首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new, homogeneous, high-throughput-compatible assay method is described for the fluorescence-based quantitation of nanomolar concentrations of ribonucleoside diphosphates (rNDPs). The principle of the method is the conversion of the rNDPs to RNA by the enzyme polynucleotide phosphorylase (EC 2.7.7.8) and detection of the RNA by the increased fluorescence of a commercial nucleic acid detection dye. A commercial RNA homopolymer complementary to the RNA product is included to increase the sensitivity for ADP and UDP. Standard curves for nanomolar concentrations of ADP, UDP, GDP, and CDP are shown. The assay detected 75 nM ADP produced by the pyruvate kinase-catalyzed phosphorylation of pyruvate with a signal-to-baseline ratio of 2.8. The assay may be used in either a continuous or a discontinuous mode.  相似文献   

2.
The overexpression and purification of the second enzyme in Escherichia coli peptidoglycan biosynthesis, UDP-N-acetylenolpyruvylglucosamine reductase (MurB), provided sufficient protein to undertake crystallization and X-ray crystallographic studies of the enzyme. MurB crystallizes in 14-20% PEG 8000, 100 mM sodium cacodylate, pH 8.0, and 200 mM calcium acetate in the presence of its substrate UDP-N-acetylglucosamine enolpyruvate. Crystals of MurB belong to the tetragonal space group P4(1)2(1)2 with a = b = 49.6 A, c = 263.2 A, and alpha = beta = gamma = 90 degrees at -160 degrees C and diffract to at least 2.5 A. Screening for heavy atom derivatives has yielded a single site that is reactive with both methylmercury nitrate and Thimerosal.  相似文献   

3.
Marmor S  Petersen CP  Reck F  Yang W  Gao N  Fisher SL 《Biochemistry》2001,40(40):12207-12214
The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.  相似文献   

4.
The X-ray crystal structure of the substrate free form of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB) has been solved to 2.3 A resolution with an R-factor of 20.3% and a free R-factor of 22.3%. While the overall fold of the S. aureus enzyme is similar to that of the homologous Escherichia coli MurB X-ray crystal structure, notable distinctions between the S. aureus and E. coli MurB protein structures occur in residues involved in substrate binding. Analysis of available MurB sequences from other bacteria suggest that the S. aureus MurB structure is representative of a distinct structural class of UDP-N-acetylenolpyruvylglucosamine reductases including Bacillus subtilis and Helicobacter pylori that are characterized by a modified mechanism for substrate binding.  相似文献   

5.
UDP-N-acetylmuramic acid:L-alanine ligase (MurC) catalyzes the addition of the first amino acid to the cytoplasmic precursor of the bacterial cell wall peptidoglycan. The crystal structures of Haemophilus influenzae MurC in complex with its substrate UDP-N-acetylmuramic acid (UNAM) and Mg(2+) and of a fully assembled MurC complex with its product UDP-N-acetylmuramoyl-L-alanine (UMA), the nonhydrolyzable ATP analogue AMPPNP, and Mn(2+) have been determined to 1.85- and 1.7-A resolution, respectively. These structures reveal a conserved, three-domain architecture with the binding sites for UNAM and ATP formed at the domain interfaces: the N-terminal domain binds the UDP portion of UNAM, and the central and C-terminal domains form the ATP-binding site, while the C-terminal domain also positions the alanine. An active enzyme structure is thus assembled at the common domain interfaces when all three substrates are bound. The MurC active site clearly shows that the gamma-phosphate of AMPPNP is positioned between two bound metal ions, one of which also binds the reactive UNAM carboxylate, and that the alanine is oriented by interactions with the positively charged side chains of two MurC arginine residues and the negatively charged alanine carboxyl group. These results indicate that significant diversity exists in binding of the UDP moiety of the substrate by MurC and the subsequent ligases in the bacterial cell wall biosynthesis pathway and that alterations in the domain packing and tertiary structure allow the Mur ligases to bind sequentially larger UNAM peptide substrates.  相似文献   

