首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tobacco mosaic virus (TMV) is a widespread plant virus from the genus Tobamovirus that affects tobacco and tomato plants causing a pathology characterised by cell breakage and disorganisation in plant leaves and fruits. In this study we undertook a proteomic approach to investigate the molecular and biochemical mechanisms potentially involved in tomato fruit defence against the viral infection. The comparison of 2-D gels from control and TMV-infected but asymptomatic tomato fruits revealed changes in several proteins. The differential expression of peptidases, endoglucanase, chitinase and proteins participating in the ascorbate-glutathione cycle in infected fruits suggests that pathogenesis-related proteins and antioxidant enzymes may play a role in the protection against TMV infection. TMV coat protein appeared as a prominent spot in 2-D gels from TMV-infected asymptomatic fruits. A Triton X-114 phase-partitioning step of tomato protein extracts favoured the solubilisation of TMV coat protein and the enrichment of two aminopeptidases not present in control fruits. PMF and MS/MS data of the 2-D gel-isolated TMV coat protein is proposed as a powerful analysis method for the simultaneous tobamovirus detection, species determination and strain differentiation in virus-infected fruit commodities.  相似文献   

3.
The fate of salmonellae applied to tomato plants was investigated. Five Salmonella serotypes were used to inoculate tomato plants before and after fruits set, either by injecting stems with inoculum or brushing flowers with it. Ripe tomato fruits were subjected to microbiological analysis. Peptone wash water, homogenates of stem scar tissues, and homogenates of fruit pulp were serially diluted and plated on bismuth sulfite agar before and after enrichment. Presumptive Salmonella colonies were confirmed by serological tests, PCR assay using HILA2 primers, and enterobacterial repetitive intergenic consensus PCR. Of 30 tomatoes harvested from inoculated plants, 11 (37%) were positive for Salmonella. Of the Salmonella-positive tomatoes, 43 and 40%, respectively, were from plants receiving stem inoculation before and after flower set. Two of eight tomatoes produced from inoculated flowers contained Salmonella. Higher percentages of surface (82%) and stem scar tissue (73%) samples, compared to pulp of Salmonella-positive tomatoes (55%), harbored the pathogen. Of the five serotypes in the inoculum, Montevideo was the most persistent, being isolated from tomatoes 49 days after inoculation, and Poona was the most dominant, being present in 5 of 11 Salmonella-positive tomatoes. Results suggest that Salmonella cells survive in or on tomato fruits from the time of inoculation at flowering through fruit ripening. Tomato stems and flowers are possible sites at which Salmonella may attach and remain viable during fruit development, thus serving as routes or reservoirs for contaminating ripened fruit.  相似文献   

4.
Respiratory syncytial virus (RSV) is one of the most important pathogens of infancy and early childhood. Here a fruit-based edible subunit vaccine against RSV was developed by expressing the RSV fusion (F) protein gene in transgenic tomato plants. The F-gene was expressed in ripening tomato fruit under the control of the fruit-specific E8 promoter. Oral immunization of mice with ripe transgenic tomato fruits led to the induction of both serum and mucosal RSV-F specific antibodies. The ratio of immunoglobulin subclasses produced in response to immunization suggested that a type 1 T-helper cell immune response was preferentially induced. Serum antibodies showed an increased titer when the immunized mice were exposed to inactivated RSV antigen.  相似文献   

