首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adding one equivalent of H2O2 to compounds of stoichiometry MoCl2(O)2(OPR3)2, OPR3 = OPMePh2 or OPPh3, leads to the formation of oxo-peroxo compounds MoCl2(O)(O2)(OPR3)2. The compound MoCl2(O)(O2)(OPMePh2)2 crystallized with an unequal disorder, 63%:37%, between the oxo and peroxo ligands, as verified by single-crystal X-ray diffractometry, and can be isolated in reasonable yields. MoCl2(O)(O2)(OPPh3)2, was not isolated in pure form, co-crystallized with MoCl2(O)2(OPPh3)2 in two ratios, 18%:82% and 12%:88%, respectively, and did not contain any disorder in the arrangement of the oxo and peroxo groups. These complexes accomplish the isomerization of various allylic alcohols. A mechanism of this reaction has been constructed based on 18O isotopic studies and involves exchange between the alcohol and metal bonded O atoms.  相似文献   

2.
【目的】LuxS/AI-2型密度群体感应系统产生的自诱导信号分子AI-2(AI-2的产生需要luxS基因编码的Lux S蛋白参与)参与对细菌众多生理功能的调控。探讨luxS对不同血清型禽致病性大肠杆菌(Avian Pathogenicity Escherichia coli,APEC)生物学特性的影响。【方法】本研究以APEC优势血清型APECO_1(O_1血清型)、DE17(O_2血清型)、E940(O_(78)血清型)及其相应luxS缺失株为研究对象,对野生株和缺失株的生长特性、生物被膜形成、rdar(red,dry and rough)形态、运动性和耐药性等特性进行分析。【结果】luxS基因的缺失不影响APEC生长特性,但导致APEC不能产生AI-2;此外,luxS基因的缺失显著降低APECO_1和E940的生物被膜形成(P0.05),而DE17的生物被膜形成无显著变化。对各菌株的rdar形态和运动性检测结果表明,luxS基因的缺失改变了APECO_1的rdar形态,对DE17和E940并无影响;显著降低了APECO_1和DE17运动能力,对E940并无影响。荧光定量PCR检测结果表明,luxS基因的缺失显著降低APECO_1、DE17和E940与细菌运动性相关的鞭毛基因fli G和fli I的转录水平(P0.05)。此外,对各菌株的耐药性检测结果表明,luxS基因缺失导致APECO_1对头孢吡肟和丁胺卡那由耐药变为高敏,同时对氯霉素与E940相同由高敏变为耐药,但对DE17的耐药性无显著改变。【结论】luxS对APEC的生物学特性具有重要的调控作用,且这种调控具有菌株特异性。  相似文献   

3.
4.
The title compounds were made by reacting bis(diphenylphosphino)methane (dppm) with reduced solutions of OsCl64? and Ru2OCl104?. The crystal and molecular structures of these compounds have been determined form three-dimensional X-ray study. The cis-isomers crystallize with one CHCl3 per molecule of the complex. All three compounds crystallize in the monoclinic space group P21/n with unit cell dimensions as follows: Cis-OsCl2(dppm)2·CHCl3: a = 13.415(4) Å, b = 22.859(4) Å, c = 16.693(3) Å, β = 105.77(3)°, V = 4926(3) Å3, Z = 4. cis-RuCl2(dppm)2·CHCl3: a = 13.442(3) Å, b = 22.833(7) Å, c = 16.750(4) Å, β = 105.53(2)°, V = 4953(3) Å3, Z = 4. trans-RuCl2(dppm)2: a = 11.368(7) Å, b = 10.656(6) Å, c = 18.832(12) Å; β = 103.90(6)°, V = 2213(7) Å3; Z = 2. The structures were refined to R = 0.044 (Rw = 0.055) for cis-OsCl2(dppm)2·CHCl3; R = 0.065 (Rw = 0.079) for cis-RuCl2(dppm)2·CHCl3 and R = 0.028 (Rw = 0.038) for trans-RuCl2(dppm)2. The complexes are six coordinate with stable four-membered chelate rings. The PMP angle in the chelate rings is ca. 71° in each case.  相似文献   