6.
The enzymes essential for bacterial peptidoglycan biosynthesis are attractive targets for antimicrobial drug development. One of these is MurB, which contains FAD as a cofactor and catalyzes the NADPH-dependent reduction of UDP-N-acetylenolpyruvylglucosamine (UDP-GlcNAcEP) to UDP-N-acetylmuramic acid. This study examined the roles of the conserved amino acid residues of Staphylococcus aureus MurB, which are located near the active site in x-ray crystal structures. Seven of 11 site-directed mutated murB genes lost the ability to complement a temperature-sensitive S. aureus murB mutant. Biochemical characterization of the seven mutated MurB proteins revealed that they cannot carry out the reduction of UDP-GlcNAcEP, although they can all catalyze the intramolecular reduction of FAD via NADPH. Spectrometric analyses of the oxidized form of the mutated proteins in the presence and absence of NADP+ or UDP-GlcNAcEP revealed that these essential amino acid residues play four distinct roles in substrate interactions: Arg213 is essential for maintenance of the electronic state of FAD; Arg176 is required for interaction with UDP-GlcNAcEP; His259 is required for interaction with both UDP-GlcNAcEP and NADP+; and Asn71, Tyr175, Ser226, and Glu296 are not apparently required for interaction with either ligand. The results presented here identify for the first time the amino acid residues of MurB that are required for the interaction with UDP-Glc-NAcEP and NADP+.  相似文献   

7.
Over 195 4-alkyl and 4,4-dialkyl 1,2-bis(4-chlorophenyl)pyrazolidine-3,5-dione derivatives were synthesized, utilizing microwave accelerated synthesis, for evaluation as new inhibitors of bacterial cell wall biosynthesis. Many of them demonstrated good activity against MurB in vitro and low MIC values against gram-positive bacteria, particularly penicillin-resistant Streptococcus pneumoniae (PRSP). Derivative 7l demonstrated antibacterial activity against both gram-positive and gram-negative bacteria. Derivatives 7f and 10a also demonstrated potent nanomolar Kd values in their binding to MurB.  相似文献   

8.
Phosphoglucosamine mutase (PNGM) is an evolutionarily conserved bacterial enzyme that participates in the cytoplasmic steps of peptidoglycan biosynthesis. As peptidoglycan is essential for bacterial survival and is absent in humans, enzymes in this pathway have been the focus of intensive inhibitor design efforts. Many aspects of the structural biology of the peptidoglycan pathway have been elucidated, with the exception of the PNGM structure. We present here the crystal structure of PNGM from the human pathogen and bioterrorism agent Bacillus anthracis. The structure reveals key residues in the large active site cleft of the enzyme which likely have roles in catalysis and specificity. A large conformational change of the C-terminal domain of PNGM is observed when comparing two independent molecules in the crystal, shedding light on both the apo- and ligand-bound conformers of the enzyme. Crystal packing analyses and dynamic light scattering studies suggest that the enzyme is a dimer in solution. Multiple sequence alignments show that residues in the dimer interface are conserved, suggesting that many PNGM enzymes adopt this oligomeric state. This work lays the foundation for the development of inhibitors for PNGM enzymes from human pathogens.  相似文献   

9.
One of the biggest challenges for recent medical research is the continuous development of new antibiotics interacting with bacterial essential mechanisms. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy. The cytoplasmic steps of the biosynthesis of peptidoglycan precursor, catalysed by a series of Mur enzymes, are excellent candidates for drug development. There has been growing interest in these bacterial enzymes over the last decade. Many studies attempted to understand the detailed mechanisms and structural features of the key enzymes MurA to MurF. Only MurA is inhibited by a known antibiotic, fosfomycin. Several attempts made to develop novel inhibitors of this pathway are discussed in this review. Three novel inhibitors of MurA were identified recently. 4-Thiazolidinone compounds were designed as MurB inhibitors. Many phosphinic acid derivatives and substrate analogues were identified as inhibitors of the MurC to MurF amino acid ligases.  相似文献   

10.
Bacterial peptidoglycan is the cell wall component responsible for various biological activities. Its cytoplasmic precursor UDP-N-acetylmuramyl pentapeptide is biosynthesized by the first six enzymes of peptidoglycan synthetic pathways (Mur enzymes), which are all proved to be important targets for antibiotic screening. In our present work, the genes encoding Mur enzymes from Escherichia coli were co-expressed in the cell-free protein synthesis (CFPS) system, and the activities of Mur enzymes derived from CFPS system were validated by the synthesis of the final product UDP-N-acetylmuramyl pentapeptide. Then this in vitro reconstituted Mur biosynthetic pathway was used to screen a panel of specific antisense oligonucleotides for MurA and MurB. The selected oligonucleotides were proved to eliminate the expression of Mur enzymes, and thus inhibit the Mur biosynthetic pathway. The present work not only developed a rapid method to reconstruct and regulate a biosynthetic pathway in vitro, but also may provide insight into the development of novel antibiotics targeting on peptidoglycan biosynthetic pathway.  相似文献   

