首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and guanosine monophosphate (cGMP) into inactive 5' monophosphates, and exist as 11 families. Inhibitors of PDEs allow the elevation of cAMP and cGMP, which leads to a variety of cellular effects including airway smooth muscle relaxation and inhibition of cellular inflammation or of immune responses. PDE4 inhibitors specifically prevent the hydrolysis of cAMP. We have validated the manually developed reporter gene assay in a high-throughput screening format that allows for fast and cost-effective identification of potential inhibitors of PDE4 isozymes. The assay is sensitive and robust, with a Z' value of >0.5. The assay is also amenable to 384-well format.  相似文献   

2.
3.
In the new high-throughput screening (HTS) campaign, receptor functional assays, 3',5'-cyclic adenosine monophosphate (cAMP), intracellular [Ca(2)+](i), phosphatidylinositol turnover, and reporter-based assays are being used as primary screens as they are now developed as homogeneous and automation-friendly assays. FlashPlate assay and scintillation proximity assay using radiolabeled cAMP have been used for measuring cAMP. A nonradioactive homogeneous HTS assay using HitHunter trade mark enzyme fragment complementation (EFC) technology was evaluated for measuring cAMP in adherent and suspension cells overexpressing a Galpha(s)-coupled receptor. In the EFC-cAMP assay, the beta-galactosidase (beta-gal) donor fragment-cAMP (ED-cAMP) conjugate complements with the beta-gal enzyme acceptor (EA) fragment to form an active beta-gal enzyme. Binding of ED-cAMP conjugate to the anti-cAMP antibody prevents its complementation with the EA fragment to form an active enzyme. Cyclic AMP in the samples compete with ED-cAMP to bind to the anti-cAMP antibody, thus increasing the free ED-cAMP that can complement with the EA fragment to form an active enzyme that is assayed with a luminescent substrate. Thus, this assay results in a positive signal unlike other technologies, wherein the signal is completed by cAMP in the sample. Glucagon-like peptide (GLP)-1 binds to GLP-1 receptor (with a Kd of 0.2 nM) signals through Galpha(s) to activate adenylate cyclase, which results in an increase of intracellular cAMP (EC(50) of 0.3 nM). GLP-1 stimulation of cAMP levels measured by the EFC method was similar in both adherent and suspension cell formats (EC(50)~0.3 nM) at different cell numbers. The assay was further validated with forskolin, exendin, and several active GLP-1 peptide analogues. The stimulation of cAMP by GLP-1 and forskolin was effectively inhibited by the adenylate cyclase inhibitors MDL-12330A and SQ-22536, confirming that the increased cAMP is through the AC pathway. The assay tolerates dimethyl sulfoxide (DMSO) up to 10%, and tartrazine does not interfere with the assay with the adherent cells up to 1 mM and affects minimally up to 10 microM in suspension cells. The assay is very robust, with a Z' value of 0.7 to 0.8. The assay was validated with several plates of low molecular weight nonpeptide compounds and peptide agonists with different potencies. The suspension cell protocol is a robust homogeneous assay that involves fewer steps than the adherent cell protocol and is suitable for HTS. The cAMP assay using EFC technology is advantageous in that it has a greater dynamic range of detection; is nonradioactive, very sensitive, robust; has minimal interference from DMSO and colored compounds; and is amenable for automation. An added advantage of this assay is that the cAMP is measured as a positive signal, thereby reducing the incidence of false positives.  相似文献   

