首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recently constructed carbon composite electrode using room temperature ionic liquid as pasting binder was employed as a novel electrode for sensitive, simultaneous determination of dopamine (DA), ascorbic acid (AA), and uric acid (UA). The apparent reversibility and kinetics of the electrochemical reaction for DA, AA, and UA found were improved significantly compared to those obtained using a conventional carbon paste electrode. The results show that carbon ionic liquid electrode (CILE) reduces the overpotential of DA, AA, and UA oxidation, without showing any fouling effect due to the deposition of their oxidized products. In the case of DA, the oxidation and reduction peak potentials appear at 210 and 135mV (vs Ag/AgCl, KCl, 3.0M), respectively, and the CILE shows a significantly better reversibility for dopamine. The oxidation peak due to the oxidation of AA occurs at about 60mV. For UA, a sharp oxidation peak at 340mV and a small reduction peak at 250mV are obtained at CILE. Differential pulse voltammetry was used for the simultaneous determination of ternary mixtures of DA, AA, and UA. Relative standard deviation for DA, AA, and UA determinations were less than 3.0% and DA, AA, and UA can be determined in the ranges of 2.0x10(-6)-1.5x10(-3), 5.0x10(-5)-7.4x10(-3), and 2.0x10(-6)-2.2x10(-4)M, respectively. The method was applied to the determination of DA, AA, and UA in human blood serum and urine samples.  相似文献   

2.
Hollow nitrogen-doped carbon microspheres (HNCMS) as a novel carbon material have been prepared and the catalytic activities of HNCMS-modified glassy carbon (GC) electrode towards the electro-oxidation of uric acid (UA), ascorbic acid (AA) and dopamine (DA) have also been investigated. Comparing with the bare GC and carbon nanotubes (CNTs) modified GC (CNTs/GC) electrodes, the HNCMS modified GC (HNCMS/GC) electrode has higher catalytic activities towards the oxidation of UA, AA and DA. Moreover, the peak separations between AA and DA, and DA and UA at the HNCMS/GC electrode are up to 212 and 136 mV, respectively, which are superior to those at the CNTs/GC electrode (168 and 114 mV). Thus the simultaneous determination of UA, AA and DA was carried out successfully. In the co-existence system of UA, AA and DA, the linear response range for UA, AA and DA are 5-30 μM, 100-1000 μM and 3-75 μM, respectively and the detection limits (S/N = 3) are 0.04 μM, 0.91 μM and 0.02 μM, respectively. Meanwhile, the HNCMS/GC electrode can be applied to measure uric acid in human urine, and may be useful for measuring abnormally high concentration of AA or DA. The attractive features of HNCMS provide potential applications in the simultaneous determination of UA, AA and DA.  相似文献   

3.
The evaluation of a novel modified glassy carbon electrode modified with iron ion-doped natrolite zeolite-multiwalled carbon nanotube for the simultaneous and sensitive determination of ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp) has been described. The measurements were carried out using cyclic voltammetry in buffer solution with pH 1. This modified electrode exhibits potent and persistent electroxidation behavior followed by well-separated oxidation peaks towards AA, DA, UA and Trp with increasing of the oxidation current. For the quaternary mixture containing AA, DA, UA and Trp, the 4 compounds can well separate from each other at the scan rate of 100 mVs(-1) with a potential difference of 270 mV, 150 mV and 260 mV for the oxidation peak potentials of AA-DA, DA-UA and UA-Trp, respectively, which was large enough to simultaneous determine AA, DA, UA and Trp. The catalytic peak current obtained, was linearly dependent on the AA, DA, UA and Trp concentrations in the range of 7.77-833 μM, 7.35-833 μM, 0.23-83.3 μM and 0.074-34.5 μM and the detection limits for AA, DA, UA and Trp were 1.11, 1.05, 0.033 and 0.011 μM, respectively. The analytical performance of this sensor has been evaluated for simultaneous detection of AA, DA, UA and Trp in human serum and urine samples.  相似文献   

4.
This article describes the selective determination of inosine (INO) in the presence of important physiological interferents, uric acid (UA) and hypoxanthine (HXN), by differential pulse voltammetry at physiological pH (7.2) using the electropolymerized film of 3-amino-5-mercapto-1,2,4-triazole (p-AMTa) modified glassy carbon (GC) electrode. The electropolymerization of AMTa was carried out by the potentiodynamic method in 0.1M H(2)SO(4). An atomic force microscopy image shows that the p-AMTa film contains a spherical-like structure. Bare GC electrode fails to resolve the voltammetric signal of INO in the presence of UA and HXN due to the surface fouling caused by the oxidized products of UA and HXN. However, p-AMTa film modified GC electrode (p-AMTa electrode) not only separates the voltammetric signals of UA, HXN, and INO, with potential differences of 730 mV between UA and HXN and 310 mV between HXN and INO, but also shows enhanced oxidation current for them. The selective determination of INO in the presence of UA and HXN at physiological pH was achieved for the first time. Using the amperometric method, we achieved the lowest detection of 50 nM for INO. The practical application of the current modified electrode was demonstrated by determining the concentration of INO in human blood serum and urine samples.  相似文献   

