首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three million years ago, prior to the onset of northern hemisphere glaciation, global mean temperatures may have been as much as 3.5 °C warmer than at present. We present evidence, based on the carbon isotopic composition of marine organic matter, that atmospheric CO2 levels at this time were on average only about 35% higher than the preindustrial value of 280 ppm. We also present carbon isotopic evidence for stronger thermohaline circulation in the Atlantic Ocean during the warmest intervals and propose that the North Atlantic “conveyor belt” may act as a positive feedback to global warming by enhancing sea ice retreat and decreasing high latitude albedo. Based on our results, it seems unlikely that the mid Pliocene warm period was a doubled CO2 world.  相似文献   

2.
The intensification of the Northern Hemisphere Glaciation (INHG) was a major event in the development of the current climate state, and as one of the most productive regions in the world's oceans, the behaviour of the Benguela Upwelling System (BUS) following the INHG is of wide interest. To investigate post-INHG changes in productivity and organic matter accumulation, total organic carbon and biomarker accumulation rates were determined for sediments from ODP Site 1083 and compared to alkenone-derived sea surface temperatures and nitrogen isotopic compositions. These data indicate that the interval between 2.6 and 2.4 Ma was characterized by dramatic changes in upwelling intensity and organic carbon export on the northern edge of the modern BUS. The upwelling is reflected by significant changes in alkenone-derived SST estimates between glacial and interglacial intervals, with a total variability of 16 °C. The studied interval is also characterized by large changes in organic matter export as reflected by changes in TOC and biomarker accumulation rates, which show maxima during OIS 98 and during the transition from OIS 97 to 96. Intervals of elevated TOC are also characterized by elevated concentrations of sedimentary microbial biomarkers and lower %CaCO3, suggesting that enhanced delivery of labile organic matter to the seafloor resulted in enhanced remineralisation with released CO2 being consumed by CaCO3 dissolution. However, in apparent contrast to recent Pleistocene sediments at the same site, organic matter export after the INHG was not solely driven by upwelling intensity. Of the three Pliocene glacial–interglacial cycles examined (OIS 101 to 96), each is unique with respect to the timing and magnitude of changes in organic matter accumulation. Each is also characterized by different algal assemblages as inferred from biomarker distributions, with OIS 97 and 96 particularly dominated by diatoms. We suggest that these differences reflect the important but evolving role of Southern Ocean waters in the Pliocene BUS: nutrient depletion of SO waters occurred during parts of Pliocene glacial intervals such that even intense upwelling did not persistently result in enhanced organic matter accumulation rates.  相似文献   

3.
The fossil record of the Pleistocene calcareous nannoplankton indicates that during the mid-Pleistocene (0.93–1.25 my) occurred an episode of overwhelming dominance of smallGephyrocapsa. During this episode normally abundant, large size specimens of this genus (mainlyGephyrocapsa oceanica) were virtually excluded from the phytoplankton of tropical and subtropical oceans. The best modern analog of this dominantly smallGephyrocapsa assemblage is the subpolarEmiliania huxleyi assemblage, which implies that nutrient content was significantly greater and water temperature was lower in the photic water column of the tropical oceans than they are today. Increased equatorial upwelling in the oceans, on a scale much greater than today, may explain the above pattern.To achieve such broad equatorial upwelling there must be a source and a drive for cold, dense water. The Arctic Ocean, which was probably seasonally free of ice during this interval of the mid-Pleistocene, is capable of providing the requisite source as well as a drive for the inferred equatorial upwelling. The energy balance of a predominantly ice-free Arctic Ocean requires an approximately three to seven fold increase of hydrospheric heat transport from the North Atlantic to the Arctic Ocean, which dictates a corresponding or even greater increase in the volume of warm water entering the Arctic Ocean at the surface and cold dense water exiting at depth to the North Atlantic. Such enhanced dense water formation in the Arctic Ocean could drive the intensified equatorial upwelling implied by the smallGephyrocapsa dominance interval.If the above scenario is correct then the climate of the earth's northern hemisphere during the mid-Pleistocene may have been very different from the younger Pleistocene climate. One manifestation of this difference may be the mid-Pleistocene shift in climatic cycle periodicity from 40 ky to 100 ky. Another important aspect is that the enhanced greenhouse effect expected during the next century because of an increase of atmospheric CO2 is thought to lead directly to melting of the Arctic Ocean ice cover and of the Greenland ice sheet. Thus, the “greenhouse” Arctic Ocean and its attendant ocean circulation would resemble the inferred mid-Pleistocene conditions.  相似文献   