4.
Different inhibitors of the Ca(2+)/calmodulin-stimulated phosphodiesterase 1 family have been described and used for the examination of phosphodiesterase 1 in cellular, organ or animal models. However, the inhibitors described differ in potency and selectivity for the different phosphodiesterase family enzymes, and in part exhibit additional pharmacodynamic actions. In this study, we demonstrate that phosphodiesterase 1C is expressed in the human glioblastoma cell line A172 with regard to mRNA, protein and activity level, and that lower activities of phosphodiesterase 2, phosphodiesterase 3, phosphodiesterase 4 and phosphodiesterase 5 are also present. The identity of the phosphodiesterase 1C activity detected was verified by downregulation of the mRNA and protein through human phosphodiesterase 1C specific small interfering RNA. In addition, the measured K(m) values (cAMP, 1.7 microm; cGMP, 1.3 microm) are characteristic of phosphodiesterase 1C. We demonstrate that treatment with the Ca(2+) ionophore ionomycin increases intracellular Ca(2+) in a concentration-dependent way without affecting cell viability. Under conditions of enhanced intracellular Ca(2+) concentration, a rapid increase in cAMP levels caused by the adenylyl cyclase activator forskolin was abolished, indicating the involvement of Ca(2+)-activated phosphodiesterase 1C. The reduction of forskolin-stimulated cAMP levels was reversed by phosphodiesterase 1 inhibitors in a concentration-dependent way. Using this cellular system, we compared the cellular potency of published phosphodiesterase 1 inhibitors, including 8-methoxymethyl-3-isobutyl-1-methylxanthine, vinpocetine, SCH51866, and two established phosphodiesterase 1 inhibitors developed by Schering-Plough (named compounds 31 and 30). We demonstrate that up to 10 microm 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine had no effect on the reduction of forskolin-stimulated cAMP levels by ionomycin, whereas the more selective and up to 10 000 times more potent phosphodiesterase 1 inhibitors SCH51866, compound 31 and compound 30 inhibited the ionomycin-induced decline of forskolin-induced cAMP at nanomolar concentrations. Thus, our data indicate that SCH51866 and compounds 31 and 30 are effective phosphodiesterase 1 inhibitors in a cellular context, in contrast to the weakly selective and low-potency phosphodiesterase inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine. A172 cells therefore represent a suitable system in which to study the cellular effect of phosphodiesterase 1 inhibitors. 8-Methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine seem not to be suitable for the study of phosphodiesterase 1-mediated functions.  相似文献   

5.
An increase in cAMP and/or cGMP induces vasodilation which could be potentiated by endothelium or NO-donors. Cyclic nucleotide phosphodiesterases (PDE) are differently distributed in vascular tissues. cAMP hydrolyzing PDE isozymes in endothelial cells are represented by PDE2 (cGMP stimulated-PDE) and PDE4 (cGMP insensitive-PDE), whereas in smooth muscle cells PDE3 (cGMP inhibited-PDE) and PDE4 are present. To investigate the role of NO in vasodilation induced by PDE inhibitors, we studied the effects of PDE3- or PDE4-inhibitor alone and their combination on cyclic nucleotide levels, on relaxation of precontracted aorta and on protein kinase implication. Furthermore, the direct effect of dinitrosyl iron complex (DNIC) was studied on purified recombinant PDE4B. The results show that: 1) in endothelial cells PDE4 inhibition may up-regulate basal production of NO, this effect being potentiated by PDE2 inhibition; 2) in smooth muscle cGMP produced by NO inhibits PDE3 and increases cAMP level allowing PDE4 to participate in vascular contraction; 3) protein kinase G mediates the relaxing effects of PDE3 or PDE4 inhibition. 4) DNIC inhibits non competitively PDE4B indicating a direct effect of NO on PDE4 which could explain an additive vasodilatory effect of NO. A direct and a cGMP related cross-talk between NO and cAMP-PDEs, may participate into the vasomodulation mediated by cAMP activation of protein kinase G.  相似文献   