5.
Serum concentrations of tryptophan (TRP) and kynurenine (KYN) were determined in renal allograft recipients (RAR) as an index of interferon-gamma-induced, indoleamine-dioxygenase-catalysed TRP degradation. Serum TRP and KYN in RAR during periods of stable graft function were typically within the normal range, however, the median values for serum KYN demonstrated significant increases 5-7 days prior to biopsy-confirmed acute rejection (1.6-fold, P less than 0.01) and on the day of biopsy (1.7-fold, P less than 0.001). Serum KYN was also markedly elevated in patients who contracted viral or Gram-negative bacterial infections in the absence of graft rejection. Serum KYN was not correlated with serum creatinine in RAR nor were serum TRP or KYN affected by antirejection therapy with high dose steroids. Retrospective analysis of intra-patient changes in serum KYN demonstrated that KYN monitoring was a useful adjunct to serum creatinine in the early detection of first acute rejection episodes. The first course of OKT3 therapy was associated with low serum TRP and significant increases in serum KYN (two- to three-fold) following the first three doses. The time course of these abnormalities corresponded to that over which many of the side effects of the OKT3 'first dose reaction' have been reported to occur. Significant changes in serum KYN were not observed in patients receiving repeat courses of OKT3 therapy. Significant decreases in serum TRP and significant increases in serum KYN were both prevalent and frequent in RAR during the first two postoperative months.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We are reporting the selective, sensitive and stable determination of l-cysteine (CY) at physiological pH (pH = 7.2) using a gold–aminomercaptothiadiazole core–shell nanoparticles (p-GAMCS NPs) film modified GC electrode. The p-GAMCS NPs film was fabricated on GC electrode by potentiodynamic method using 5-amino-2-mercapto-1,3,4-thiadiazole stabilized gold nanoparticles (AMT-AuNPs). The fabricated p-GAMCS NPs film was characterized by cyclic voltammetry and atomic force microscopy (AFM) techniques. The AFM image of the p-GAMCS NPs film showed that it contains a homogeneously distributed AuNPs with a spherical shape of ∼10 nm. The p-GAMCS NPs film modified GC electrode was exploited for the determination of CY. The bare GC electrode failed to show any response for CY (pH = 7.2) whereas p-GAMCS NPs film on GC electrode showed a well-defined oxidation peak for CY at 0.51 V. Further, p-GAMCS NPs film modified electrode successfully resolved the voltammetric signals of ascorbic acid (AA) and CY with a peak separation of 500 mV. This is the first report for the large voltammetric peak separation between CY and AA to the best of our knowledge. The amperometric current was increased linearly from 10 nM to 140 nM CY with a detection limit of 3 pM (S/N = 3). The present modified electrode showed better recoveries for spiked CY into the human blood serum and urine samples.  相似文献   

7.
Voltammetric behavior of 4',7-dimethoxy-3'-isoflavone sulfonic sodium (DISS) was studied by linear sweep voltammetry and cyclic voltammetry. DISS caused two waves between pH 8.0 and 12.0. Above pH 8.0, the peak current of first wave Pc1 of DISS was enhanced in the presence of cetyltrimethylammonium bromide (CTAB). Based on this, a novel method for the determination of DISS was proposed. In Britton-Robinson buffer solution (pH 11.7) containing 9.4 x 10(-6)mol L(-1) CTAB, the peak potential of first wave Pc1 of DISS was -1.59 V (vs standard saturated calomel electrode) and its first-order derivative peak current was proportional to the concentration of DISS in the range 5.0 x 10(-8)-6.0 x 10(-7)mol L(-1) (r=0.998). The detection limit was 1 x 10(-8)mol L(-1), which was 10 times lower than that of the corresponding reduction wave. The method was applied to the determination of DISS in synthetic samples.  相似文献   