11.
A new procedure for the preparation of human platelets consistently sensitive to platelet-activating factor (PAF) in the low nanomolar range has been developed. Key to the success of this approach was the addition of adenosine during the isolation phase, providing an excellent recovery of stable cells, and the inclusion of ADP in the aggregation assay, providing increased sensitivity to PAF. Examination of the binding profile of tritium-labeled PAF to these platelets in the presence or absence of ADP revealed significant difference in the Kd values but not in the number of specific binding sites. Other reagents having an influence on the reactivity and stability of the human platelets, as regards its interaction with PAF, are described.  相似文献   

12.
The Bacillus subtilis murB gene, encoding UDP-N-acetylenolpyruvoylglucosamine reductase, a key enzyme in the peptidoglycan (PG) biosynthetic pathway, is embedded in the dcw (for "division and cell wall") cluster immediately upstream of divIB. Previous attempts to inactivate murB were unsuccessful, suggesting its essentiality. Here we show that the cell morphology, growth rate, and resistance to cell wall-active antibiotics of murB conditional mutants is a function of the expression level of murB. In one mutant, in which murB was insertionally inactivated in a merodiploid bearing a second xylose-inducible PxylA-murB allele, DivIB levels were reduced and a normal growth rate was achieved only if MurB levels were threefold that of the wild-type strain. However, expression of an extra copy of divIB restored normal growth at wild-type levels of MurB. In contrast, DivIB levels were normal in a second mutant containing an in-frame deletion of murB (DeltamurB) in the presence of the PxylA-murB gene. Furthermore, this strain grew normally with wild-type levels of MurB. During sporulation, the levels of MurB were highest at the time of synthesis of the spore cortex PG. Interestingly, the DeltamurB PxylA-murB mutant did not sporulate efficiently even at high concentrations of inducer. Since high levels of inducer did not interfere with sporulation of a murB(+)PxylA-murB strain, it appears that ectopic expression of murB fails to support efficient sporulation. These data suggest that coordinate expression of divIB and murB is important for growth and sporulation. The genetic context of the murB gene within the dcw cluster is unique to the Bacillus group and, taken together with our data, suggests that in these species it contributes to the optimal expression of cell division and PG biosynthetic functions during both vegetative growth and spore development.  相似文献   

13.
Uridine diphosphate-N-acetylmuramate:L-alanine ligase (EC 6.3.2.8, UNAM:L-Ala ligase or MurC gene product) catalyzes the ATP-dependent ligation of the first amino acid to the sugar moiety of the peptidoglycan precursor. This is an essential step in cell wall biosynthesis for both gram-positive and gram-negative bacteria. Optimal assay conditions for initial velocity studies have been established. Steady-state assays were carried out to determine the effect of various parameters on enzyme activity. Factors studies included: cation specificity, ionic strength, buffer composition and pH. At 37 degrees C and pH 8.0, kcat was equal to 980 +/- 40 min-1, while K(m) values for ATP, UNAM, and L-alanine were, 130 +/- 10, 44 +/- 3, and 48 +/- 6 microM, respectively. Of the metals tested only Mn, Mg, and Co were able to support activity. Sodium chloride, potassium chloride, ammonium chloride, and ammonium sulfate had no effect on activity up to 75 mM levels. The enzyme, in appropriate buffer, was stable enough to be assayed over the pH range of 5.6 to 10.1. pH profiles of Vmax/K(m) for the three substrates and of Vmax were obtained. Crystallization experiments with the enzyme produced two crystal forms. One of these has been characterized by X-ray diffraction as monoclinic, space group C2, with cell dimensions a = 189.6, b = 92.1, c = 75.2 A, beta = 105 degrees, and two 54 kDa molecules per asymmetric unit. It was discovered that the enzyme will hydrolyze ATP in the absence of L-alanine. This L-alanine independent activity is dependent upon the concentrations of both ATP and UNAM; kcat for this activity is less than 4% of the biosynthetic activity measured in the presence of saturating levels of L-alanine. Numerous L-alanine analogs tested were shown to stimulate ATP hydrolysis. A number of these L-alanine analogs produced novel products as accessed by HPLC and mass spectral analysis. All of the L-alanine analogs tested as inhibitors were competitive versus L-alanine.  相似文献   