6.
Chemoresponsiveness to cAMP and to folic acid are monitored in growing, developing, and dedifferentiating amebae of the cellular slime mold Dictyostelium discoideum . Two semiquantitative assays are employed, one measuring the directed movement of cells up a gradient of chemoattractant ('chemotaxis' assay) and the other measuring the outward spreading of cells in response to a chemical stimulant distributed equally throughout the substratum ('spreading' assay). Vegetative amebae possess relatively insignificant levels of chemotactic responsiveness to cAMP. Six h after the initiation of development, at approximately the same time as the onset of aggregation, cells rapidly acquire chemotactic responsiveness to cAMP. During 'erasure', a dedifferentiation induced by resuspending aggregating cells in fresh nutrient medium, chemotactic responsiveness to cAMP is lost just after the erasure event. By the same chemotactic assay, it is demonstrated that vegetative amebae possess a significant level of chemotactic responsiveness to folic acid. Two h after the initiation of development, cells completely lose chemotactic responsiveness to folic acid. During erasure, cells reacquire chemotactic responsiveness to folic acid at approximately the same time that they lose responsiveness to cAMP.
Dramatically different results are obtained by the spreading assay. When cells lose chemotactic responsiveness to folic acid early in development and when erasing cells lose chemotactic responsiveness to cAMP, they retain the spreading response to the two stimulants, respectively. The different results obtained for chemoreception employing the two assays are discussed in terms of molecular mechanisms, and a testable hypothesis is proposed for the possible roles of chemoresponsiveness and erasure in late morphogenesis.  相似文献   

7.
Chemoresponsiveness to cAMP and to folic acid are monitored in growing, developing, and dedifferentiating amebae of the cellular slime mold Dictyostelium discoideum. Two semiquantitative assays are employed, one measuring the directed movement of cells up a gradient of chemoattractant ('chemotaxis' assay) and the other measuring the outward spreading of cells in response to a chemical stimulant distributed equally throughout the substratum ('spreading' assay). Vegetative amebae possess relatively insignificant levels of chemotactic responsiveness to cAMP. Six h after the initiation of development, at approximately the same time as the onset of aggregation, cells rapidly acquire chemotactic responsiveness to cAMP. During 'erasure', a dedifferentiation induced by resuspending aggregating cells in fresh nutrient medium, chemotactic responsiveness to cAMP is lost just after the erasure event. By the same chemotactic assay, it is demonstrated that vegetative amebae possess a significant level of chemotactic responsiveness to folic acid. Two h after the initiation of development, cells completely lose chemotactic responsiveness to folic acid. During erasure, cells reacquire chemotactic responsiveness to folic acid at approximately the same time that they lose responsiveness to cAMP. Dramatically different results are obtained by the spreading assay. When cells lose chemotactic responsiveness to folic acid early in development and when erasing cells lose chemotactic responsiveness to cAMP, they retain the spreading response to the two stimulants, respectively. The different results obtained for chemoreception employing the two assays are discussed in terms of molecular mechanisms, and a testable hypothesis is proposed for the possible roles of chemoresponsiveness and erasure in late morphogenesis.  相似文献   

8.
Polycystic kidney diseases (PKD) are characterized by excessive proliferation of renal tubular epithelial cells, development of fluid-filled cysts, and progressive renal insufficiency. cAMP inhibits proliferation of normal renal tubular epithelial cells but stimulates proliferation of renal tubular epithelial cells derived from patients with PKD. Madin-Darby canine kidney (MDCK) epithelial cells, which are widely used as an in vitro model of cystogenesis, also proliferate in response to cAMP. Intracellular cAMP levels are tightly regulated by phosphodiesterases (PDE). Isoform-specific PDE inhibitors have been developed as therapeutic agents to regulate signaling pathways directed by cAMP. In other renal cell types, we have previously demonstrated that cAMP is hydrolyzed by PDE3 and PDE4, but only PDE3 inhibitors suppress proliferation by inhibiting Raf-1 activity (Cheng J, Thompson MA, Walker HJ, Gray CE, Diaz Encarnacion MM, Warner GM, Grande JP. Am J Physiol Renal Physiol 287:F940-F953, 2004.) A potential role for PDE isoform(s) in cAMP-mediated proliferation of MDCK cells has not previously been established. Similar to what we have previously found in several other renal cell types, cAMP hydrolysis in MDCK cells is directed primarily by PDE4 (85% of total activity) and PDE3 (15% of total activity). PDE4 inhibitors are more effective than PDE3 inhibitors in increasing intracellular cAMP levels in MDCK cells. However, only PDE3 inhibitors, and not PDE4 inhibitors, stimulate mitogenesis of MDCK cells. PDE3 but not PDE4 inhibitors activate B-Raf but not Raf-1, as assessed by an in vitro kinase assay. PDE3 but not PDE4 inhibitors activate the ERK pathway and activate cyclins D and E, as assessed by histone H1 kinase assay. We conclude that mitogenesis of MDCK cells is regulated by a functionally compartmentalized intracellular cAMP pool directed by PDE3. Pharmacologic agents that stimulate PDE3 activity may provide the basis for new therapies directed toward reducing cystogenesis in patients with PKD.  相似文献   