5.
Photosynthetic assimilation of CO2 in plants results in the balance between the photochemical energy developed by light in chloroplasts, and the consumption of that energy by the oxygenation processes, mainly the photorespiration in C3 plants. The analysis of classical biological models shows the difficulties to bring to fore the oxygenation rate due to the photorespiration pathway. As for other parameters, the most important key point is the estimation of the electron transport rate (ETR or J), i.e. the flux of biochemical energy, which is shared between the reductive and oxidative cycles of carbon. The only reliable method to quantify the linear electron flux responsible for the production of reductive energy is to directly measure the O2 evolution by 18O2 labelling and mass spectrometry. The hypothesis that the respective rates of reductive and oxidative cycles of carbon are only determined by the kinetic parameters of Rubisco, the respective concentrations of CO2 and O2 at the Rubisco site and the available electron transport rate, ultimately leads to propose new expressions of biochemical model equations. The modelling of 18O2 and 16O2 unidirectional fluxes in plants shows that a simple model can fit the photosynthetic and photorespiration exchanges for a wide range of environmental conditions. Its originality is to express the carboxylation and the oxygenation as a function of external gas concentrations, by the definition of a plant specificity factor Sp that mimics the internal reactions of Rubisco in plants. The difference between the specificity factors of plant (Sp) and of Rubisco (Sr) is directly related to the conductance values to CO2 transfer between the atmosphere and the Rubisco site. This clearly illustrates that the values and the variation of conductance are much more important, in higher C3 plants, than the small variations of the Rubisco specificity factor. The simple model systematically expresses the reciprocal variations of carboxylation and oxygenation exchanges illustrated by a “mirror effect”. It explains the protective sink effect of photorespiration, e.g. during water stress. The importance of the CO2 compensation point, in classical models, is reduced at the benefit of the crossing points Cx and Ox, concentration values where carboxylation and oxygenation are equal or where the gross O2 uptake is half of the gross O2 evolution. This concept is useful to illustrate the feedback effects of photorespiration in the atmosphere regulation. The constancy of Sp and of Cx for a great variation of P under several irradiance levels shows that the regulation of the conductance maintains constant the internal CO2 and the ratio of photorespiration to photosynthesis (PR/P). The maintenance of the ratio PR/P, in conditions of which PR could be reduced and the carboxylation increased, reinforces the hypothesis of a positive role of photorespiration and its involvement in the plant-atmosphere co-evolution.  相似文献   

6.
A particulate preparation from cocoa husk which shows o-diphenol: O2, oxidoreductase activity contains a copper protein moiety linked to a partially formed insoluble polyphenol polymer. The particles are easily stained with osmium tetroxide for electron microscopy and show marked o-diphenol-polymerisation properties when incubated with substrate. The activity and kinetic parameters of the particles against a number of substrates and inhibitors have been determined.  相似文献   

7.
Numerous studies focus on the measurement of conductances for CO2 transfer in plants and especially on their regulatory effects on photosynthesis. Measurement accuracy is strongly dependent on the model used and on the knowledge of the flow of photochemical energy generated by light in chloroplasts. The only accurate and precise method to quantify the linear electron flux (responsible for the production of reductive energy) is the direct measurement of O2 evolution, by 18O2 labelling and mass spectrometry. The sharing of this energy between the carboxylation (P) and the oxygenation of photorespiration (PR) depends on the plant specificity factor (Sp) and on the corresponding atmospheric concentrations of CO2 and O2 ( André, 2013). The concept of plant specificity factor simplifies the equations of the model. It gives a new expression of the effect of the conductance (g) between atmosphere and chloroplasts. Its quantitative effect on photosynthesis is easy to understand because it intervenes in the ratio of the plant specificity factor (Sp) to the specificity of Rubisco (Sr). Using this ‘simple’ model with the data of 18O2 experiments, the calculation of conductance variations in response to CO2 and light was carried out.  相似文献   

8.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

9.
We explored O2 flash yield in two cyanophytes, Anacystis nidulans and Agmenellum quadruplicatum. On a rate-measuring electrode, a single flash gave a contour of O2 evolution with a peak at about 10 ms which was maximum (100) for 680 nm background light. On 625 nm illumination the peak was smaller (62) but was followed by an increased tail of O2 attributed to enhancement of the background. After a period of darkness, repetitive flashes (5 Hz) gave a highly damped initial oscillation in individual flash yields which finally reached steady state at 94% of the yield for 680 nm illumination. When O2 of repetitive flashes was measured as an integrated flash yield the results was distinctive and similar to that for a continuous light 1 (680 nm). An apparent inhibition of respiration which persisted into the following dark period was taken as evidence for the Kok effect. With a concentration-measuring electrode, integrated flash yield vs. flash rate showed the same nonlinear behavior as O2 rate vs. intensity of light 1. We draw three conclusions about the two cyanophytes. (a) The plastoquinone pool is substantially reduced in darkness. (b) Because of a high ratio of reaction centers, reaction center 1 / reaction center 2, for the two photoreactions, saturating flashes behave as light 1. (c) Because repetitive flashes are light 1, they also give a Kok effect which must be guarded against in measurements designed to count reaction centers.  相似文献   