8.
A K Ho  C L Chik  G M Brown 《Life sciences》1985,37(17):1619-1626
Both the environmental light-dark cycle and scheduled feeding can act as entrainers of biological rhythms. The present study investigated the relative potency of these two environmental cues in entraining the rhythms of circulating tryptophan (TRP), serotonin (5HT) and N-acetylserotonin (NAS). Four groups of rats were subjected for one month to an identical light-dark cycle of 14 h light and 10 h dark with food availability restricted to the 3 h period beginning 2 h after onset of light or onset of darkness. Two groups of animals were food deprived on the day of experiment. The 24 h rhythms of serum TRP, 5HT and NAS were determined. Serum TRP showed a sharp increase after food presentation and declined gradually to a trough just before feeding. Withholding food on the day of experiment abolished this increase. The trough of serum 5HT occurred just before feeding, increased gradually after feeding and peaked 10-13 h afterwards. Serum NAS levels, however, demonstrated an anticipatory rise before feeding, which peaked during feeding and declined to a trough 8 h afterwards. Unlike TRP, withholding food had no effect on either the 5HT or the NAS rhythm. These results indicated that feeding schedule was the common and stronger entrainer for the rhythms of serum TRP, 5HT and NAS. However, each indole had a different rhythm pattern in relation to the feeding schedule which could not be explained by a simple precursor-product relationship.  相似文献   

9.
A new zinc oxide nanoparticles/chitosan/carboxylated multiwall carbonnanotube/polyaniline (ZnO-NPs/CHIT/c-MWCNT/PANI) composite film has been synthesized on platinum (Pt) electrode using electrochemical techniques. Three enzymes, creatinine amidohydrolase (CA), creatine amidinohydrolase (CI) and sarcosine oxidase (SO) were immobilized on ZnO-NPs/CHIT/c-MWCNT/PANI/Pt electrode to construct the creatinine biosensor. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and electrochemical impedance spectroscopy (EIS). The enzyme electrode detects creatinine level as low as 0.5 μM at a signal to noise ratio of 3 within 10s at pH 7.5 and 30°C. The fabricated creatinine biosensor showed linear working range of 10-650 μM creatinine with a sensitivity of 0.030 μA μM(-1)cm(-2). The biosensor shows only 15% loss of its initial response over a period of 120 days when stored at 4°C. The fabricated biosensor was successfully employed for determination of creatinine in human blood serum.  相似文献   

10.
Effects of intravenous administration of the serotonin precursor tryptophan (TRP) on serum prolactin, neuromotor function, subjective mood, and blood pressure and pulse were determined in nine depressed patients before and during placebo-controlled treatment with the monoamine oxidase inhibitor (MAOI) tranylcypromine. Tranylcypromine significantly increased the prolactin response to TRP. Four patients developed a distinctive neuromotor syndrome following TRP during tranylcypromine, but not placebo, treatment. Symptoms included hyperreflexia, ankle clonus, nystagmus, incoordination, tremor, myoclonic jerks, and nausea. There were no differences in peak prolactin, mood, or autonomic responses between patients with and without the syndrome, but those with the syndrome had received active tranylcypromine for a significantly shorter duration. Tranylcypromine had little effect on TRP-induced changes in mood or autonomic function, except for a modest enhancement of the TRP-induced rise in diastolic blood pressure. These results suggest that tranylcypromine treatment may enhance serotonin function in depression.  相似文献   

11.
The fast analysis of ranitidine is of clinical importance in understanding its efficiency and a patient's treatment history. In this paper, a novel determination method for ranitidine based on capillary electrophoresis-electrochemiluminescence detection is described. The conditions affecting separation and detection were investigated in detail. End-column detection of ranitidine in 5 mM Ru(bpy)(3)(2+) solution at applied voltage of 1.20 V was performed. Favorable ECL intensity with higher column efficiency was achieved by electrokinetic injection for 10s at 10 kV. The R.S.D. values of ECL intensity and migration time were 6.38 and 1.84% for 10(-4) M and 6.01 and 0.60% for 10(-5) M, respectively. A detection limit of 7 x 10(-8) M (S/N=3) was achieved. The proposed method was applied satisfactorily to the determination of ranitidine in urine in 6 min.  相似文献   

12.
In this paper, the electrochemiluminescence (ECL) behavior of luminol/H2O2 system in the presence of bromhexine hydrochloride (BrH) was investigated. It was found that the ECL intensity of luminol/H2O2 system on a platinum electrode could be intensely quenched by BrH owing to the scavenging superoxide radical ability of BrH, and therefore the sensitive determination of BrH was possible. Under optimal conditions, the quenched ECL intensity was linear to the concentration of BrH in a wide range of 0.08 to 500 μM, with a detection limit of 0.02 μM (signal‐to‐noise ratio (S/N) = 3). This ECL method possessed the merits of rapid, simple and sensitive, and was successfully applied to the BrH quantification in pharmaceutical preparations with satisfactory recoveries of 91.0 ± 4.0 to 106.5 ± 3.4%. The possible route of the quenched ECL of luminol/H2O2 in the presence of BrH was also discussed.  相似文献   