9.
The second messenger 3', 5'-cyclic AMP (cAMP) is a highly regulated molecule that is governed by G protein-coupled receptor activation and other cellular processes. Measurement of cAMP levels in cells is widely used as an indicator of receptor function in drug discovery applications. We have developed a nonradioactive ELISA for the accurate quantitation of cAMP levels produced in cell-based assays. This novel competitive assay utilizes chemiluminescent detection that affords both a sensitivity and a dynamic assay range that have not been previously reported with any other assay methodologies. The assay has been automated in 96- and 384-well formats, providing assay data that are equivalent to, if not better than, data generated by hand. This report demonstrates the application of this novel assay technology to the functional analysis of a specific G protein-coupled receptor, neuropeptide receptor Y1, on SK-N-MC cells. Our data indicate the feasibility of utilizing this assay methodology for monitoring cAMP levels in a wide range of functional cell-based assays for high throughput screening.  相似文献   

10.
Opiates are not only potent analgesics but also drugs of abuse mainly because they produce euphoria. Chronic use of opiates results in the development of tolerance and dependence. Dr Marshall Nirenberg’s group at the National Institutes of Health (NIH) was the first to use a cellular model system of Neuroblastoma × Glioma hybrid cells (NG108-15) to study morphine addiction. They showed that opiates affect adenylyl cyclase (AC) by two opposing mechanisms mediated by the opiate receptor. Although the cellular mechanisms that cause addiction are not yet completely understood, the most observed correlative biochemical adaptation is the upregulation of AC. This model also provides the opportunity to look for compounds which could dissociate the acute effect of opiates from the delayed response, upregulation of AC, and thus lead to the discovery of non-addictive drugs. To identify small molecule compounds that can inhibit morphine-induced cAMP overshoot, we have validated and optimized a cell-based assay in a high throughput format that measures cellular cAMP production after morphine withdrawal. The assay performed well in the 1536-well plate format. The LOPAC library of 1,280 compounds was screened in this assay on a quantitative high-throughput screening (qHTS) platform. A group of compounds that can inhibit morphine-induced cAMP overshoot were identified. The most potent compounds are eight naloxone-related compounds, including levallorphan tartrate, naloxonazine dihydrochloride, naloxone hydrochloride, naltrexone hydrochloride, and naltriben methanesulfonate. The qHTS approach we used in this study will be useful in identifying novel inhibitors of morphine induced addiction from a larger scale screening.  相似文献   

11.
The Shaker family potassium channel, Kv1.2, is a key determinant of membrane excitability in neurons and cardiovascular tissue. Kv1.2 is subject to multiple forms of regulation and therefore integrates cellular signals involved in the homeostasis of excitability. The cyclic AMP/protein kinase A (PKA) pathway enhances Kv1.2 ionic current; however, the mechanisms for this are not fully known. Here we show that cAMP maintains Kv1.2 homeostasis through opposing effects on channel trafficking. We found that Kv1.2 is regulated by two distinct cAMP pathways, one PKA-dependent and the other PKA-independent. PKA inhibitors elevate Kv1.2 surface levels, suggesting that basal levels of cAMP control steady-state turnover of the channel. Elevation of cAMP above basal levels also increases the amount of Kv1.2 at the cell surface. This effect is not blocked by PKA inhibitors, but is blocked by inhibition of Kv1.2 endocytosis. We conclude that Kv1.2 levels at the cell surface are kept in dynamic balance by opposing effects of cAMP.  相似文献   