5.
Based on high economic importance and nutritious value of tomato fruits and as previous studies employed E8 promoter in fruit ripening-specific gene expression, we have developed transgenic tomato plants overexpressing tomato anionic peroxidase cDNA (tap1) under E8 promoter. Stable transgene integration was confirmed by polymerase chain reaction (PCR) and Southern analysis for nptII. Northern blotting confirmed elevated tap1 levels in the breaker- and red-ripe stages of T(1) transgenic fruits, whereas wild-type (WT) plants did not show tap1 expression in these developmental stages. Further, tap1 expression levels were significantly enhanced in response to wounding in breaker- and red-ripe stages of transgenic fruits, whereas wound-induced expression of tap1 was not detected in WT fruits. Confocal microscopy revealed high accumulation of phenolic compounds at the wound site in transgenic fruits suggesting a role of tap1 in wound-induced phenolic polymerization. Total peroxidase activity has increased remarkably in transgenic pericarp tissues in response to wounding, while very less or minimal levels were recorded in WT pericarp tissues. Transgenic fruits also displayed reduced post-harvest decay and increased resistance toward Alternaria alternata and Fusarium solani infection with noticeable inhibition in lesion formation. Conidiospore germination and mycelial growth of F. solani were severely inhibited when treated with E8-tap1 fruit extracts compared to WT fruits. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed reduced spore viability when incubated in E8-tap1 fruit extracts. Thus, fruit-specific expression of tap1 using E8 promoter is associated with enhanced total peroxidase activity and high phenolic accumulation in fruits with minimized post-harvest deterioration caused by wounding and fungal attack in tomato fruits.  相似文献   

6.
Jiang XL  He ZM  Peng ZQ  Qi Y  Chen Q  Yu SY 《Transgenic research》2007,16(2):169-175
Cholera toxin B (CTB) subunit is a well-characterized antigen against cholera. Transgenic plants can offer an inexpensive and safe source of edible CTB vaccine and may be one of the best candidates for the production of plant vaccines. The present study aimed to develop transgenic tomato expressing CTB protein, especially in the ripening tomato fruit under the control of the tomato fruit-specific E8 promoter by using Agrobacterium-mediated transformation. Transgenic plants were selected using PCR and Southern blot analysis. Exogenous protein extracted from leaf, stem, and fruit tissues of transgenic plants was detected by ELISA and Western blot analysis, showing specific expression in the ripening fruit, with the highest amount of CTB protein being 0.081% of total soluble protein. Gavage of mice with ripe transgenic tomato fruits induced both serum and mucosal CTB specific antibodies. These results demonstrate the immunogenicity of the CTB protein in transgenic tomato and provide a considerable basis for exploring the utilization of CTB in the development of tomato-based edible vaccine against cholera. The rCTB antigen resulted in much lower antibody titers than an equal amount of exgenous CTB in trangenic fruits, suggesting the protective effect of the fibrous tissue of the fruit to the exogenous CTB protein against the degradation of protease in the digestive tracts of mice. Xiao-Ling Jiang and Zhu-Mei He contributed equally to this work.  相似文献   

7.
Group A rotavirus is a major leading cause of diarrhea in mammalian species worldwide. In Argentina, bovine rotavirus (BRV) is the main cause of neonatal diarrhea in calves. VP4, one of the outermost capsid proteins, is involved in various virus functions. Rotavirus infectivity requires proteolytic cleavage of VP4, giving an N-terminal non-glycosilated sialic acid-recognizing domain (VP8*), and a C-terminal fragment (VP5*) that remains associated with the virion. VP8* subunit is the major determinant of the viral infectivity and one of the neutralizing antigens.In this work, the C486 BRV VP8* protein was produced in tobacco chloroplasts. Transplastomic plants were obtained and characterized by Southern blot, northern blot and western blot. VP8* was highly stable in the transplastomic leaves, and formed insoluble aggregates that were partially solubilized by sonication. The recombinant protein yield was 600 μg/g of fresh tissue (FT). Both the soluble and insoluble fractions of the VP8* plant extracts were able to induce a strong immune response in female mice as measured by ELISA and virus neutralization test. Most important, suckling mice born to immunized dams were protected against oral challenge with virulent rotavirus. Results presented here contribute to demonstrate the feasibility of using antigens expressed in transplastomic plants for the development of subunit vaccines.  相似文献   

