首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two‐way communication between the ECM (extracellular matrix) and the cytoplasm via the integrins has many functions in cancer cells, including the suppression of apoptosis. As cells in a 3D (three‐dimensional) architecture resemble the in vivo situation more closely than do cells in more conventional 2D cultures, we have employed a substratum that prevents cell adhesion and induces cell aggregation to determine why highly metastatic B16F10 melanoma cells resist anoikis. We compared the behaviour of B16F10 cells in 2D [on tPS (tissue culture polystyrene)] and 3D culture {on polyHEMA [poly(2‐hydroxyethylmethacrylate)]} configurations. For this, we analysed cell morphology, proliferation, apoptosis and the activation status of several proteins involved in cell proliferation and survival [RhoA, FAK (focal adhesion kinase), Akt, ERK1/2 (extracellular‐signal‐regulated kinase 1/2)]. B16F10 cells in 3D architecture were able to proliferate as cell aggregates for 3 days, after which the number of cells decreased. The normal Swiss 3T3 cells used as an anoikis‐sensitive control did not proliferate on the anti‐adhesive substratum. Rho A was activated in B16F10 aggregates throughout their time in culture, whereas it was not in Swiss 3T3 aggregates. An absence of apoptotic activity was correlated with the proliferation of B16F10 cells in aggregates: caspase 3 was significantly activated only after 3 days in culture on polyHEMA. FAK and Akt were transiently activated, and their inactivation was correlated with the induction of apoptosis. ERK1/2 were activated throughout the 3D culture. No survival protein was activated in Swiss 3T3 aggregates. Data obtained from cells in 3D culture suggest that B16F10 cells are resistant to anoikis through the activation of the FAK and Akt signalling pathways.  相似文献   

2.
RhoA a small G-protein that has an established role in cell growth and in regulation of the actin cytoskeleton. Far less is known about whether RhoA can modulate cell fate. We previously reported that sustained RhoA activation induces cardiomyocyte apoptosis (Del Re, D. P., Miyamoto, S., and Brown, J. H. (2007) J. Biol. Chem. 282, 8069-8078). Here we demonstrate that less chronic RhoA activation affords a survival advantage, protecting cardiomyocytes from apoptotic insult induced by either hydrogen peroxide treatment or glucose deprivation. Under conditions where RhoA is protective, we observe Rho kinase-dependent cytoskeletal rearrangement and activation of focal adhesion kinase (FAK). Activation of endogenous cardiomyocyte FAK leads to its increased association with the p85 regulatory subunit of phosphatidylinositol-3-kinase (PI3K) and to concomitant activation of Akt. Treatment of isolated perfused hearts with sphingosine 1-phosphate recapitulates this response. The pathway by which RhoA mediates cardiomyocyte Akt activation is demonstrated to require Rho kinase, FAK and PI3K, but not Src, based on studies with pharmacological inhibitors (Y-27632, LY294002, PF271 and PP2) and inhibitory protein expression (FAK-related nonkinase). Inhibition of RhoA-mediated Akt activation at any of these steps, including inhibition of FAK, prevents RhoA from protecting cardiomyocytes against apoptotic insult. We further demonstrate that stretch of cardiomyocytes, which activates endogenous RhoA, induces the aforementioned signaling pathway, providing a physiologic context in which RhoA-mediated FAK phosphorylation can activate PI3K and Akt. We suggest that RhoA-mediated effects on the cardiomyocyte cytoskeleton provide a novel mechanism for protection from apoptosis.  相似文献   