12.
Phosphodiesterases (PDEs) catalyze the hydrolysis of the second messengers cAMP and cGMP. However, little is known about how PDE activity regulates cyclic nucleotide signals in vivo because, outside of specialized cells, there are few methods with the appropriate spatial and temporal resolution to measure cyclic nucleotide concentrations. We have previously demonstrated that adenovirus-expressed, olfactory cyclic nucleotide-gated channels provide real-time sensors for cAMP produced in subcellular compartments of restricted diffusion near the plasma membrane (Rich, T.C., K.A. Fagan, H. Nakata, J. Schaack, D.M.F. Cooper, and J.W. Karpen. 2000. J. Gen. Physiol. 116:147-161). To increase the utility of this method, we have modified the channel, increasing both its cAMP sensitivity and specificity, as well as removing regulation by Ca(2)+-calmodulin. We verified the increased sensitivity of these constructs in excised membrane patches, and in vivo by monitoring cAMP-induced Ca(2)+ influx through the channels in cell populations. The improved cAMP sensors were used to monitor changes in local cAMP concentration induced by adenylyl cyclase activators in the presence and absence of PDE inhibitors. This approach allowed us to identify localized PDE types in both nonexcitable HEK-293 and excitable GH4C1 cells. We have also developed a quantitative framework for estimating the K(I) of PDE inhibitors in vivo. The results indicate that PDE type IV regulates local cAMP levels in HEK-293 cells. In GH4C1 cells, inhibitors specific to PDE types I and IV increased local cAMP levels. The results suggest that in these cells PDE type IV has a high K(m) for cAMP, whereas PDE type I has a low K(m) for cAMP. Furthermore, in GH4C1 cells, basal adenylyl cyclase activity was readily observable after application of PDE type I inhibitors, indicating that there is a constant synthesis and hydrolysis of cAMP in subcellular compartments near the plasma membrane. Modulation of constitutively active adenylyl cyclase and PDE would allow for rapid control of cAMP-regulated processes such as cellular excitability.  相似文献   

13.
The signaling molecule cAMP primarily mediates its effects by activating PKA and/or exchange protein activated by cAMP (Epac). Epac has been implicated in many responses in cells, but its precise roles have been difficult to define in the absence of Epac inhibitors. Epac, a guanine nucleotide exchange factor for the low molecular weight G protein Rap, is directly activated by cAMP. Using a bioluminescence resonance energy transfer-based assay (CAMYEL) to examine modulators of Epac activity, we took advantage of its intramolecular movement that occurs upon cAMP binding to assess Epac activation. We found that the use of CAMYEL can detect the binding of cAMP analogs to Epac and their modulation of its activity and can distinguish between agonists (cAMP), partial agonists (8-chlorophenylthio-cAMP), and super agonists (8-chlorophenylthio-2′-O-Me-cAMP). The CAMYEL assay can also identify competitive and uncompetitive Epac inhibitors, e.g. (Rp)-cAMPS and CE3F4, respectively. To confirm the results with the CAMYEL assay, we used Swiss 3T3 cells and assessed the ability of cyclic nucleotide analogs to modulate the activity of Epac or PKA, determined by Rap1 activity or VASP phosphorylation, respectively. We used computational molecular modeling to analyze the interaction of analogs with Epac1. The results reveal a rapid means to identify modulators (potentially including allosteric inhibitors) of Epac activity that also provides insight into the mechanisms of Epac activation and inhibition.  相似文献   

14.
The actions of three different phosphodiesterase inhibitors, theophylline, 3-isobutyl-1-methylxanthine (IBMX) and Ro 20-1724 (Ro), on cellular cAMP and pepsinogen secretion from dispersed chief cells prepared from guinea pig stomach were examined. The relative order of potency for increasing cAMP and pepsinogen secretion was Ro greater than IBMX greater than theophylline. Ro, the most efficacious agent, caused a 17-fold increase in basal cAMP and a similar augmentation of the increase in cAMP caused by secretin or vasoactive intestinal peptide (VIP). Differential actions of these agents on the dose-response curves for secretin- and VIP-induced increases in cAMP suggest that chief cell receptors for these peptides are coupled to pools of cAMP that are acted upon by heterogeneous phosphodiesterases with varying sensitivities to inhibitors. Moreover, Ro, a selective inhibitor of low Km cAMP-specific phosphodiesterases, is the most potent and efficacious agent tested in this cell system.  相似文献   