8.
The fate of salmonellae applied to tomato plants was investigated. Five Salmonella serotypes were used to inoculate tomato plants before and after fruits set, either by injecting stems with inoculum or brushing flowers with it. Ripe tomato fruits were subjected to microbiological analysis. Peptone wash water, homogenates of stem scar tissues, and homogenates of fruit pulp were serially diluted and plated on bismuth sulfite agar before and after enrichment. Presumptive Salmonella colonies were confirmed by serological tests, PCR assay using HILA2 primers, and enterobacterial repetitive intergenic consensus PCR. Of 30 tomatoes harvested from inoculated plants, 11 (37%) were positive for Salmonella. Of the Salmonella-positive tomatoes, 43 and 40%, respectively, were from plants receiving stem inoculation before and after flower set. Two of eight tomatoes produced from inoculated flowers contained Salmonella. Higher percentages of surface (82%) and stem scar tissue (73%) samples, compared to pulp of Salmonella-positive tomatoes (55%), harbored the pathogen. Of the five serotypes in the inoculum, Montevideo was the most persistent, being isolated from tomatoes 49 days after inoculation, and Poona was the most dominant, being present in 5 of 11 Salmonella-positive tomatoes. Results suggest that Salmonella cells survive in or on tomato fruits from the time of inoculation at flowering through fruit ripening. Tomato stems and flowers are possible sites at which Salmonella may attach and remain viable during fruit development, thus serving as routes or reservoirs for contaminating ripened fruit.  相似文献   

9.
Transgenic tomato plants expressing the gene of a chimeric protein (HAV VP1-Fc) consisting of human hepatitis A virus (HAV) VP1 and an Fc antibody fragment have been obtained. Recombinant VP1-Fc protein with a molecular mass of approximately 68 kDa was purified from transgenic tomato plants using Protein A Sepharose affinity chromatography. The recombinant protein elicited production of specific IgG antibodies in the serum after intraperitoneal immunization of BALB/c mice. The antibodies produced by mice against transgenic plant-derived recombinant VP1-Fc most likely recognize epitopes in the HAV viral antigen. Following vaccination with recombinant VP1-Fc protein, expression of IFN-γ and IL-4 were increased in splenocytes at the time of sacrifice. Our findings indicate that transgenic tomato plants can provide a useful system for the production of HAV antigens.  相似文献   

10.
alpha-Zingiberene synthase (ZIS), a sesquiterpene synthase gene that was isolated from lemon basil (Ocimum basilicum L.), encodes an enzyme that catalyzes the formation of alpha-zingiberene, and other sesquiterpenes, from farnesyl diphosphate. Transgenic tomato fruits overexpressing ZIS under the control of the fruit ripening-specific tomato polygalacturonase promoter (PG) accumulated high levels of alpha-zingiberene (224-1000 ng g(-1) fresh weight) and other sesquiterpenes, such as alpha-bergamotene, 7-epi-sesquithujene, beta-bisabolene and beta-curcumene, whereas no sesquiterpenes were detected in non-transformed control fruits. The ZIS-transgenic fruits also produced monoterpenes, such as alpha-thujene, alpha-pinene, beta-phellandrene and gamma-terpinene (1-22 ng g(-1) fresh weight), which were either not detected or were found only in minute concentrations in control fruits. Recombinant ZIS overexpressed in Escherichia coli catalyzed the formation of these monoterpenes from geranyl diphosphate. As the ZIS protein apparently lacks a transit peptide, and is localized in the cytosol, the production of monoterpenes in the transgenic tomatoes suggests that a pool of geranyl diphosphate is available in the cytosol. The phenotype of the ZIS-transgenic tomatoes was the same as that for wild-type tomatoes, with regard to plant vigor and shape, but transgenic plants exhibited a small decrease in lycopene content. This study thus showed that the synthesis of both mono- and sesquiterpenes can be enhanced by the ectopic expression of a single transgene in tomato fruit, and it further demonstrated the interconnection between the pools of terpenoid precursors in the plastids and the cytosol.  相似文献   