13.
Wu K  Fei J  Hu S 《Analytical biochemistry》2003,318(1):100-106
A chemically modified electrode based on the carbon nanotube film-coated glassy carbon electrode (GCE) is described for the simultaneous determination of dopamine (DA) and serotonin (5-HT). The multiwall carbon nanotube (MWNT) film-coated GCE exhibits a marked enhancement effect on the current response of DA and 5-HT and lowers oxidation overpotentials. The responses of DA and 5-HT merge into a large peak at a bare GCE, but they yield two well-defined oxidation peaks at the MWNT film-coated GCE. The experimental parameters were optimized, and a direct electrochemical method for the simultaneous determination of DA and 5-HT was proposed. The interference of ascorbic acid (AA) was investigated, and the results showed that a large excess of AA did not interfere with the voltammetric responses of DA and 5-HT. The modified electrode has been successfully applied for the assay of 5-HT and DA in human blood serum.  相似文献   

14.
Diglycolic acid (DA) polymer was coated on glassy carbon (GC) electrode by cyclic voltammetry (CV) technique for the first time. The electrochemical performances of the modified electrode were investigated by CV and electrochemical impedance (EIS). The obtained electrode showed an excellent electrocatalytic activity for the oxidation of acetaminophen (ACOP). A couple of well-defined reversible electrochemical redox peaks were observed on the ploy(DA)/GC electrode in ACOP solution. Compared with bare GC electrode, the oxidation peak potential of ACOP on ploy(DA)/GC electrode moved from 0.289 V to 0.220 V. Meanwhile, the oxidation peak current was much higher on the modified electrode than that on the bare GC electrode, indicating DA polymer modified electrode possessed excellent performance for the oxidation of ACOP. This kind of capability of the modified electrode can be enlisted for the highly sensitive and selective determination of ACOP. Under the optimized conditions, a wide linear range from 2 × 10(-8) to 5.0 × 10(-4)M with a correlation coefficient 0.9995 was obtained. The detection limit was 6.7 × 10(-9)M (at the ratio of signal to noise, S/N=3:1). The modified electrode also exhibited very good stability and reproducibility for the detection of ACOP. The established method was applied to the determination of ACOP in samples. An average recovery of 100.1% was achieved. These results indicated that this method was reliable for determining ACOP.  相似文献   

15.
A novel Nafion/bacteria-displaying xylose dehydrogenase (XDH)/multi-walled carbon nanotubes (MWNTs) composite film-modified electrode was fabricated and applied for the sensitive and selective determination of d-xylose (INS 967), where the XDH-displayed bacteria (XDH-bacteria) was prepared using a newly identified ice nucleation protein from Pseudomonas borealis DL7 as an anchoring motif. The XDH-displayed bacteria can be used directly, eliminating further enzyme-extraction and purification, thus greatly improved the stability of the enzyme. The optimal conditions for the construction of biosensor were established: homogeneous Nafion-MWNTs composite dispersion (10 μL) was cast onto the inverted glassy carbon electrode, followed by casting 10-μL of XDH-bacteria aqueous solution to stand overnight to dry, then a 5-μL of Nafion solution (0.05 wt%) is syringed to the electrode surface. The bacteria-displaying XDH could catalyze the oxidization of xylose to xylonolactone with coenzyme NAD(+) in 0.1M PBS buffer (pH7.4), where NAD(+) (nicotinamide adenine dinucleotide) is reduced to NADH (the reduced form of nicotinamide adenine dinucleotide). The resultant NADH is further electrocatalytically oxidized by MWNTs on the electrode, resulting in an obvious oxidation peak around 0.50 V (vs. Ag/AgCl). In contrast, the bacteria-XDH-only modified electrode showed oxidation peak at higher potential of 0.7 V and less sensitivity. Therefore, the electrode/MWNTs/bacteria-XDH/Nafion exhibited good analytical performance such as long-term stability, a wide dynamic range of 0.6-100 μM and a low detection limit of 0.5 μM D-xylose (S/N=3). No interference was observed in the presence of 300-fold excess of other saccharides including D-glucose, D-fructose, D-maltose, D-galactose, D-mannose, D-sucrose, and D-cellbiose as well as 60-fold excess of L-arabinose. The proposed microbial biosensor is stable, specific, sensitive, reproducible, simple, rapid and cost-effective, which holds great potential in real applications.  相似文献   