15.
A procedure is described for the semiquantitative measurement of cyclic adenosine 3',5'-monophosphate (cAMP) and detection of inhibitors of cAMP phosphodiesterase by an agar plate test. The assay organism was an adenyl cyclase-deficient mutant derived from Escherichia coli HfrH. In the presence of an acid base indicator, acid production from barbohydrate metabolism was observed as a yellow zone around filter paper disks containing cAMP. Since yellow zone formation reflects the presence of cAMP, a phosphodiesterase inhibitor can be detected indirectly by the presence of a yellow zone on assay plates from a reaction mixture of an inhibitor, phosphodiesterase, and cAMP. Three known cyclic nucleotide phosphodiesterase inhibitors were active against beef brain phosphodiesterase in this system.  相似文献   

16.
The oxygen consumption rate of tumor cells affects tumor oxygenation and response to therapies. Highly sensitive methods for determining cellular oxygen consumption are, therefore, needed to identify treatments that can modulate this parameter. We compared the performances of three different methods for measuring cellular oxygen consumption: electron paramagnetic resonance (EPR) oximetry, the Clark electrode, and the MitoXpress fluorescent assay. To compare the assays, we used K562 cells in the presence of rotenone and hydrocortisone, compounds that are known to inhibit the mitochondrial electron transport chain to different extents. The EPR method was the only one that could identify both rotenone and hydrocortisone as inhibitors of tumor cell oxygen consumption. The Clark electrode and the fluorescence assay demonstrated a significant decrease in cellular oxygen consumption after administration of the most potent inhibitor (rotenone) but failed to show any significant effect of hydrocortisone. EPR oximetry is, therefore, the most sensitive method for identifying inhibitors of oxygen consumption on cell assays, whereas the Clark electrode offers the unique opportunity to add external compounds during experiments and still shows great sensitivity in studying enzyme and chemical reactions that consume oxygen (non-cell assays). Finally, the MitoXpress fluorescent assay has the advantage of a high-sample throughput and low bulk requirements but at the cost of a lower sensitivity.  相似文献   

17.
A procedure is described for the semiquantitative measurement of cyclic adenosine 3',5'-monophosphate (cAMP) and detection of inhibitors of cAMP phosphodiesterase by an agar plate test. The assay organism was an adenyl cyclase-deficient mutant derived from Escherichia coli HfrH. In the presence of an acid base indicator, acid production from barbohydrate metabolism was observed as a yellow zone around filter paper disks containing cAMP. Since yellow zone formation reflects the presence of cAMP, a phosphodiesterase inhibitor can be detected indirectly by the presence of a yellow zone on assay plates from a reaction mixture of an inhibitor, phosphodiesterase, and cAMP. Three known cyclic nucleotide phosphodiesterase inhibitors were active against beef brain phosphodiesterase in this system.  相似文献   

18.
19.
20.
Real-time detection of viral replication inside cells remains a challenge to researchers. The Epic® System is a high-throughput, label-free optical detection platform capable of measuring molecular interaction in a biochemical assay, as well as integrated cellular response from measurement of cellular dynamic mass redistribution (DMR) in a cell-based assay. DMR has previously been used to measure cell signaling upon receptor stimulation. In this report, we present the first example of Epic® measurement of viral replication-induced cellular response and demonstrate that this system is extremely powerful not only for the sensitive and quantitative detection of viral replication inside cells but also for screening of viral inhibitors. By comparing with conventional assays used for the measurement of viral replication, we show that the Epic® response has many advantages including sensitivity, high throughput, real-time quantification and label-free detection. We propose that the Epic® system for measurement of integrated cellular response will be an excellent method for elucidating steps in viral replication as well as for the high-throughput screening of inhibitors of rhinovirus and other viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号