3.
Cells utilize dynamic interactions with the extracellular matrix to adapt to changing environmental conditions. Thrombospondin 1 (TSP1) induces focal adhesion disassembly and cell migration through a sequence (hep I) in its heparin-binding domain signaling through the calreticulin-low density lipoprotein receptor-related protein receptor complex. This involves the Galphai-dependent activation of ERK and phosphoinositide (PI) 3-kinase, both of which are required for focal adhesion disassembly. Focal adhesion kinase (FAK) regulates adhesion dynamics, acting in part by modulating RhoA activity, and FAK is implicated in ERK and PI 3-kinase activation. In this work, we sought to determine the role of FAK in TSP1-induced focal adhesion disassembly. TSP1/hep I does not stimulate focal adhesion disassembly in FAK knockout fibroblasts, whereas re-expressing FAK rescues responsiveness. Inhibiting FAK signaling through FRNK or FAK Y397F expression in endothelial cells also abrogates this response. TSP1/hep I stimulates a transient increase in FAK phosphorylation that requires calreticulin and Galphai, but not ERK or PI 3-kinase. Hep I does not activate ERK or PI 3-kinase in FAK knockout fibroblasts, suggesting activation occurs downstream of FAK. TSP1/hep I stimulates RhoA inactivation with kinetics corresponding to focal adhesion disassembly in a FAK, ERK, and PI 3-kinase-dependent manner. Furthermore, hep I does not stimulate focal adhesion disassembly in cells expressing constitutively active RhoA, suggesting that RhoA inactivation is required for this response. This is the first work to illustrate a connection between FAK phosphorylation in response to a soluble factor and RhoA inactivation, as well as the first report of PI 3-kinase and ERK in FAK regulation of RhoA activity.  相似文献   

4.
5.
The mechanisms of progesterone on endothelial cell motility are poorly investigated. Previously we showed that progesterone stimulated endothelial cell migration via the activation of actin-binding protein moesin, leading to actin cytoskeleton remodelling and the formation of cell membrane structures required for cell movement. In this study, we investigated the effects of progesterone on the formation of focal adhesion complexes, which provide anchoring sites for cell movement. In cultured human umbilical endothelial cells, progesterone enhanced focal adhesion kinase (FAK) phosphorylation at Tyr(397) in a dose- and time-dependent manner. Several signalling inhibitors interfered with progesterone-induced FAK activation, including progesterone receptor (PR) antagonist ORG 31710, specific c-Src kinase inhibitor PP2, phosphatidylinosital-3 kinase (PI3K) inhibitor wortmannin as well as ρ-associated kinase (ROCK-2) inhibitor Y27632. It suggested that PR, c-Src, PI3K and ROCK-2 are implicated in this action. In line with this, we found that progesterone rapidly promoted c-Src/PI3K/Akt activity, which activated the small GTPase RhoA/ρ-associated kinase (ROCK-2) complex, resulting in FAK phosphorylation. In the presence of progesterone, endothelial cells displayed enhanced horizontal migration, which was reversed by small interfering RNAs abrogating FAK expression. In conclusion, progesterone promotes endothelial cell movement via the rapid regulation of FAK. These findings provide new information on the biological actions of progesterone on human endothelial cells that are relevant for vascular function.  相似文献   

6.
Melanogenesis is one of the characteristic functional activities of melanocyte/melanoma and is regulated via mitogen-activated protein kinase (MAPK) and Akt/protein kinase B (PKB) pathways. Placental total lipid fraction (PTLF), prepared from a hydroalcoholic extract of fresh term human placenta contains sphingolipids and was recently shown to stimulate melanogenesis via up-regulation of the key enzyme tyrosinase in B16F10 mouse melanoma cells. How such lipids mediate their effects on pigmentation and tyrosinase expression is a particularly important aspect of melanogenesis. To study the signaling that leads to tyrosinase expression, we have investigated the roles of the MAPK and Akt/PKB pathways in B16F10 melanoma cells in melanogenesis in response to PTLF. Treatment of cells with PTLF led to the time dependent phosphorylation of p38 MAPK. SB203580, a p38 MAPK inhibitor, completely blocked the PTLF-induced melanogenesis by inhibiting promoter activity and subsequent expression of tyrosinase. Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 a blocker of the Akt signaling pathway, or an inhibitor of MEK (MAPK/ERK Kinase), PD98059 when included along with PTLF was found to potentiate PTLF-induced phosphorylation of p38 MAPK together with tyrosinase expression and melanogenesis. The results suggest that the activation of p38 MAPK plays a crucial role in PTLF-induced B16F10 melanogenesis by up-regulating tyrosinase expression.  相似文献   

