucose appearance rate was determined by a primed, continuous infusion of [3-(3)H]glucose and was calculated by using formulas for a modified single compartment in non-steady state. Glucose production was similar whether determined by the a-hv balance technique or by the tracer-dilution method, both at rest and during moderate and intense exercise (P > 0. 05). It is concluded that, during exercise in humans, determination of hepatic glucose production can be performed equally well with the two techniques.  相似文献   

14.
The present study was carried out 1) to compare blood flow in the costal and crural regions of the equine diaphragm during quiet breathing at rest and during graded exercise and 2) to determine the fraction of cardiac output needed to perfuse the diaphragm during near-maximal exercise. By the use of radionuclide-labeled 15-micron-diam microspheres injected into the left atrium, diaphragmatic and intercostal muscle blood flow was studied in 10 healthy ponies at rest and during three levels of exercise (moderate: 12 mph, heavy: 15 mph, and near-maximal: 19-20 mph) performed on a treadmill. At rest, in eucapnic ponies, costal (13 +/- 3 ml.min-1.100 g-1) and crural (13 +/- 2 ml.min-1.100 g-1) phrenic blood flows were similar, but the costal diaphragm received a much larger percentage of cardiac output (0.51 +/- 0.12% vs. 0.15 +/- 0.03% for crural diaphragm). Intercostal muscle perfusion at rest was significantly less than in either phrenic region. Graded exercise resulted in significant progressive increments in perfusion to these tissues. Although during exercise, crural diaphragmatic blood flow was not different from intercostal muscle blood flow, these values remained significantly less (P less than 0.01) than in the costal diaphragm. At moderate, heavy, and near-maximal exercise, costal diaphragmatic blood flow (123 +/- 12, 190 +/- 12, and 245 +/- 18 ml.min-1.100 g-1) was 143%, 162%, and 162%, respectively, of that for the crural diaphragm (86 +/- 10, 117 +/- 8, and 151 +/- 14 ml.min-1.100 g-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of dietary supplementation of dihydroxyacetone and pyruvate (DHAP) on endurance capacity and metabolic responses during arm exercise were determined in 10 untrained males (20-26 yr). Subjects performed arm ergometer exercise (60% peak O2 consumption) to exhaustion after consumption of standard diets (55% carbohydrate, 15% protein, 30% fat; 35 kcal/kg) containing either 100 g of Polycose (placebo, P) or DHAP (3:1, treatment) substituted for a portion of carbohydrate. The two diets were administered in a random order, and each was consumed for a 7-day period. Biopsy of the triceps muscle was obtained immediately before and after exercise. Blood samples were drawn through radial artery and axillary vein catheters at rest, after 60 min of exercise, and at exercise termination. Arm endurance was 133 +/- 20 min after P and 160 +/- 22 min after DHAP (P less than 0.01). Triceps glycogen at rest was 88 +/- 8 (P) and 130 +/- 19 mmol/kg (DHAP) (P less than 0.05). Whole arm arteriovenous glucose difference (mmol/l) was greater (P less than 0.05) for DHAP than P at rest (0.60 +/- 0.12 vs. 0.05 +/- 0.09) and after 60 min of exercise (1.00 +/- 0.12 vs. 0.36 +/- 0.11), but it did not differ at exhaustion. Neither respiratory exchange ratio nor respiratory quotient differed between trials at rest, after 60 min of exercise, or at exhaustion. Plasma free fatty acid, glycerol, beta-hydroxybutyrate, catecholamines, and insulin were similar during rest and exercise for both diets. Feeding DHAP for 7 days increased arm muscle glucose extraction before and during exercise, thereby enhancing submaximal arm endurance capacity.  相似文献   