16.
Amperometric biosensors based on gold planar or nanocomposite electrode containing multiwalled carbon nanotubes for determination of glycerol were developed. The biosensors were constructed by immobilization of a novel multienzyme cascade consisting of glycerol kinase/creatine kinase/creatinase/sarcosine oxidase/peroxidase between a chitosan "sandwich." A measuring buffer contained adenosine 5'-triphosphate (ATP), creatine phosphate, and an artificial electrochemical mediator ferrocyanide. The currents proportional to glycerol concentration were measured at working potential of -50 mV against Ag/AgCl reference electrode. The biosensors showed linearity over the ranges of 5-640 μM and 5-566 μM with detection limits of 1.96 and 2.24 μM and sensitivities of 0.80 and 0.81 nA μM(-1), respectively. Both types of biosensors had a response time of 70s. The biosensors demonstrated satisfactory operational stability (no loss of sensitivity after 90 consecutive measurements) and excellent storage stability (90% of the initial sensitivity after 15 months of storage at room temperature). The results obtained from measurements of wines correlated well with those obtained with an enzymatic-spectrophotometric assay. The presented multienzyme cascade can be used also for determination of triglycerides or various kinase substrates when glycerol kinase is replaced by other kinases.  相似文献   

17.
We are reporting the selective, sensitive and stable determination of L-cysteine (CY) at physiological pH (pH=7.2) using a gold-aminomercaptothiadiazole core-shell nanoparticles (p-GAMCS NPs) film modified GC electrode. The p-GAMCS NPs film was fabricated on GC electrode by potentiodynamic method using 5-amino-2-mercapto-1,3,4-thiadiazole stabilized gold nanoparticles (AMT-AuNPs). The fabricated p-GAMCS NPs film was characterized by cyclic voltammetry and atomic force microscopy (AFM) techniques. The AFM image of the p-GAMCS NPs film showed that it contains a homogeneously distributed AuNPs with a spherical shape of ~10 nm. The p-GAMCS NPs film modified GC electrode was exploited for the determination of CY. The bare GC electrode failed to show any response for CY (pH=7.2) whereas p-GAMCS NPs film on GC electrode showed a well-defined oxidation peak for CY at 0.51 V. Further, p-GAMCS NPs film modified electrode successfully resolved the voltammetric signals of ascorbic acid (AA) and CY with a peak separation of 500 mV. This is the first report for the large voltammetric peak separation between CY and AA to the best of our knowledge. The amperometric current was increased linearly from 10 nM to 140 nM CY with a detection limit of 3 pM (S/N=3). The present modified electrode showed better recoveries for spiked CY into the human blood serum and urine samples.  相似文献   

18.
N-(Benzyloxycarbonyl)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O-acetyl-beta-D - galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-O-(2-acetamido-4-O-acetyl-2- deoxy-alpha-D- galactopyranosyl)-(1----3)-L-serine benzyl ester was synthesized by using O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5- di-deoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)onate]- (2----3)-O-(2,4,6- tri-O-acetyl-beta-D-galactopyranosyl)-(1----3)-O-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D-galact o-2- nonulopyranosyl)onate-(2----6)]-4-O-acetyl-2-azido-2-deoxy-a lpha- and -beta-D-galactopyranosyl trichloroacetimidate as a key glycotetraosyl donor which, upon reaction with N-(benzyloxycarbonyl)-L-serine benzyl ester, afforded a 44% yield of a mixture of the alpha- and beta-glycosides in the ratio of 2:5.  相似文献   

19.
A novel amperometric lactate biosensor was developed based on immobilization of lactate dehydrogenase onto graphene oxide nanoparticles‐decorated pencil graphite electrode. The enzyme electrode was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and cyclic voltammetry at different stages of its construction. The biosensor showed optimum response within 5 s at pH 7.3 (0.1 M sodium phosphate buffer) and 35°C, when operated at 0.7 V. The biosensor exhibited excellent sensitivity (detection limit as low as 0.1 μM), fast response time (5 s), and wider linear range (5–50 mM). Analytical recovery of added lactic acid in serum was between 95.81–97.87% and within‐batch and between‐batch coefficients of variation were 5.04 and 5.40%, respectively. There was a good correlation between serum lactate values obtained by standard colorimetric method and the present biosensor (r = 0.99). The biosensor measured lactate levels in sera of apparently healthy subjects and persons suffering from lactate acidosis and other biological materials (milk, curd, yogurt, beer, white wine, and red wine). The enzyme electrode lost 25% of its initial activity after 60 days of its regular uses, when stored dry at 4°C.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号