11.
12.
There are at least five lipoxygenases (TomloxA, TomloxB, TomloxC, TomloxD, and TomloxE) present in tomato (Lycopersicon esculentum Mill.) fruit, but their role in generation of fruit flavor volatiles has been unclear. To assess the physiological role of TomloxC in the generation of volatile C6 aldehyde and alcohol flavor compounds, we produced transgenic tomato plants with greatly reduced TomloxC using sense and antisense constructs under control of the cauliflower mosaic virus 35S promoter. The expression level of the TomloxC mRNA in some transgenic plants was selectively reduced by gene silencing or antisense inhibition to between 1% and 5% of the wild-type controls, but the expression levels of mRNAs for the four other isoforms were unaffected. The specific depletion of TomloxC in transgenic tomatoes led to a marked reduction in the levels of known flavor volatiles, including hexanal, hexenal, and hexenol, to as little as 1.5% of those of wild-type controls following maceration of ripening fruit. Addition of linoleic or linolenic acid to fruit homogenates significantly increased the levels of flavor volatiles, but the increase with the TomloxC-depleted transgenic fruit extracts was much lower than with the wild-type control. Confocal imaging of tobacco (Nicotiana tabacum) leaf cells expressing a TomloxC-GFP fusion confirmed a chloroplast localization of the protein. Together, these results suggest that TomloxC is a chloroplast-targeted lipoxygenase isoform that can use both linoleic and linolenic acids as substrates to generate volatile C6 flavor compounds. The roles of the other lipoxygenase isoforms are discussed.  相似文献   

13.
Various physical and chemical properties of host plants influence insect larval performance and subsequent adult fitness. Tomato plants are relatively new hosts to the potato tuber moth, Phthorimaea operculella (Zeller), with the fruit being its preferred feeding site. However, it is unclear how the biochemical and physical properties of tomato fruits relate to potato tuber moth performance. Significant amounts of alpha-tomatine were detected in maturing green and ripening fruits of cherry (cv. Ceres) and processing (cv. Serio) types of tomatoes whereas none was detected in a fresh market variety (cv. Marglobe), at comparable stages. alpha-Tomatine is negatively and significantly correlated with development rate (head capsule size) of larvae reared in the fruits of the cherry and processing type tomatoes. Generally, survival, growth and development were significantly superior for larvae reared in the ripening fruits of the fresh market cultivar. At this stage, the fruits of this cultivar are also the largest. Based on these results it is concluded that fruit alpha-tomatine content, as well as fruit size and maturity, all affect performance of P. operculella larvae in the fruits of cultivated tomatoes.  相似文献   

14.
15.
Plant genetic engineering has the potential to introduce new allergenic proteins into foods but, at the same time, it can be used to remove established allergens. Here, we report the molecular characterization of Lyc e 3, a new tomato (Lycopersicon esculentum) allergen, and the efficient down-regulation of its expression in transgenic tomato plants. Following the identification of an immunoglobulin E (IgE)-binding 9-kDa polypeptide in tomato peel, designated Lyc e 3, its partial amino acid sequence was determined by N-terminal protein sequencing. Sequence comparison revealed that Lyc e 3 encodes a nonspecific lipid transfer protein (ns-LTP). In plants, ns-LTPs are encoded by large gene families which differ in primary amino acid sequence, expression and proposed cellular function. To identify Lyc e 3 encoding complementary DNAs (cDNAs), public tomato expressed sequence tag (EST) databases were screened for ns-LTP sequences. Following this strategy, two cDNAs, LTPG1 and LTPG2, with high homology to the N-terminal sequence of Lyc e 3, were identified. Ectopic expression of LTPG1 and LTPG2 in Escherichia coli, followed by immunoblotting, verified their IgE reactivity. Subsequently, transgenic tomato plants constitutively expressing LTPG1- or LTPG2-specific double-stranded RNA interference (dsRNAi) constructs were created and tested for the suppression of Lyc e 3 accumulation. Efficient silencing of Lyc e 3 was documented by Northern and Western blotting. In both cases, Lyc e 3 accumulation was decreased to levels below the detection limit (less than 0.5% of the wild-type protein). The allergenic potential of Lyc e 3-deficient tomato fruits was tested by measuring histamine release from sensitized human basophils stimulated with transgenic and parental lines. These assays revealed a strong (10- to 100-fold) decrease in histamine release of human basophils challenged with transgenic fruit extracts when compared with control extracts. These results demonstrate the feasibility of creating low allergenic tomato fruits by means of dsRNAi inhibition.  相似文献   