4.
Diatom assemblage and preservational data are used to reconstruct paleoceanographic conditions at the last glacial maximum (18,000 yrs BP) in the Southern Ocean. From these data, the following points can be made about the last glacial maximum in this region. (1) Contraction and slight northern shift of the belt of well preserved diatoms appears to be related to the northward shift of late spring/early summer sea ice cover. (2) Presence of open-ocean, though poorly preserved, diatom assemblages to the south of this belt strongly suggest that, during many summers, large areas of the Southern Ocean were ice-free. (3) The distribution of theNitzschia kerguelensis factor, both in surface sediments and at the last glacial maximum, indicates that the gyre systems, particularly the Weddell Gyre, were intensified during glacial times. (4) Although data are sparse in the higher-latitude South Atlantic, there is an indication that the Weddell Polynya also existed during glacial times, although it was shifted a few degrees northward.  相似文献   

5.
There is approximately 50 times more inorganic carbon in the global ocean than in the atmosphere. On time scales of decades to millions of years, the interaction between these two geophysical fluids determines atmospheric CO2 levels. During glacial periods, for example, the ocean serves as the major sink for atmospheric CO2, while during glacial–interglacial transitions, it is a source of CO2 to the atmosphere. The mechanisms responsible for determining the sign of the net exchange of CO2 between the ocean and the atmosphere remain unresolved. There is evidence that during glacial periods, phytoplankton primary productivity increased, leading to an enhanced sedimentation of particulate organic carbon into the ocean interior. The stimulation of primary production in glacial episodes can be correlated with increased inputs of nutrients limiting productivity, especially aeolian iron. Iron directly enhances primary production in high nutrient (nitrate and phosphate) regions of the ocean, of which the Southern Ocean is the most important. This trace element can also enhance nitrogen fixation, and thereby indirectly stimulate primary production throughout the low nutrient regions of the central ocean basins. While the export flux of organic carbon to the ocean interior was enhanced during glacial periods, this process does not fully account for the sequestration of atmospheric CO2. Heterotrophic oxidation of the newly formed organic carbon, forming weak acids, would have hydrolyzed CaCO3 in the sediments, increasing thereby oceanic alkalinity which, in turn, would have promoted the drawdown of atmospheric CO2. This latter mechanism is consistent with the stable carbon isotope pattern derived from air trapped in ice cores. The oceans have also played a major role as a sink for up to 30% of the anthropogenic CO2 produced during the industrial revolution. In large part this is due to CO2 solution in the surface ocean; however, some, poorly quantified fraction is a result of increased new production due to anthropogenic inputs of combined N, P and Fe. Based on ‘circulation as usual’, models predict that future anthropogenic CO2 inputs to the atmosphere will, in part, continue to be sequestered in the ocean. Human intervention (large-scale Fe fertilization; direct CO2 burial in the deep ocean) could increase carbon sequestration in the oceans, but could also result in unpredicted environmental perturbations. Changes in the oceanic thermohaline circulation as a result of global climate change would greatly alter the predictions of C sequestration that are possible on a ‘circulation as usual’ basis.  相似文献   

6.
Oxygen isotope analysis of planktonic and benthic foraminifera in piston core S-2 collected from the Shatsky Rise (33°21.75N, 159°07.70E; water depth 3107 m) provides a paleoceanographic record for the last 540 000 years in the northwestern Pacific Ocean. Although peaks in the abundance of sinistral Neogloboquadrina pachyderma occur during Marine Isotope Stage 2, and particularly 6 and 12, the southward shifting of the Subarctic front did not reach the core site during these glacial periods. However, mass accumulation rates of total organic carbon, biogenic opal, and terrigenous matter contents indicate that surface productivity increased during cold periods. In addition, the C/N ratio analyzed in organic matter reached values of up to 10 during glacial periods. These results imply that delivery of eolian dust to this site was enhanced by strengthened westerly winds during glacial periods. Down-core fluctuations in δ13C values of Globigerinoides ruber and Globorotalia inflata nearly overlap, particularly during the period from 540 to 260 ka. This latter trend suggest that the subtropical surface water mass prevailed at the core site throughout that period, based upon the very small vertical δ13C gradient through water column in modern Kuroshio Current water.  相似文献   