7.
Nobiletin, a compound isolated from citrus fruits, is a polymethoxylated flavone derivative shown to have anti-inflammatory, antitumor, and neuroprotective properties. This study has investigated that nobiletin exerted inhibitory effects on the cell adhesion, invasion, and migration abilities of a highly metastatic AGS cells under non-cytotoxic concentrations. Data also showed nobiletin could inhibit the activation of focal adhesion kinase (FAK) and phosphoinositide-3-kinase/Akt (PI3K/Akt) involved in the downregulation of the enzyme activities, protein expressions, messenger RNA levels of matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-2 (MMP-9). Also, our data revealed that nobiletin inhibited FAK/PI3K/Akt with concurrent reduction in the protein expressions of Ras, c-Raf, Rac-1, Cdc42, and RhoA by western blotting, whereas the protein level of RhoB increased progressively. Otherwise, nobiletin-treated AGS cells showed tremendously decreased in the phosphorylation and degradation of inhibitor of kappaBα (IκBα), the nuclear level of NF-κB, and the binding ability of NF-κB to NF-κB response element. Furthermore, nobiletin significantly decreased the levels of phospho-Akt and MMP-2/9 in Akt1-cDNA-transfected cells concomitantly with a marked reduction in cell invasion and migration. These results suggest that nobiletin can reduce invasion and migration of AGS cells, and such a characteristic may be of great value in the development of a potential cancer therapy.  相似文献   

8.
Summary Epidermal growth factor receptor (EGFR) signaling regulates a variety of cellular functions, including proliferation, gene expression, and differentiation. Infection of laryngeal epithelial cells by human papillomaviruses causes recurrent respiratory papillomas, benign tumors characterized by an altered pattern of differentiation. Papilloma cells overexpress the EGFR and have constitutively active extracellular signal-regulated kinase (ERK) and enhanced phosphatidylinositol 3-kinase (PI3K) activity, but overexpression of the lipid phosphatase PTEN (Phosphatase and Tensin Homolog) reduces activation of Akt by PI3K. We hypothesized that the altered differentiation of papillomas reflects these changes in signaling from the EGFR-ERK and PI3K-Akt pathways and that one or both of these pathways is required for the normal differentiation process in mucosal epithelium. Inhibiting either the enzymatic activity or the synthesis of PI3K in uninfected laryngeal cells blocked expression of keratin-13 (K13), a protein induced during normal differentiation. In contrast, inhibiting activation of ERK had minimal effect. Using ribonucleic acid interference to reduce protein levels of integrinlinked kinase 1 or phosphoinositide-dependent protein kinase 1, intermediates in the activation of Akt by PI3K, or reducing levels of Akt-1 itself did not inhibit K13 expression by normal laryngeal keratinocytes. We conclude that PI3K activation is an important regulator of expression of K13, a marker for the normal differntiation process in human mucosal keratinocytes, that this function does not require activation of Akt-1, and that the failure to express K13 in papilloma cells is not because of reduction in activated Akt.  相似文献   

9.
Adhesion by means of beta1-integrins induces the phosphorylation of Akt, an event strictly dependent on the activity of the phosphatidylinositol 3-kinase (PI3K). Binding of the p85 regulatory subunit of PI3K to phosphorylated tyrosine 397 in focal adhesion kinase (FAK) is considered to be the mechanism of cell adhesion-induced activation of class Ia PI3K. Here we show that PI3K-dependent phosphorylation of Akt in response to ligation of beta1-integrins occurs efficiently in the absence of FAK tyrosine phosphorylation. Akt S473 phosphorylation was strongly promoted both in cells expressing the integrin subunit splice variant beta1B, which is unable to activate FAK, and in FAK knockout cells. In addition, we found this phosphorylation to be independent of the Src family kinases Src, Fyn and Yes. These results indicate that a major pathway for adhesion-dependent activation of PI3K/Akt is triggered by the membrane proximal part of the beta1 subunit in a FAK and Src-independent manner.  相似文献   

