首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of different process kinetics on the course of phenol degradation has been studied as well as the influence of axial dispersion in the liquid phase on the reactor height with relatively large biofilm thickness in a conventional fluidized bed and air-lift bioreactor. The object of this was to achieve a high conversion of substrate in a device of real size in real process time. For calculating the mathematical model, the method of orthogonal collocation with the STIFF integration routine has been used.  相似文献   

2.
Production of methanol from aromatic acids by Pseudomonas putida.   总被引:6,自引:4,他引:2       下载免费PDF全文
When grown at the expense of 3,4,5-trimethoxybenzoic acid, a strain of Pseudomonas putida oxidized this compound and also 3,5-dimethoxy-4-hydroxybenzoic (syringic) and 3,4-dihydroxy-5-methoxybenzoic (3-O-methylgallic) acids; but other hydroxy- or methoxy-benzoic acids were oxidized slowly or not at all. Radioactivity appeared exclusively in carbon dioxide when cells were incubated with [4-methoxyl-14C]trimethoxybenzoic acid, but was found mainly in methanol when[methoxyl-14C]3-O-methylgallic acid was metabolized. The identity of methanol was proved by analyzing the product from [methoxyl-13C]3-O-methylgallic acid by nuclear magnetic resonance spectroscopy and by isolating the labeled 3,5-dinitrobenzoic acid methyl ester, which was examined by mass spectrometry. These results, together with measurements of oxygen consumed in demethylations catalyzed by cell extracts, showed that two methoxyl groups of 3,4,5-trimethoxybenzoate and one of syringate were oxidized to give carbon dioxide and 3-O-methylgallate. This was then metabolized to pyruvate; the other product was presumed to be the 4-methyl ester of oxalacetic acid, for which cell extracts contained an inducible, specific esterase. P. putida did not metabolize the methanol released from this compound by hydrolysis. Support for the proposed reaction sequence was obtained by isolating mutants which, although able to convert 3,4,5-trimethoxybenzoic acid into 3-O-methylgallic acid, were unable to use either compound for growth.  相似文献   

3.
Degradation of Acetonitrile by Pseudomonas putida   总被引:1,自引:2,他引:1       下载免费PDF全文
A bacterium capable of utilizing high concentrations of acetonitrile as the sole source of carbon and nitrogen was isolated from soil and identified as Pseudomonas putida. This bacterium could also utilize butyronitrile, glutaronitrile, isobutyronitrile, methacrylonitrile, propionitrile, succinonitrile, valeronitrile, and some of their corresponding amides, such as acetamide, butyramide, isobutyramide, methacrylamide, propionamide, and succinamide as growth substrates. Acetonitrile-grown cells oxidized acetonitrile with a Km of 40.61 mM. Mass balance studies with [14C]acetonitrile indicated that nearly 66% of carbon of acetonitrile was released as 14CO2 and 14% was associated with the biomass. Metabolites of acetonitrile in the culture medium were acetic acid and ammonia. The acetate formed in the early stages of growth completely disappeared in the later stages. Cell extracts of acetonitrile-grown cells contained activities corresponding to nitrile hydratase and amidase, which mediate the breakdown of actonitrile into acetic acid and ammonia. Both enzymes were intracellular and inducible and hydrolyzed a wide range of substrates. The specific activity of amidase was at least 150-fold higher than the activity of the enzyme nitrile hydratase.  相似文献   

4.
The microbial degradation of dibenzothiophene (DBT) and other organosulphur compounds such as thiophene-2-carboxylate (T2C) is of interest for the potential desulphurization of coal. The feasibility of degradation of DBT and T2C by Pseudomonas putida and other bacteria was analysed. Pseudomonas putida oxidized sulphur from DBT in the presence of yeast extract, but it did not when DBT was the sole source of carbon.  相似文献   