7.
The responses of CO2 exchange and overnight malate accumulation of leaf and stem succulent CAM-plants to water stress and the particular climatic conditiens of fog and föhn in the southern Namib desert have been investigated. In most of the investigated CAM plants a long term water stress gradually attenuated any uptake of external CO2 and led to CO2 release throughout day and night. No CAM-idling was observed. Rainfall or irrigation immediately restored daytime CO2 uptake while the recovery of the noctural CO2 uptake was delayed. Dawn peak of photosynthesis was only found in well watered plants but was markedly reduced by the short term water stress of a föhn-storm. Morning fog with its higher diffuse light intensity compared with clear days increased photosynthetic CO2 uptake considerably. Even in well watered plants noctural CO2 uptake and malate accumulation were strongly affected by föhn indicating that the water vapour pressure deficit during the night determines the degree of acidification.  相似文献   

8.
The aims of this study were to determine whether elevated atmospheric CO2 concentration modifies plant organic matter (OM) fluxes to the soil and whether any change in the fluxes can modify soil OM accumulation. Measurements were made in a grazed temperate grassland after almost 4 years exposure to elevated atmospheric CO2 (475 μl l-1) using a Free Air CO2 Enrichment (FACE) facility located in the North Island of New Zealand. Aboveground herbage biomass and leaf litter production were not altered by elevated CO2 but root growth rate, as measured with the ingrowth core method, and root turnover were strongly stimulated by elevated CO2 particularly at low soil moisture contents during summer. Consequently, significantly more plant material was returned to the soil under elevated CO2 leading to an accumulation of coarse (> 1 mm) particulate organic matter (POM) but not of finer POM fractions. The accumulating POM exhibited a lower C/N ratio, which was attributed to the higher proportion of legumes in the pasture under elevated CO2. Only small changes were detected in the size and activity of the soil microbial biomass in response to the POM accumulation, suggesting that higher organic substrate availability did not stimulate microbial growth and activity despite the apparent lower C/N ratio of accumulating POM. As a result, elevated CO2 may well lead to an accumulation of OM in grazed grassland soil in the long term.  相似文献   

9.
Unravelling the genetic structure and phylogeographic patterns of deep-sea sharks is particularly challenging given the inherent difficulty in obtaining samples. The deep-sea shark Centroscymnus crepidater is a medium-sized benthopelagic species that exhibits a circumglobal distribution occurring both in the Atlantic and Indo-Pacific Oceans. Contrary to the wealth of phylogeographic studies focused on coastal sharks, the genetic structure of bathyal species remains largely unexplored. We used a fragment of the mitochondrial DNA control region, and microsatellite data, to examine genetic structure in C. crepidater collected from the Atlantic Ocean, Tasman Sea, and southern Pacific Ocean (Chatham Rise). Two deeply divergent (3.1%) mtDNA clades were recovered, with one clade including both Atlantic and Pacific specimens, and the other composed of Atlantic samples with a single specimen from the Pacific (Chatham Rise). Bayesian analyses estimated this splitting in the Miocene at about 15 million years ago. The ancestral C. crepidater lineage was probably widely distributed in the Atlantic and Indo-Pacific Oceans. The oceanic cooling observed during the Miocene due to an Antarctic glaciation and the Tethys closure caused changes in environmental conditions that presumably restricted gene flow between basins. Fluctuations in food resources in the Southern Ocean might have promoted the dispersal of C. crepidater throughout the northern Atlantic where habitat conditions were more suitable during the Miocene. The significant genetic structure revealed by microsatellite data suggests the existence of present-day barriers to gene flow between the Atlantic and Pacific populations most likely due to the influence of the Agulhas Current retroflection on prey movements.  相似文献   

10.
Two late Quaternary sediment cores from the northern Cape Basin in the eastern South Atlantic Ocean were analyzed for their benthic foraminiferal content and benthic stable carbon isotope composition. The locations of the cores were selected such that both of them presently are bathed by North Atlantic Deep Water (NADW) and past changes in deep water circulation should be recorded simultaneously at both locations. However, the areas are different in terms of primary production. One core was recovered from the nutrient-depleted Walvis Ridge area, whereas the other one is from the continental slope just below the coastal upwelling mixing area where present day organic matter fluxes are shown to be moderately high. Recent data served as the basis for the interpretation of the late Quaternary faunal fluctuations and the paleoceanographic reconstruction.