10.
Although recent evidence supports a tumor-suppressive role for the GTPase RhoB, little is known about its regulation by signal transduction pathways. Here we demonstrate that Ras downregulates RhoB expression by a phosphatidylinositol 3-kinase (PI3K)- and Akt- but not Mek-dependent mechanism. Furthermore, genetic and pharmacological blockade of PI3K/Akt results in upregulation of RhoB expression. We also provide evidence for the importance of the downregulation of RhoB in oncogenesis by demonstrating that RhoB antagonizes Ras/PI3K/Akt malignancy. Ectopic expression of RhoB, but not the close relative RhoA, inhibits Ras, PI3K, and Akt induction of transformation, migration, and invasion and induces apoptosis and anoikis. Finally, RhoB inhibits melanoma metastasis to the lung in a mouse model. These studies identify suppression of RhoB as a mechanism by which the Ras/PI3K/Akt pathway induces tumor survival, transformation, invasion, and metastasis.  相似文献   

11.
Fibronectin (FN) is the foremost proliferation‐associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin‐1 phosphorylation levels in a time‐dependent manner. Phosphorylation of Src, FAK, and caveolin‐1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin‐1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin‐1 siRNA, or the caveolar disruptor methyl‐β‐cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin‐1 siRNA, MβCD, GGTI‐286 (RhoA inhibitor), or Y‐27632 (Rho kinase inhibitor). FN‐induced increase of protooncogenes (c‐fos, c‐myc, and c‐Jun) and cell‐cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin‐1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin‐1, RhoA, Akt, and ERK 1/2 blocked FN‐induced [3H]‐thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA‐PI3K/Akt‐ERK 1/2 pathway through caveolin‐1 phosphorylation. J. Cell. Physiol. 226: 267–275, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase which participates in many important cellular processes such as cell adhesion and migration. However, the role of FAK in renal tubular epithelial-to-mesenchymal transition (EMT) is still unknown. FAK was knocked down by transfection of specific small interfering RNA (siRNA) in cultured HK-2 cells, then the cells were stimulated with transforming growth factor-beta 1 (TGF-β1). The expression of FAK, α-smooth muscle actin (α-SMA),E-cadherin, Akt, matrix metallopeptidase-9 (MMP-9),tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen IV were detected by RT-PCR, Western blot and immunofluorescence methods, respectively. Cell migration was determined by transwell assay. The results suggest that the expression of FAK was up-regulated in HK-2 cells when incubated with TGF-β1(10 μg/l), which was accompanied by reduced expression of E-cadherin and increased expression of α-SMA. All these changes were restored by FAK siRNA. Akt phosphorylation was induced by the treatment with TGF-β1, which was blocked by FAK siRNA. TGF-β1-induced down-regulation of E-cadherin was recovered by a PI3K/Akt inhibitor, LY294002, without affecting the expression of FAK. Functionally, TGF-β1 induced an increase in MMP-9 expression, as well as decreased expression of TIMP-1 and collagen IV, which were all restored by the FAK siRNA transfection. In addition, FAK siRNA significantly reduced TGF-β1-induced cells migration. In conclusion, FAK may play a crucial role in mediating TGF-β1-induced EMT through the activation of Akt pathway.  相似文献   

13.
Stratified squamous epithelia express the alphavbeta5 integrin, but in squamous cell carcinomas (SCCs) there is down-regulation of alphavbeta5 and up-regulation of alphavbeta6. To investigate the significance of this finding, we transduced an alphav-negative human SCC line with retroviral vectors encoding alphav integrins. alphavbeta5-expressing cells underwent suspension-induced apoptosis (anoikis), whereas alphav-negative cells and cells expressing alphavbeta6 did not. Resistance to anoikis correlated with PKB/Akt activation in suspension, but not with changes in PTEN or p110alpha PI3 kinase levels. Anoikis was induced in parental and alphavbeta6-expressing cells by inhibiting PI3 kinase. Conversely, activation of Akt or inhibition of caspases in alphavbeta5-expressing cells suppressed anoikis. Caspase inhibition resulted in increased phosphoAkt, placing caspase activation upstream of decreased Akt activation. Anoikis required the cytoplasmic domain of beta5 and was independent of the death receptor pathway. These results suggest that down-regulation of alphavbeta5 through up-regulation of alphavbeta6 may protect SCCs from anoikis by activating an Akt survival signal.  相似文献   