5.
Degradation of 1,4-naphthoquinones by Pseudomonas putida   总被引:1,自引:0,他引:1  
Pseudomonas putida J1 and J2, enriched from soil with juglone, are capable of a total degradation of 1,4-naphthoquinone, 2-hydroxy-1,4-naphthoquinone, and 2-chloro-1,4-naphthoquinone. Naphthazerin and plumbagin are only converted into the hydroxyderivatives 2-hydroxynaphthazerin and 3-hydroxyplumbagin, respectively, whereas 2-amino-1,4-naphthoquinone is not attacked at all. The degradation of 1,4-naphthoquinone begins with a hydroxylation of the quinoid ring, yielding 2-hydroxy-1,4-naphthoquinone (lawsone). Lawsone is reduced to 1,2,4-trihydroxynaphthalene with consumption of NADH. The fission product of the quinol could not be detected by direct means because of its instability. However, the presence of 2-chromonecarboxylic acid, a secondary product of lawsone degradation, leads to the conclusion, that the cleavage of the quinol takes place in the meta-position. The resulting ring fission product is converted into salicylic acid by removal of the side chain, presumably as pyruvate. Further degradation of salicyclic acid leads to the formation of catechol, which is then cleaved in the ortho-position and then metabolized via the 3-oxoadipate pathway. The initial steps in the degradation of 2-chloro-1,4-naphthoquinone, namely, the hydroxylation of the quinone to 2-chloro-3-hydroxy-1,4-naphthoquinone, followed by the elimination of the chlorine substituent lead to lawsone, which is further degraded through the pathway described. The degradation steps could be verified by the accumulation products of mutant strains blocked in different steps of lawsone metabolism. Generation of mutants was carried out by chemical and by transposon mutagenesis. The regulation of the first steps of the pathway catalysed by juglone hydroxylase and lawsone reductase, was investigated by induction experiments.  相似文献   

6.
The majority of the world’s crude oil reserves consist of highly biodegraded heavy and super heavy crude oils and oil sands that have not yet been fully exploited. These vast resources contain complex mixtures of carboxylic acids known as naphthenic acids (NAs). NAs cause major environmental and economic problems, as they are recalcitrant, corrosive and toxic. Although aromatic acids make up a small proportion of most NA mixtures, they have demonstrable toxicities to some organisms (e.g. some bacteria and algae) and ideally need to be removed or reduced by remediation. The present study analysed the ability of Pseudomonas putida KT2440 to degrade highly recalcitrant aromatic acids, as exemplified by the alkyl phenylalkanoic acid (4′-t-butylphenyl)-4-butanoic acid (t-BPBA) and the more degradable (4′-n-butylphenyl)-4-butanoic acid (n-BPBA). n-BPBA was completely metabolized after 14 days, with the production of a persistent metabolite identified as (4′-n-butylphenyl)ethanoic acid (BPEA) which resulted from removal of two carbon atoms from the carboxyl side chain (beta-oxidation) as observed previously with a mixed consortium. However, when n-BPBA concentration was increased two-fold, degradation decreased by 56% with a concomitant six-fold decrease in cell numbers, suggesting that at greater concentrations, n-BPBA may be toxic to P. putida KT2440. In contrast, P. putida KT2440 was unable to degrade the highly recalcitrant t-BPBA even after 49 days. These findings have implications for NA bioremediation in the environment.  相似文献   

7.
From humus obtained from Stuttgart, a bacterium was isolated with lawsone (2-hydroxy-1,4-naphthoquinone) as selective source of carbon. This bacterium is capable of utilizing lawsone as sole source of carbon and energy. Morphological and physiological characteristics of the bacterium were examined and it was identified as a strain of Pseudomonas putida. The organism is referred to as Pseudomonas putida L2. The degradation of lawsone by Pseudomonas putida L2 was investigated. Salicylic acid and catechol were isolated and identified as metabolites. In lawsone-induced cells of Pseudomonas putida L2, salicylic acid is converted to catechol by salicylate 1-monooxygenase. Catechol 1,2-dioxygenase catalyses ortho-fission of catechol which is then metabolized via the beta-ketoadipate pathway. Formation of cis,cis-muconate and beta-ketoadipate was demonstrated by enzyme assays. Salicylate 1-monooxygenase and catechol 1,2-dioxygenase are induced sequentially. The enzymes of the beta-ketoadipate pathway are also inducible. Naphthoquinone hydroxylase, however, was demonstrated in induced and non-induced cells. This constitutive enzyme enables Pseudomonas putida L2 to degrade various 1,4-naphthoquinones in experiments with resting cells.  相似文献   