14.
The enzyme MurA has been an established antibiotic target since the discovery of fosfomycin, which specifically inhibits MurA by covalent modification of the active site residue Cys-115. Early biochemical studies established that Cys-115 also covalently reacts with substrate phosphoenolpyruvate (PEP) to yield a phospholactoyl adduct, but the structural and functional consequences of this reaction remained obscure. We captured and depicted the Cys-115-PEP adduct of Enterobacter cloacae MurA in various reaction states by X-ray crystallography. The data suggest that cellular MurA predominantly exists in a tightly locked complex with UDP-N-acetylmuramic acid (UNAM), the product of the MurB reaction, with PEP covalently attached to Cys-115. The uniqueness and rigidity of this "dormant" complex was previously not recognized and presumably accounts for the failure of drug discovery efforts toward the identification of novel and effective MurA inhibitors. We demonstrate that recently published crystal structures of MurA from various organisms determined by different laboratories were indeed misinterpreted and actually contain UNAM and covalently bound PEP. The Cys-115-PEP adduct was also captured in vitro during the reaction of free MurA and substrate UDP-N-acetylglucosamine or isomer UDP-N-acetylgalactosamine. The now available series of crystal structures allows a comprehensive view of the reaction cycle of MurA. It appears that the covalent reaction of MurA with PEP fulfills dual functions by tightening the complex with UNAM for the efficient feedback regulation of murein biosynthesis and by priming the PEP molecule for instantaneous reaction with substrate UDP-N-acetylglucosamine.  相似文献   

15.
Purified recombinant MurA (enolpyruvyl-UDP-GlcNAc synthase) overexpressed in Escherichia coli had significant amounts of UDP-MurNAc (UDP-N-acetylmuramic acid) bound after purification. UDP-MurNAc is the product of MurB, the next enzyme in peptidoglycan biosynthesis. About 25% of MurA was complexed with UDP-MurNAc after five steps during purification that should have removed it. UDP-MurNAc isolated from MurA was identified by mass spectrometry, NMR analysis, and comparison with authentic UDP-MurNAc. Subsequent investigation showed that UDP-MurNAc bound to MurA tightly, with K(d,UDP)(-)(MurNAc) = 0.94 +/- 0.04 microM, as determined by fluorescence titrations using ANS (8-anilino-1-naphthalenesulfonate) as an exogenous fluorophore. UDP-MurNAc binding was competitive with ANS and phosphate, the second product of MurA, and it inhibited MurA. The inhibition patterns were somewhat ambiguous, likely being competitive with the substrate PEP (phosphoenolpyruvate) and either competitive or noncompetitive with respect to the substrate UDP-GlcNAc (UDP-N-acetylglucosamine). These results indicate a possible role for UDP-MurNAc in regulating the biosynthesis of nucleotide precursors of peptidoglycan through feedback inhibition. Previous studies indicated that UDP-MurNAc binding to MurA was not tight enough to be physiologically relevant; however, this was likely an artifact of the assay conditions.  相似文献   

16.
The bacterial endospore cortex peptidoglycan is synthesized between the double membranes of the developing forespore and is required for attainment of spore dehydration and dormancy. The Bacillus subtilis spoVB, spoVD and spoVE gene products are expressed in the mother cell compartment early during sporulation and play roles in cortex synthesis. Here we show that mutations in these genes block synthesis of cortex peptidoglycan and cause accumulation of peptidoglycan precursors, indicating a defect at the earliest steps of peptidoglycan polymerization. Loss of spoIV gene products involved in activation of later, sigma(K)-dependent mother cell gene expression results in decreased synthesis of cortex peptidoglycan, even in the presence of the SpoV proteins that were synthesized earlier, apparently due to decreased precursor production. Data show that activation of sigma(K) is required for increased synthesis of the soluble peptidoglycan precursors, and Western blot analyses show that increases in the precursor synthesis enzymes MurAA, MurB, MurC and MurF are dependent on sigma(K) activation. Overall, our results indicate that a decrease in peptidoglycan precursor synthesis during early sporulation, followed by renewed precursor synthesis upon sigma(K) activation, serves as a regulatory mechanism for the timing of spore cortex synthesis.  相似文献   