16.
Seventeen fit women ran to exhaustion (14 +/- 4 min) at a constant speed and grade, reaching 95 +/- 3% of maximal O(2) consumption. Pre- and postexercise lung function, including airway resistance [total respiratory resistance (Rrs)] across a range of oscillation frequencies, was measured, and, on a separate day, airway reactivity was assessed via methacholine challenge. Arterial O(2) saturation decreased from 97.6 +/- 0.5% at rest to 95.1 +/- 1.9% at 1 min and to 92.5 +/- 2.6% at exhaustion. Alveolar-arterial O(2) difference (A-aDO(2)) widened to 27 +/- 7 Torr after 1 min and was maintained at this level until exhaustion. Arterial PO(2) (Pa(O(2))) fell to 80 +/- 8 Torr at 1 min and then increased to 86 +/- 9 Torr at exhaustion. This increase in Pa(O(2)) over the exercise duration occurred due to a hyperventilation-induced increase in alveolar PO(2) in the presence of a constant A-aDO(2). Arterial O(2) saturation fell with time because of increasing temperature (+2.6 +/- 0.5 degrees C) and progressive metabolic acidosis (arterial pH: 7.39 +/- 0.04 at 1 min to 7.26 +/- 0.07 at exhaustion). Plasma histamine increased throughout exercise but was inversely correlated with the fall in Pa(O(2)) at end exercise. Neither pre- nor postexercise Rrs, frequency dependence of Rrs, nor diffusing capacity for CO correlated with the exercise A-aDO(2) or Pa(O(2)). Although several subjects had a positive or borderline hyperresponsiveness to methacholine, this reactivity did not correlate with exercise-induced changes in Rrs or exercise-induced arterial hypoxemia. In conclusion, regardless of the degree of exercise-induced arterial hypoxemia at the onset of high-intensity exercise, prolonging exercise to exhaustion had no further deleterious effects on A-aDO(2), and the degree of gas exchange impairment was not related to individual differences in small or large airway function or reactivity.  相似文献   

17.
Changes in cardiac output during sustained maximal ventilation in humans   总被引:2,自引:0,他引:2  
To determine the increment in cardiac output and in O2 consumption (Vo2) from quiet breathing to maximal sustained ventilation, Vo2 and cardiac output were measured using an acetylene rebreathing technique in five subjects. Cardiac output and Vo2 were measured multiple times in each subject at rest and during sustained maximal ventilation. During maximal ventilation subjects breathed 5% CO2 to prevent hypocapnia. The increase in cardiac output from rest to maximal breathing was taken as an estimate of respiratory muscle blood flow and was used to calculate the arteriovenous O2 content difference across the respiratory muscles from the Fick equation. Cardiac output increased by 4.3 +/- 1.0 l/min (mean +/- SD), from 5.6 +/- 0.7 l/min at rest to 9.9 +/- 1.1 l/min, during maximal ventilations ranging from 127 to 193 l/min. Vo2 increased from 312 +/- 29 to 723 +/- 69 ml/min during maximal ventilation. O2 extraction across the respiratory muscles during maximal breathing was 9.6 +/- 1.0 vol% (range 8.5 to 10.7 vol%). These values suggest an upper limit of respiratory muscle blood flow of 3-5 l/min during unloaded maximal sustained ventilation.  相似文献   

18.
O(2) transport during maximal exercise was studied in rats bred for extremes of exercise endurance, to determine whether maximal O(2) uptake (VO(2 max)) was different in high- (HCR) and low-capacity runners (LCR) and, if so, which were the phenotypes responsible for the difference. VO(2 max) was determined in five HCR and six LCR female rats by use of a progressive treadmill exercise protocol at inspired PO(2) of approximately 145 (normoxia) and approximately 70 Torr (hypoxia). Normoxic VO(2 max) (in ml. min(-1). kg(-1)) was 64.4 +/- 0.4 and 57.6 +/- 1.5 (P < 0.05), whereas VO(2 max) in hypoxia was 42.7 +/- 0.8 and 35.3 +/- 1.5 (P < 0.05) in HCR and LCR, respectively. Lack of significant differences between HCR and LCR in alveolar ventilation, alveolar-to-arterial PO(2) difference, or lung O(2) diffusing capacity indicated that neither ventilation nor efficacy of gas exchange contributed to the difference in VO(2 max) between groups. Maximal rate of blood O(2) convection (cardiac output times arterial blood O(2) content) was also similar in both groups. The major difference observed was in capillary-to-tissue O(2) transfer: both the O(2) extraction ratio (0.81 +/- 0.002 in HCR, 0.74 +/- 0.009 in LCR, P < 0.001) and the tissue diffusion capacity (1.18 +/- 0.09 in HCR and 0.92 +/- 0.05 ml. min(-1). kg(-1). Torr(-1) in LCR, P < 0.01) were significantly higher in HCR. The data indicate that selective breeding for exercise endurance resulted in higher VO(2 max) mostly associated with a higher transfer of O(2) at the tissue level.  相似文献   