16.
Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA showed <10% of wild-type PME enzyme activity and undetectable levels of PME protein and mRNA. Lower PME enzyme activity in fruits from transgenic plants was associated with an increased molecular weight and methylesterification of pectins and decreased levels of total and chelator soluble polyuronides in cell walls. The fruits of transgenic plants also contained higher levels of soluble solids than wild-type fruits. This trait was maintained in subsequent generations and segregated in normal Mendelian fashion with the antisense PME gene. These results indicate that reduction in PME enzyme activity in ripening tomato fruits had a marked influence on fruit pectin metabolism and increased the soluble solids content of fruits, but did not interfere with the ripening process.  相似文献   

17.
The catabolism of phospholipids initiated by phospholipase D (PLD, EC 3.1.4.4) is an inherent feature of developmental processes that include fruit growth and ripening. In cherry tomatoes (Lycopersicon esculentum Mill.), soluble and membrane-associated PLD activities increased during fruit development, which peaked at the mature green and orange stages. The increase in PLD activity was associated with a similar increase in the intensity of a 92 kDa band as demonstrated by western blot analysis. A full-length cDNA having 2430 bp and encoding a putative polypeptide with 809 amino acids, was isolated using tomato RNA, RT-PCR and 5' and 3' rapid amplification of cloned ends (RACE). Analysis of the primary and secondary structures showed the presence of the C2 domain, the PLD domain and several other features characteristic of PLD alpha. Microtom tomato plants transformed with antisense PLD alpha cDNA, were similar to untransformed plants and showed normal fruit set and development. The ethylene climacteric was delayed by over 7 d in the antisense PLD fruits, indicative of a slower ripening process. The leaves and unripened fruits of antisense PLD microtom plants possessed lowered PLD activity and PLD protein, as demonstrated by western blotting. However, during ripening, PLD activity in the transgenic fruits was maintained at a higher level than that in the untransformed control. Immunolocalization of PLD in microtom tomato fruits revealed the cytosol-membrane translocation of PLD during fruit development. The ripe fruits of antisense PLD celebrity plants possessed lowered PLD expression and activity and showed increased firmness and red colour. These results suggest that the expression of antisense PLD cDNA could be variable in different tomato varieties. The potential role of PLD in ethylene signal transduction events is discussed.  相似文献   

18.
19.
Southern tomato virus (STV) is a double‐stranded RNA (dsRNA) virus belonging to the genus Amalgavirus from the family Amalgamaviridae. STV has been detected in tomato plants showing symptoms of stunting, fruit discoloration and size reduction, although its role on symptom development is unclear. Also, little is known about the incidence and epidemiology of this virus and how it spreads in tomato crops. In this work, we developed a molecular hybridisation method by using a digoxigenin‐labelled RNA probe based on the nucleotide sequence of the STV putative coat protein which was tested with different procedures for preparation of plant material. This technique was sensitive enough to detect STV from sap extracts (obtained just by grinding in buffer) from different plant tissues such as leaves, fruits, roots and seeds. This procedure is suitable for field surveys since it allows a cheap and quick processing of a high number of samples. Surveys performed in three important tomato production areas (Peninsular Spain, the Canary Islands and Sicily) showed that STV is widely spread, with incidences ranging from 18% to 74% in different local and commercial tomato varieties.  相似文献   

20.
One of the ultimate goals of plant science is to test a hypothesis obtained by basic science and to apply it to agriculture and industry. A plant factory is one of the ideal systems for this trial. Environmental factors affect both plant yield and the accumulation of recombinant proteins for industrial applications within transgenic plants. However, there have been few reports studying plant productivity for recombinant protein in closed cultivation systems called plant factories.To investigate the effects of photosynthetic photon flux (PPF) on tomato fruit yield and the accumulation of recombinant miraculin, a taste-modifying glycoprotein, in transgenic tomato fruits, plants were cultivated at various PPFs from 100 to 400 (µmol m−2 s−1) in a plant factory. Miraculin production per unit of energy used was highest at PPF100, although miraculin production per unit area was highest at PPF300. The commercial productivity of recombinant miraculin in transgenic tomato fruits largely depended on light conditions in the plant factory. Our trial will be useful to consider the trade-offs between the profits from production of high-value materials in plants and the costs of electricity.Key words: light, molecular farming, recombinant miraculin, taste-modifying protein, transgenic tomato  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号