During the last 450,000 years, NADW flux into the eastern South Atlantic Ocean has been restricted to interglacial periods, with the strongest dominance of a NADW-driven deep water circulation during interglacial stages 1, 9 and 11. At the continental margin, high productivity faunas and very low epibenthic δ13C values indicate enhanced fluxes of organic matter during glacial periods. This can be attributed to a glacial increase and lateral extension of coastal upwelling. The long term glacial-interglacial paleoproductivity cycles are superimposed by high-frequency variations with a period of about 23,000 yr. Enhanced productivity in surface waters above the Walvis Ridge, far from the coast, is indicated during glacial stages 8, 10 and 12. During these periods, cold, nutrient-rich filaments from the mixing area were probably driven as far as to the southeastern flank of the Walvis Ridge.  相似文献   


11.
The planktonic foraminifera Pulleniatina obliquiloculata (Parker and Jones) undergoes several climatically controlled disappearances and reappearances in the equatorial Atlantic and Caribbean sediments during Late Quaternary time. One such disappearance occurs near the middle of the last glacial (Middle Wisconsin, middle Y zone, O16 stage 3). The age of this disappearances is time transgressive from approximately 60, 000 yr in the Gulf of Mexico, to 50, 000 yr in the western Caribbean, to 35, 000 yr in the equatorial Atlantic. The time-transgressive transgressive nature of P. obliquiloculata's disappearance from the Atlantic is thought to represent the decreasing “width” of P. obliquiloculata's adaptive zone as surface water salinities progressively increased during the glacial intervals due to expanding continental glaciers. A simple ecologic model predicts that P. obliquiloculata should disappear first from areas of high salinity and is consistent with observations that both modern sea-surface salinity and the age of the P. obliquiloculata biohorizon increase from the equatorial Atlantic to the Gulf of Mexico.The biohorizon, YP. obliq, is a subdivision of Ericson's Y zone and occurs throughout the western equatorial Atlantic as well as throughout most of the Caribbean and Gulf of Mexico. Here, the horizon is useful for correlating and determining accumulation rates in continental margin sediments where rapid deposition often prevents piston cores from penetrating through the last glacial interval. Along the coast of Africa, in areas of coastal upwelling and the equatorward transport of cold water, the biohorizon does not occur.  相似文献   

12.
The responses of CO2 exchange and overnight malate accumulation of leaf and stem succulent CAM-plants to water stress and the particular climatic conditions of fog and föhn in the southern Namib desert have been investigated. In most of the investigated CAM plants a long term water stress gradually attenuated any uptake of external CO2 and led to CO2 release throughout day and night. No CAM-idling was observed. Rainfall or irrigation immediately restored daytime CO2 uptake while the recovery of the nocturnal CO2 uptake was delayed. Dawn peak of photosynthesis was only found in well watered plants but was markedly reduced by the short term water stress of a föhn-storm. Morning fog with its higher diffuse light intensity compared with clear days increased photosynthetic CO2 uptake considerably. Even in well watered plants nocturnal CO2 uptake and malate accumulation were strongly affected by föhn indicating that the water vapour pressure deficit during the night determines the degree of acidification.  相似文献   