10.
The effect of exposure to acutely declining oxygen tensions on O2 uptake (MO2) and ventilation has been investigated in different larval stages of Northern krill Meganyctiphanes norvegica (calytopis III/early furcilia I, late furcilia I, furcilia III and V). An ability to regulate MO2 during acutely declining PO2 began to appear about furcilia III (critical O2 tension or Pc=15.4±0.73 kPa) and had improved by furcilia V (Pc=12.6±0.39 kPa). Hypoxia-related hyperventilation was achieved by an increase in pleopod (but not thoracic limb) activity (Pc∼11 kPa), a sensitivity which also appeared at, or just before, furcilia V even though an earlier stage (furcilia III) had a full compliment of functional setose pleopods. While this regulatory ability appeared as the gills were beginning to form, furcilia V is still early in gill ontogeny compared with adults. Preexposure to very moderate hypoxia (60% and 70% O2 saturation) of furcilia III and V resulted in substantial mortality, but where it did not (furcilia V, 80% O2 saturation), there was no effect of keeping krill at this PO2 on either MO2 or ventilation, suggesting that the development of respiratory regulation in M. norvegica is not open to environmental influence in the same way as for other crustaceans. We suggest that ontogeny of pleopod control provides furcilia V+ with both a stronger means of propulsion, allowing the ontogeny of DVM but also with an ability to regulate MO2 during exposure to acutely declining PO2s. The onset of respiratory regulation (furcilia V) preceded the onset of DVM (furcilia VI+). As pleopod ontogeny is associated intimately with the ontogeny of DVM and respiratory regulation, in the Gullmarsfjord this co-occurrence is fortuitous as krill can be required during DVM to migrate into hypoxic water which they are not equipped to deal with, in physiological terms, before furcilia V.  相似文献   

11.
Anhydrous Zn(O3SCF3)2 and Zn(O2CCX3)2, X=F, Cl, Br were obtained in substantially quantitative yields from ZnO (or ZnEt2 in the case of the bromide derivative) and a mixture of the corresponding acid and anhydride in heptane as medium. The reactions are rapid and moderately exothermic. Recrystallization of the triflate and trifluoroacetate complexes from dimethoxyethane (DME) produced single crystals of Zn(O3SCF3)2(DME)2 (1) and [Zn(O2CCF3)2(DME)]n (2) suitable for X-ray diffraction studies. In both compounds zinc is hexacoordinated with a pseudo-octahedral geometry. Compound 1 is constituted by mononuclear molecules with terminal monodentate O3SCF3 ligands in trans position. A polynuclear chain structure was found for 2 with zinc atoms joined alternatively by triple and single carboxylato bridges, and with bidentate terminal DME.  相似文献   

12.
13.
Two isomeric dibenzo-O2S2 macrocycles L1 and L2 have been synthesised and their coordination chemistry towards palladium(II) has been investigated. Two-step approaches via reactions of 1:1-type complexes, [cis-Cl2LPd] (1a: L = L1, 1b: L = L2), with different O2S2 macrocycle systems (L1 and L2) have led to the isolation of the following bis(O2S2 macrocycle) palladium(II) complexes in the solid state: [Pd(L1)2](ClO4)2 (2a) and a mixture of [Pd(L1)2](ClO4)2 (2a) + [Pd(L2)2](ClO4)2 (2b).  相似文献   

14.
15.
16.
The reaction of [Cu2(O2CCH3)4·2H2O] with trimethoprim is reported. In methanol a green solution was obtained, which, on adding benzene, yielded tetrakis(μ-acetato)bis(trimethoprim)dicopper(II) di-benzene methanol solvate. The compound crystallizes with four molecules per cell in the monoclinic space group C2/c, with a = 24.109(5), b = 15.256(3), c = 16.532(3) Å, β = 116.89(2) for λ(Mo-Kα) = 0.71073 Å. The copper atoms are bridged by four acetate groups to form the binuclear molecule [Cu2-(O2CCH3)4(TMP)2]·2C6H6·CH3OH. The TMP ligand acts as a donor molecule through one pyrimidinic nitrogen atom.  相似文献   

17.
The title compound has been synthesized and subjected to crystal structure analysis. Mr = 548.50, m.p. 108.1 °C (decom.), orthorhombic, Im2m,a = 7.006(2), b = 8.938(2), c = 13.619(2) Å V = 852.8(3) Å3, Z = 2, Dx = 2.136, Dm, (flotation in CCl4/CH2I2) = 2.128 g cm?3, λ(Mo-Kα) = 0.71069 Å, μ = 90.79 cm?1, F(000) = 519.89, T = 295 K, final RF = 0.036 and RG = 0.044 for 566 observed reflections. The discrete [UO2F4(H20)]2? anion has site symmetry m2m, its virtually linear uranyl moiety being surrounded by fluoro and aquo ligands occupying the vertices of a pentagon in the equatorial plane. Watet molecules serve to link the complex anions by hydrogen bonds into layers, between which the organic cations are accommodated.  相似文献   

18.
19.
The crystal structure of the compound [(Ph2PCH2CH2PPh2)Pt(3,5-Me2pzH)2][BF4]2·CH2Cl2 has shown that the ligands around the Pt atom are approximately in a square planar coordination, whereas the pyrazole rings point roughly in the same direction, away from the coordination plane. This unusual conformation is probably due to the hydrogen bonds with fluorine atoms of the BF4? anion. Bond distances and angles are compared with those in other pyrazole complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号