14.
15.
Following a fibrogenic stimulus, the hepatic stellate cell (HSC) undergoes a complex activation process associated with increased cell proliferation and excess deposition of type I collagen. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway is activated by platelet-derived growth factor (PDGF) in several cell types. We investigated the role of the FAK-PI3K-Akt pathway in HSC activation. Inhibition of FAK activity blocked HSC migration, cell attachment, and PDGF-induced PI3K and Akt activation. Both serum- and PDGF-induced Akt phosphorylation was inhibited by LY294002, an inhibitor of PI3K. A constitutively active form of Akt stimulated HSC proliferation in serum-starved HSCs, whereas LY294002 and dominant-negative forms of Akt and FAK inhibited PDGF-induced proliferation. Transforming growth factor-beta, an inhibitor of HSC proliferation, did not block PDGF-induced Akt phosphorylation, suggesting that transforming growth factor-beta mediates its antiproliferative effect downstream of Akt. Expression of type I collagen protein and alpha1(I) collagen mRNA was increased by Akt activation and inhibited when PI3K activity was blocked. Therefore, FAK is important for HSC migration, cell attachment, and PDGF-induced cell proliferation. PI3K is positioned downstream of FAK. Signals for HSC proliferation are transduced through FAK, PI3K, and Akt. Finally, expression of type I collagen is regulated by the PI3K-Akt signaling pathway.  相似文献   

16.
Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.  相似文献   

17.
18.
Tumor malignancy is associated with several cellular properties including proliferation and ability to metastasize. Endothelin-1 (ET-1) the most potent vasoconstrictor plays a crucial role in migration and metastasis of human cancer cells. We found that treatment of human chondrosarcoma (JJ012 cells) with ET-1 increased migration and expression of matrix metalloproteinase (MMP)-13. ET-1-mediated cell migration and MMP-13 expression were reduced by pretreatment with inhibitors of focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), as well as the NF-κB inhibitor and the IκB protease inhibitor. In addition, ET-1 treatment induced phosphorylation of FAK, PI3K, AKT, and mTOR, and resulted in increased NF-κB-luciferase activity that was inhibited by a specific inhibitor of PI3K, Akt, mTOR, and NF-κB cascades. Taken together, these results suggest that ET-1 activated FAK/PI3K/AKT/mTOR, which in turn activated IKKα/β and NF-κB, resulting in increased MMP-13 expression and migration in human chondrosarcoma cells.  相似文献   

19.
Invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for successful crossing of the blood-brain barrier by Escherichia coli K1. We have previously demonstrated the requirement of cytoskeletal rearrangements and activation of focal adhesion kinase (FAK) in E. coli K1 invasion of human BMEC (HBMEC). The current study investigated the role of phosphatidylinositol 3-kinase (PI3K) activation and PI3K interaction with FAK in E. coli invasion of HBMEC. PI3K inhibitor LY294002 blocked E. coli K1 invasion of HBMEC in a dose-dependent manner, whereas an inactive analogue LY303511 had no such effect. In HBMEC, E. coli K1 increased phosphorylation of Akt, a downstream effector of PI3K, which was completely blocked by LY294002. In contrast, non-invasive E. coli failed to activate PI3K. Overexpression of PI3K mutants Deltap85 and catalytically inactive p110 in HBMEC significantly inhibited both PI3K/Akt activation and E. coli K1 invasion of HBMEC. Stimulation of HBMEC with E. coli K1 increased PI3K association with FAK. Furthermore, PI3K/Akt activation was blocked in HBMEC-overexpressing FAK dominant-negative mutants (FRNK and Phe397FAK). These results demonstrated the involvement of PI3K signaling in E. coli K1 invasion of HBMEC and identified a novel role for PI3K interaction with FAK in the pathogenesis of E. coli meningitis.  相似文献   

20.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号