13.
Loiseau  P.  Soussana  J. F. 《Plant and Soil》1999,212(2):123-131
The effects of elevated [CO2] (700 μl l−1 [CO2]) and temperature increase (+3 °C) on carbon accumulation in a grassland soil were studied at two N-fertiliser supplies (160 and 530 kgN ha−1 year−1) in a long-term experiment (2.5 years) on well established ryegrass swards (Lolium perenne L.,) supplied with the same amounts of irrigation water. For all experimental treatments, the C:N ratio of the top soil organic matter fractions increased with their particle size. Elevated CO2 concentration increased the C:N ratios of the below-ground phytomass and of the macro-organic matter. A supplemental fertiliser N or a 3 °C increase in elevated [CO2] reduced it. At the last sampling date, elevated [CO2] did not affect the C:N ratio of the soil organic matter fractions, but increased significantly the accumulation of roots and of macro-organic matter above 200 μm (MOM). An increased N-fertiliser supply stimulated the accumulation of the non harvested plant phytomass and of the OM between 2 and 50 μm, without positive effect on the macro-organic matter >200 μm. Elevated [CO22] increased C accumulation in the OM fractions above 50 μm by +2.1 tC ha−1, on average, whereas increasing the fertiliser N supply led to an average supplemental accumulation of +0.8 tC ha−1. There was no significant effect of a 3 °C temperature increase under elevated [CO2] on C accumulation in the OM fractions above 50 μm. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Pedunculate oak (Quercus robur L.) was germinated and grown at ambient CO2 level and 650 ppmv CO2 in the presence and absence of the ectomycorrhizal fungus Laccaria laccata for a total of 6 month under nutrient non-limiting conditions. Mycorrhization and elevated atmospheric CO2 each supported the growth of the trees. Stem height, stem diameter, and dry matter accumulation of pedunculate oak were increased by mycorrhization. Elevated atmospheric CO2 enhanced stem height, stem diameter, fresh weight and dry weight, as well as lateral root formation of the trees. In combination, mycorrhization and elevated atmospheric CO2 had a more than additive, positive effect on tree height and biomass accumulation, and further improved lateral root formation of the trees. From these findings it is suggested that the efficiency of the roots in supporting the growth of the shoot is increased in mycorrhized oak trees at elevated atmospheric CO2.Abbreviations DW dry weight - FW fresh weight - RWC relative water content  相似文献   

15.
Pore water and solid phase distributions of C, N, P and Si in sediments of the Arctic Ocean (Svalbard area) have been investigated. Concentrations of organic carbon (Corg) in the solid phase of the sediment varied from 1.3 to 2.8% (mean 1.9%), with highest concentrations found at shallow stations south/southwest of Svalbard. Relatively low concentrations were obtained at the deeper stations north/northeast of Svalbard. Atomic carbon to nitrogen ratios in the surface sediment ranged from below 8 to above 10. For some stations, high C/N ratios together with high concentrations of Corg suggest that sedimentary organic matter is mainly of terrigenous origin and not from overall biological activity in the water column. Organic matter reactivity (defined as the total sediment oxygen consumption rate normalized to the organic carbon content of the surface sediment) correlated with water depth at all investigated stations. However, the stations could be divided into two separate groups with different reactivity characteristics, representing the two most dominant hydrographic regimes: the region west of Svalbard mainly influenced by the West Spitsbergen Current, and the area east of Svalbard where Arctic polar water set the environmental conditions. Decreasing sediment reactivity with water depth was confirmed by the partitioning between organic and inorganic carbon of the surface sediment. The ratio between organic and inorganic carbon at the sediment-water interface decreased exponentially with water depth: from indefinite values at shallow stations in the central Barents Sea, to approximately 1 at deep stations north of Svalbard. At stations east of Svalbard there was an inverse linear correlation between the organic matter reactivity (as defined above) and concentration of dissolved organic carbon (DOC) in the pore water. The more reactive the sediment, the less DOC existed in the pore water and the more total carbonate (Ct or ΣCO2) was present. This observation suggests that DOC produced in reactive sediments is easily metabolizable to CO2. Sediment accumulation rates of opaline silica ranged from 0.35 to 5.7 μmol SiO2 m−2d−1 (mean 1.3 μmol SiO2 m−2d−1), i.e. almost 300 times lower than rates previously reported for the Ross Sea, Antarctica. Concentrations of ammonium and nitrate in the pore water at the sediment-water interface were related to organic matter input and water depth. In shallow regions with highly reactive organic matter, a pool of ammonium was present in the pore water, while nitrate conoentrations were low. In areas where less reactive organic matter was deposited at the sediment surface, the deeper zone of nitrification caused a build-up of nitrate in the pore water while ammonium was almost depleted. Nitrate penetrated from 1.8 to ≥ 5.8 cm into the investigated sediments. Significantly higher concentrations of “total” dissolved nitrogen (defined as the sum of NO3, NO2, NH4 and urea) in sediment pore water were found west compared to east of Svalbard. The differences in organic matter reactivity, as well as in pore water distribution patterns of “total” dissolved nitrogen between the two areas, probably reflect hydrographic factors (such as ice coverage and production/import of particulate organic material) related to the dominant water mass (Atlantic or Arctic Polar) in each of the two areas. The data presented were collected during the European “Polarstern” Study (Arctic EPOS) sponsored by the European Science Foundation  相似文献   