19.
Previously, by measuring myoglobin-associated PO(2) (P(Mb)O(2)) during maximal exercise, we have demonstrated that 1) intracellular PO(2) is 10-fold less than calculated mean capillary PO(2) and 2) intracellular PO(2) and maximum O(2) uptake (VO(2 max)) fall proportionately in hypoxia. To further elucidate this relationship, five trained subjects performed maximum knee-extensor exercise under conditions of normoxia (21% O(2)), hypoxia (12% O(2)), and hyperoxia (100% O(2)) in balanced order. Quadriceps O(2) uptake (VO(2)) was calculated from arterial and venous blood O(2) concentrations and thermodilution blood flow measurements. Magnetic resonance spectroscopy was used to determine myoglobin desaturation, and an O(2) half-saturation pressure of 3.2 Torr was used to calculate P(Mb)O(2) from saturation. Skeletal muscle VO(2 max) at 12, 21, and 100% O(2) was 0.86 +/- 0.1, 1.08 +/- 0.2, and 1.28 +/- 0.2 ml. min(-1). ml(-1), respectively. The 100% O(2) values approached twice that previously reported in human skeletal muscle. P(Mb)O(2) values were 2.3 +/- 0.5, 3.0 +/- 0.7, and 4.1 +/- 0.7 Torr while the subjects breathed 12, 21, and 100% O(2), respectively. From 12 to 21% O(2), VO(2) and P(Mb)O(2) were again proportionately related. However, 100% O(2) increased VO(2 max) relatively less than P(Mb)O(2), suggesting an approach to maximal mitochondrial capacity with 100% O(2). These data 1) again demonstrate very low cytoplasmic PO(2) at VO(2 max), 2) are consistent with supply limitation of VO(2 max) of trained skeletal muscle, even in hyperoxia, and 3) reveal a disproportionate increase in intracellular PO(2) in hyperoxia, which may be interpreted as evidence that, in trained skeletal muscle, very high mitochondrial metabolic limits to muscle VO(2) are being approached.  相似文献   

20.
The purpose of this investigation was to examine the effects of moderate hypohydration (HY) on skeletal muscle glycogen resynthesis after exhaustive exercise. On two occasions, eight males completed 2 h of intermittent cycle ergometer exercise (4 bouts of 17 min at 60% and 3 min at 80% of maximal O2 consumption/10 min rest) to reduce muscle glycogen concentrations (control values 711 +/- 41 mumol/g dry wt). During one trial, cycle exercise was followed by several hours of light upper body exercise in the heat without fluid replacement to induce HY (-5% body wt); in the second trial, sufficient water was ingested during the upper body exercise and heat exposure to maintain euhydration (EU). In both trials, 400 g of carbohydrate were ingested at the completion of exercise and followed by 15 h of rest while the desired hydration level was maintained. Muscle biopsy samples were obtained from the vastus lateralis immediately after intermittent cycle exercise (T1) and after 15 h of rest (T2). During the HY trial, the muscle water content was lower (P less than 0.05) at T1 and T2 (288 +/- 9 and 265 +/- 5 ml/100 g dry wt, respectively; NS) than during EU (313 +/- 8 and 301 +/- 4 ml/100 g dry wt, respectively; NS). Muscle glycogen concentration was not significantly different during EU and HY at T1 (200 +/- 35 vs. 251 +/- 50 mumol/g dry wt) or T2 (452 +/- 34 vs. 491 +/- 35 mumol/g dry wt). These data indicate that, despite reduced water content during the first 15 h after heavy exercise, skeletal muscle glycogen resynthesis is not impaired.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号