17.
The Escherichia coli D-alanyl-D-alanine-adding enzyme, which catalyzes the final cytoplasmic step in the biosynthesis of the bacterial peptidoglycan precursor UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelyl-D-Ala-D- Ala, has been purified to homogeneity from an E. coli strain that harbors a recombinant plasmid bearing the structural gene for this enzyme, murF. The enzyme is a monomer of molecular weight 49,000, and it has a turnover number of 784 min-1 for ATP-driven amide bond formation. Experiments monitoring the fate of radiolabeled UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-2,6-diaminopimelate and D-trifluoroalanine proved that the preceding enzyme in the D-alanine branch pathway, D-alanine:D-alanine ligase (ADP), is capable of synthesizing fluorinated dipeptides, which the D-Ala-D-Ala-adding enzyme can then incorporate to form UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-2,6-diaminopimelyl-D-++ +trifluoroAla-D- trifluoroAla.  相似文献   

18.
UDP-N-acetylmuramic acid (UDP-MurNAc) is a precursor for peptidoglycan biosynthesis in bacteria. A major difficulty in the study of this pathway is that UDP-MurNAc is not commercially available. We have developed an enzymatic synthesis scheme for UDP-MurNAc using two easily purified Escherichia coli polyhistidine tagged peptidoglycan biosynthesis enzymes, MurZ and MurB, followed by a single-step purification of UDP-MurNAc by high-performance liquid chromatography. The identity of the UDP-MurNAc synthesized by our method was confirmed by electrospray ionization mass spectrometry. Furthermore, we show that the UDP-MurNAc can support a UDP-MurNAc-L-alanine ligase reaction.  相似文献   

19.
The authors describe an assay to measure the generation of adenosine 5'-diphosphate (ADP) resulting from phosphorylation of a substrate by a kinase. ADP accumulation is detected by conversion to a fluorescent signal via a coupled enzyme system. The technology has potential applications for the assessment of inhibitor potency and mode of action as well as kinetic analysis of enzyme activity. The assay has a wide dynamic range (0.25-75 microM) and has been validated with several kinases including the highly active cyclic adenosine monophosphate-dependent protein kinase (PKAalpha), casein kinase 1 (CK1), and the weakly active kinase Jun N-terminal kinase 2 (Jnk2alpha2). Kinase activity can be measured either in an end point or continuous mode. Assay performance in end point mode was compared with an adenosine 5'-triphosphate (ATP) depletion assay and in continuous mode with a pyruvate kinase/lactate dehydrogenase coupled assay. The ability to characterize kinase kinetics was demonstrated by deriving ATP/substrate affinity (Michaelis-Menten constant; K(m)) values for PKAalpha, CK1, and Jnk2alpha2. The assay readily measured activity with kinase reactions using protein substrates, indicating the suitability for use with large macromolecules. A wide range of inhibitor activities could be determined even in the presence of high ATP concentrations, making the assay highly suitable to characterize the mode of action of the inhibitor in question. Collectively, this assay provides a homogenous, generic method for a number of applications in kinase drug discovery.  相似文献   

20.
Initial velocity studies and product inhibition studies were conducted for the forward and reverse reactions of formaldehyde dehydrogenase (formaldehyde: NAD oxidoreductase, EC 1.2.1.1) isolated from a methanol-utilizing yeast Candida boidinii. The data were consistent with an ordered Bi-Bi mechanism for this reaction in which NAD+ is bound first to the enzyme and NADH released last. Kinetic studies indicated that the nucleoside phosphates ATP, ADP and AMP are competitive inhibitors with respect to NAD and noncompetitive inhibitors with respect to S-hydroxymethylglutathione. The inhibitions of the enzyme activity by ATP and ADP are greater at pH 6.0 and 6.5 than at neutral or alkaline pH values. The kinetic studies of formate dehydrogenase (formate:NAD oxidoreductase, EC 1.2.1.2) from the methanol grown C. boidinii suggested also an ordered Bi-Bi mechanism with NAD being the first substrate and NADH the last product. Formate dehydrogenase the last enzyme of the dissimilatory pathway of the methanol metabolism is also inhibited by adenosine phosphates. Since the intracellular concentrations of NADH and ATP are in the range of the Ki values for formaldehyde dehydrogenase and formate dehydrogenase the activities of these main enzymes of the dissimilatory pathway of methanol metabolism in this yeast may be regulated by these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号