16.
《Palaeoworld》2020,29(4):807-818
New planktonic and benthic foraminiferal stable isotope records from core YDY05 (northeastern Indian Ocean) provide new insights into paleoceanographic changes in the northeastern Indian Ocean since the last glacial period. The distinct δ18O decrease was observed since the beginning of the deglaciation to the mid-Holocene (∼8–6 kyr BP), possibly reflecting a reduction in surface salinity in the central Bay of Bengal (BoB) water, which probably resulted from strengthened precipitation, concurrent enhanced river discharge and rising sea-level, related to the intensification of Indian Summer Monsoon (ISM). Variations in benthic δ13C and δ13CPlanktonic-Benthic in our core site reflect significant variations in source water characteristics over the LGM-Holocene. The large δ13CPlanktonic-Benthic offset during the glacial period suggests a more sluggish deep water circulation, and lower δ13CPlanktonic-Benthic from the deglaciation to the Holocene suggests an enhanced deep water circulation in the central BoB. The drastic depletion in benthic δ13C during the glacial period suggests a significant reduction of North Atlantic Deep Water (NADW) intrusion and a progressive influx of Antarctic Bottom Water (AABW) and 12C-rich Circumpolar Deep Water (CDW) into the central BoB. In contrast, since the deglaciation, the central BoB experienced a drastically increased intrusion of better ventilated and 13C-rich NADW. The differences in benthic δ18O between the LGM section and the Holocene exceeds the ice volume effect by ∼0.5‰, providing further evidence that the deep water mass of the central BoB was influenced by the less dense NADW, instead of the AABW, since the last deglaciation.  相似文献   

17.
Plant responses to carbon (C) and water availability are strongly connected. Thus, we can learn much about the responses of modern plants to rising atmospheric carbon dioxide (CO2) by studying their performance under a range of carbon and water availabilities, including very low CO2 as in past glacial periods. We hypothesized that, especially in shallow soils, the positive effects of high CO2 and the negative effects of low CO2 on growth response to drought are moderated by plant size-driven feedbacks through transpiration and soil water depletion. We grew two temperate annual C3 species, Avena sativa and Chenopodium album, in glacial (180 ppm), modern (400 ppm) and future (700 ppm) CO2 levels and five soil water regimes in climate chambers. In both species, low CO2 resulted in a much lower relative growth rate, biomass and total leaf area than at ambient CO2 with higher water availability, but this difference disappeared steadily towards severe drought conditions. Elevated CO2 increased relative growth rate, plant biomass and total leaf area of both species slightly compared with ambient CO2. These results were especially pronounced under drought. Our results support the hypothesis that, in annuals, plant size modulates the negative drought effect at low CO2. However, plant size-mediated effects of high CO2 on growth response to drought were inconclusive. Further experiments should reveal the interactive effects of CO2 and water regimes in environments closer to a field setting, both in shallow and in deep soils with unconstrained rooting, as well as in mixed communities.  相似文献   

18.
Bigeye (Thunnus obesus) is a large, pelagic, and migratory species of tuna that inhabits tropical and temperate marine waters worldwide. Previous studies based on mitochondrial RFLP data have shown that bigeye tunas from the Atlantic Ocean are the most interesting from a genetic point of view. Two highly divergent mitochondrial haplotype clades (I and II) coexist in the Atlantic Ocean. One is almost exclusive of the Atlantic Ocean whereas the other is also found in the Indo-Pacific Ocean. Bigeye tuna from the Atlantic Ocean is currently managed as a single stock, although this assumption remains untested at the genetic level. Therefore, genetic diversity was determined at the mitochondrial control region to test the null hypothesis of no population structure in bigeye tuna from the Atlantic Ocean. A total of 331 specimens were sampled from four locations in the Atlantic Ocean (Canada, Azores, Canary Islands, and Gulf of Guinea), and one in the Indian and Pacific Oceans, respectively. The reconstructed neighbor-joining phylogeny confirmed the presence of Clades I and II throughout the Atlantic Ocean. No apparent latitudinal gradient of the proportions of both clades in the different collection sites was observed. Hierarchical AMOVA tests and pairwise phi(ST) comparisons involving Atlantic Ocean Clades I and II were consistent with a single stock of bigeye tuna in the Atlantic Ocean. Population genetic analyses considering phylogroups independently supported gene flow within Clade II throughout the Atlantic Ocean, and within Clade I between Atlantic and Indo-Pacific Oceans. The latter result suggests present uni-directional gene flow from the Indo-Pacific into the Atlantic Ocean. Moreover, mismatch analyses dated divergence of Clades I and II during the Pleistocene, as previously proposed. In addition, migration rates were estimated using coalescent methods, and showed a net migration from Atlantic Ocean feeding grounds towards the Gulf of Guinea, the best-known spawning ground of Atlantic bigeye tuna.  相似文献   