8.
9.
We have investigated the utilization of a variety of alkylbenzenes by P. putida strains and found that a strain harboring the OCT plasmid assimilated ethylbenzene. The linkage between the determinant for the degradation of ethylbenzene (Etb+ phenotype) and the OCT plasmid was inferred from conjugation experiments. The growth characteristics of the strains carrying mutations in the alk genes of the OCT plasmid which determine the assimilation of /t-alkanes indicated that alkB, alkA, and alkR should be responsible for the degradation of ethylbenzene. The exposure of ethylbenzene to the P. putida strain harboring the CAM-OCT plasmid resulted in the accumulation of β-phenylethyl alcohol. A possible degradation pathway for ethylbenzene including the terminal oxidation of the alkyl side chain was proposed.  相似文献   

10.
Five naphthalene- and salicylate-utilizing Pseudomonas putida strains cultivated for a long time on phenanthrene produced mutants capable of growing on this substrate and 1-hydroxy-2-naphthoate as the sole sources of carbon and energy. The mutants catabolize phenanthrene with the formation of 1-hydroxy-2-naphthoate, 2-hydroxy-1-naphthoate, salicylate, and catechol. The latter products are further metabolized by the meta- and ortho-cleavage pathways. In all five mutants, naphthalene and phenanthrene are utilized with the involvement of plasmid-born genes. The acquired ability of naphthalene-degrading strains to grow on phenanthrene is explained by the fact that the inducible character of the synthesis of naphthalene dioxygenase, the key enzyme of naphthalene and phenanthrene degradation, becomes constitutive.  相似文献   

11.
Growth of thermophilic acetogenic bacteria on methoxylated aromatic acids   总被引:2,自引:0,他引:2  
Abstract The methoxylated aromatic acids vanillate and syringate supported the growth of Clostridium thermoaceticum and Clostridium thermoautotrophicum in an undefined culture medium (U); p -hydroxybenzoate or U did not support growth. Growth was proportional to the number of O -methyl residues on the aromatic ring and to the concentration of the methoxylated aromatic acid in U. Protein profiles, obtained by sodium dodecyl sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) analysis of cell extracts from vanillate, syringate, methanol, and glucose cultures of C. thermoaceticum , indicated differential gene expression between O -methyl aromatic-, methanol- and glucose-grown cells.  相似文献   

12.
Degradation of phenol and phenolic compounds by Pseudomonas putida EKII   总被引:3,自引:0,他引:3  
Summary The phenol-degrading strain Pseudomonas putida EKII was isolated from a soil enrichment culture and utilized phenol up to 10.6 mM (1.0 g·1 -1) as the sole source of carbon and energy. Furthermore, cresols, chlorophenols, 3,4-dimethylphenol, and 4-chloro-m-cresol were metabolized as sole substrates by phenol-grown resting cells of strain EKII. Under conditions of cell growth, degradation of these xenobiotics was achieved only in co-metabolism with phenol. Phenol hydroxylase activity was detectable in whole cells but not in cell-free extracts. The specificity of the hydroxylating enzyme was found during transformation of cresols and chlorophenols: ortho- and meta-substituted phenols were degraded via 3-substituted catechols, while degradation of para-substituted phenols proceeded via 4-substituted catechols. In cell-free extracts of phenol-grown cells a high level of catechol 2,3-dioxygenase as well as smaller amounts of 2-hydroxymuconic semialdehyde hydrolyase and catechol 1,2-dioxygenase were detected. The ring-cleaving enzymes were characterized after partial purification by DEAE-cellulose chromatography.  相似文献   