19.
Cenozoic greenhouse gases (GHG) variations and warming periods underscore the extreme rates of current climate change, with major implications for the adaptability and survivability of terrestrial and marine habitats. Current rise rate of greenhouse gases, reaching 3.3 ppm CO2 per year during March 2015–2016, is the fastest recorded since the Paleocene‐Eocene Thermal Event (PETM) when carbon release to the atmosphere was about an order of magnitude less than at present. The ice core evidence of concentration of (GHG) and temperatures in the atmosphere/ocean/cryosphere system over the last 740 kyr suggests that the rate of rise in GHG over the last ~260 years, CO2 rates rising from 0.94 ppm yr?1 in 1959 (315.97 ppm) to 1.62 ppm yr?1 in 2000 (369.52 ppm) to 3.05 ppm yr?1 in 2015 (400.83 ppm), constitutes a unique spike in the history of the atmosphere. The reliance of pre‐740 kyr paleoclimate estimates on multiple proxies, including benthic and plankton fossils, fossil plants, residual organic matter, major and trace elements in fossils, sediments and soils, place limits on the resolution of pre‐upper Pleistocene paleoclimate estimates, rendering it likely recorded mean Cenozoic paleoclimate trends may conceal abrupt short‐term climate fluctuations. However, as exemplified by the Paleocene–Eocene thermal maximum (PETM) and earlier GHG and temperature spikes associated with major volcanic and asteroid impact events, the long‐term residence time of CO2 in the atmosphere extends the signatures of abrupt warming events to within detection limits of multiple paleoproxies. The mean post‐1750 temperature rise rate (approximately ~0.0034 °C per yr, or ~0.008 °C per yr where temperature is not masked by sulfur aerosols) exceeds those of the PETM (approximately ~0.0008–0.0015 °C per yr) by an order of magnitude and mean glacial termination warming rates (last glacial termination [LGT] ~ 0.00039; Eemian ~0.0004 °C per yr) by near to an order of magnitude. Consistent with previous interglacial peaks an increasing likelihood of collapse of the Atlantic Meridional Ocean Circulation is threatening a severe stadial event.  相似文献   

20.
The present study was initiated to ascertain the significance of coccolithophores as a proxy for paleoceanographic and paleoproductivity studies in the equatorial Atlantic. Data from a range of different samples, from the plankton, surface sediments as well as sediment cores are shown and compared with each other.In general, the living coccolithophores in the surface and subsurface waters show considerable variation in cell numbers and distribution patterns. Cell densities reached a maximum of up to 300×103 coccospheres/l in the upwelling area of the equatorial Atlantic. Here, Emiliania huxleyi is the dominant species with relatively high cell numbers, whereas Umbellosphaera irregularis and Umbellosphaera tenuis are characteristic for oligotrophic surface waters. Although they are observed in high relative abundances, these species only occur in low absolute numbers. The lower photic zone is dominated by high abundances and considerable cell numbers of Florisphaera profunda.The geographical distribution pattern of coccoliths in surface sediments reflects the conditions of the overlying surface water masses. However, abundances of the oligotrophic species Umbellosphaera irregularis and Umbellosphaera tenuis are strongly diminished, causing an increase in relative abundance of the lower photic zone taxa Florisphaera profunda and Gladiolithus flabellatus.During the past 140,000 years the surface water circulation of the equatorial Atlantic has changed drastically, as can be seen from changes in the coccolithophore species composition, absolute coccolith numbers, as well as coccolith accumulation rates. Significant increases in coccolith numbers and accumulation rates is observed in the southern equatorial Atlantic during the last glacial interval (oxygen isotope stages 2–4), which we attribute to enhanced upwelling intensities and advection of cool nutrient rich waters at this site. In the western equatorial Atlantic we observe an opposite trend with decreasing numbers of coccoliths during glacial periods, which probably is caused by a deepening of the thermocline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号