13.
14.
Aromatic acids are chemoattractants for Pseudomonas putida   总被引:11,自引:10,他引:11       下载免费PDF全文
A quantitative capillary assay was used to show that aromatic acids, compounds that are chemorepellents for Escherichia coli and Salmonella sp., are chemoattractants for Pseudomonas putida PRS2000. The most effective attractants were benzoate; p-hydroxybenzoate; the methylbenzoates; m-, p-, and o-toluate; salicylate; DL-mandelate; beta-phenylpyruvate; and benzoylformate. The chemotactic responses to these compounds were inducible. Taxis to benzoate and m-toluate was induced by beta-ketoadipate, a metabolic intermediate formed when benzoate is dissimilated via enzymes specified by chromosomal genes. Benzoylformate taxis was induced by benzoylformate and L(+)-mandelate. Taxis to mandelate, benzoylformate, and beta-phenylpyruvate was exhibited by cells grown on mandelate, but not by cells grown on benzoate. Cells grown on benzoate were chemotactic to benzoate, the toluates, p-hydroxybenzoate, and salicylate. These results show that P. putida synthesizes at least two distinct chemoreceptors for aromatic acids. Although DL-mandelate was an effective attractant in capillary assays, additional experiments indicated that the cells were actually responding to benzoylformate, a metabolite formed from mandelate. With the exception of mandelate taxis, chemotaxis to aromatic acids was not dependent on the expression of pathways for aromatic degradation. Therefore, the tactic responses exhibited by cells cannot be attributed to an effect of the oxidation of aromatic acids on the energy metabolism of cells.  相似文献   

15.
A Gram-positive Rhodococcus erythropolis strain S1 was shown to assimilate aromatic amino acids such as L-phenylalanine, L-tyrosine, L-tryptophan, D-phenylalanine, D-tyrosine and D-tryptophan, which were utilized not only as the sole carbon source but also as a suitable nitrogen source. The highest growth on these aromatic amino acids occurred at a temperature of 30°C. L-Phenylalanine, L-tyrosine and L-tryptophan degradative pathways would appear to be independent, and to be induced alternatively. The strain S1 also showed the ability to assimilate peptides which consisted of only L-phenylalanine and L-tyrosine.  相似文献   

16.
Abstract Biodegradation of aromatic acids (ferulic, vanillic and sipapinic acids) by the soil bacterium Pseudomonas mira was studied by high-pressure liquid chromatography. The presence of glucose in the culture medium slowed down the degradation process but did not affect its mechanism. In addition to vanillic acid and hydroquinone, the products of degradation were found to include acetophenone derivatives. Probably, a mechanism capable of shortening the side chain by spontaneous decarboxylation of unstable 3- keto -3-phenylpropionic acid was present, in addition to the elimination of acetic acid via degradation of the cinnamic acid-type compounds.  相似文献   

17.
Pseudomonas putida CSV86, a naphthalene-degrading organism, exhibited diauxic growth on aromatic compounds plus glucose, with utilization of aromatics in the first log phase and of glucose in the second log phase. Glucose supplementation did not suppress the activity of degrading enzymes, which were induced upon addition of aromatic compounds. The induction was inhibited by chloramphenicol, suggesting that de novo protein synthesis was essential. Cells showed cometabolism of aromatic compounds and organic acids; however, organic acids suppressed glucose utilization.  相似文献   

18.
19.
Summary A caffeine-resistant strain of Pseudomonas putida was isolated from soil and was grown with caffeine as the sole source of carbon, energy and nitrogen. Cells were immobilized in agar gel particles which were continuously supplied with a caffeine solution (0.52 g · l–1, D=1.0 h–1) in a homogeneously mixed aerated reaction vessel. In the presence of the ATPase inhibitor arsenate the caffeine was removed by the immobilized cells at an average rate of 0.25 mg caffeine · h–1 · (mg cell carbon)–1 during 6 days. Thereafter a rapid decline of activity was observed. From a similar system without arsenate supplied with a growth medium containing a limiting amount of caffeine (0.13 g · l–1) the caffeine was almost completely oxidized by the immobilized cells. The concentration of the remaining caffeine was 1.4 mg · l–1, which is much lower than the substrate constant for caffeine (9.7 mg · l–1) observed with freshly harvested suspended resting cells.  相似文献   

20.
Pseudomonas putida, capable of utilizing acetonitrile as a sole source of C and N, was immobilized in calcium alginate and the rates of degradation of nitriles, including acetonitrile, and their respective amides were studied. All the organic nitriles and amides tested were converted into NH3 and CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号