首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new 5-methyl ether flavone glucosides (7,4′,5′-trihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside and 7,4′-dihydroxy-5-methoxyflavone 7-O-β-D-glucopyranoside) were isolated from the leaves of Thai mangrove Bruguiera gymnorrhiza together with 7,3′,4′,5′-tetrahydroxy-5-methoxyflavone, 7,4′,5′-trihydroxy-5,3′-dimethoxyflavone, luteolin 5-methyl ether 7-O-β-D-glucopyranoside, 7,4′-dihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranoside, rutin, kaempferol 3-O-rutinoside, myricetin 3-O-rutinoside and an aryl-tetralin lignan rhamnoside. The structure of a lignan rhamnoside was found to be related to racemiside, an isolated compound from Cotoneaster racemiflora, and also discussed. Structure determinations were based on analyses of physical and spectroscopic data including 1D- and 2D-NMR.  相似文献   

2.
《Phytochemistry》1987,26(4):1185-1188
In continuation of our chemosystematic study of Stachys (Labiatae) we have isolated the previously reported isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (1) and 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranoside] (4) and four new allose-containing flavonoid glycosides from S. anisochila. The new glycosides are hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-β-D-glucopyranside] (6) as well as the three corresponding diacetyl analogues of 1, 4 and 6, isoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside], 3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside] and hypolaetin 7-O-[6″'-O-acetyl-β-D-allopyranosyl-(1 → 2)-6″-O-acetyl-β-D-glucopyranoside]. Extensive two-dimensional NMR studies (proton-carbon correlations, COSY experiments) allowed assignment of all 1H NMR sugar signals and a correction of the 13C NMR signal assignments for C-2 and C-3 of the allose.  相似文献   

3.
In the course of a chemotaxonomic survey of New Zealand Podocarpus species, a number of new flavonoid glycosides have been isolated from P. nivalis. These are: luteolin 3′-O-β-D-xyloside, luteolin 7-O-β-D-glucoside-3′-O-β-D-xyloside, dihydroquercetin 7-O-β-D-glucoside, 7-O-methyl-(2R:3R)-dihydrokaempferol 5-O-β-D-glucopyranoside, 7-O-methyl-(2R:3R)-dihydroquercetin 5-O-β-D-glucopyranoside, 7-O-methylkaempferol 5-O-β-D-glucopyranoside and 7-O-methylquercetin 5-O-β-D-glucopyranoside. Diagnostically useful physical techniques for distinguishing substitution patterns in dihydroflavonols are discussed and summarized. Glucosylation of the 5-hydroxyl group in (+)-dihydroflavonols is shown to reverse the sign of rotation at 589 nm.  相似文献   

4.
Four coumarins and seven isoprenoid compounds have been identified in potato tubers infected with Phoma exigua var. foveata. Among these were the 7-O-β-D-glucopyranoside of 7-hydroxy-6,8-dimethoxycoumarin (isofraxidin) and the sesquiterpene 2-(11,12-dihydroxy-11-methylethyl)-6,10-dimethyl-spiro[4,5]dec-6-en-8-one and its 12-O-β-D-glucopyranoside, which apparently have not been previously identified in potato tubers. At least two diastereoisomers of the latter glucoside were present. Analysis of eight fluorescent compounds in different parts of infected potatoes was performed by an improved HPLC technique.  相似文献   

5.
Besides spinatoside (3,6-dimethoxy-5,7,3′,4′-tetrahydroxyflavone 4′-O-β-D-glucopyranuronide), three new flavonol glycosides have now been isolated from the polar fractions of the methanolic extract of Spinacia oleracea. They have been identified as patuletin 3-O-β-D-glucopyranosyl-(1 → 6)-[β-D-apiofuranosyl-(1 → 2)]-β-D-glucopyranoside, patuletin 3-O-β-gentiobioside and spinacetin 3-O-β-gentiobioside, respectively.  相似文献   

6.
A new furan-2-carbonyl C-(6′-O-galloyl)-β-glucopyranoside (scleropentaside F, 1) and a new alkyl glucoside [butane-2,3-diol 2-(6′-O-galloyl)-O-β-glucopyranoside, 2] were isolated from the entire hemi-parasitic plant, Dendrophthoe pentandra growing on Tectona grandis together with ten known compounds including, benzyl-O-β-d-glucopyranoside (3), benzyl-O-α-l-rhamnopyranosyl-(1  6)-β-d-glucopyranoside (4), benzyl-O-β-d-apiofuranosyl-(1  6)-β-d-glucopyranoside (5), methyl gallate 3-O-β-d-glucopyranoside (6), methyl gallate 3-O-(6′-O-galloyl)-β-d-glucopyranoside (7), (+)-catechin (8), procyanidin B-1 (9) and procyanidin B-3 (10), bridelionoside A (11), and kiwiionoside (12). In addition, compounds 1, 39 were isolated from this species growing on the different host, Mangifera indica. The structure elucidations were based on physical data and spectroscopic evidence including 1D and 2D experiments.  相似文献   

7.
《Phytochemistry》1987,26(11):2995-2997
The leaf exudate of Aloe nyeriensis var. kedongensis yielded six compounds which were identified on the basis of spectral data and inter-conversions as two groups of three allied compounds. These were (a) 4-methoxy-6(2′,4′-dihydroxy-6′- methylphenyl)-pyran-2-one, its 2′-O-β-D-glucopyranoside (aloenin) and the 2″-O-p-coumaroyl ester of aloenin, (b) the anthracene derivatives l,2,8-trihydroxy- 6-methylanthraquinone (nataloe-emodin), its 2-O-β-D-glucopyranosyl ester and the corresponding 10-C -β-D-glucopyranoside nataloin.  相似文献   

8.
The glycosylating activity of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-galactopyrano)-[2′,1′:4,5]-2-oxazoline has been tested in reaction with partially protected saccharides having free primary or secondary hydroxyl groups or with hydroxy amino acids. 3-O-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranosyl)-N-benzyloxycarbonyl-L-serine benzyl ester (3), 6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-galactopyranose (5), p-nitrophenyl 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-2-deoxy-β-D-glucopyranoside (7), 6-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-glucose (9), and 3-O-(2-acetamido-2-deoxy-β-D-galactopyranosyl)-D-glucose (11) were synthesized in high yield.  相似文献   

9.
Two phenolic acids (1 and 2) and seven flavonoids (39) were isolated from the aerial parts of Alyssum alyssoides (Brassicaceae). All these compounds (19) were isolated from this particular species for the first time. Their structures were identified, on the basis of MS and NMR spectra as: p-hydroxy-benzoic acid (1), 3-methoxy-4-hydroxybenzoic acid (vanillic acid) (2), kaempferol 3-O-β-D-glucopyranoside (astragalin) (3), kaempferol 3-O-(6″-α-L-rhamnopyranosyl)-β-D-glucopyranoside (nicotiflorin) (4), quercetin 3-O-β-D-glucopyranoside (isoquercetin) (5), quercetin 3-O-β-D-galactopyranoside (hyperoside) (6), isorhamnetin 3-O-β-D-glucopyranoside (7), isorhamnetin 3-O-β-D-galactopyranoside (8) and isorhamnetin 3-O-(6″-α-L-rhamnopyranosyl)-β-D-glucopyranoside (narcissin) (9). The chemotaxonomic significance of these compounds was summarized.  相似文献   

10.
《Phytochemistry》1986,26(1):249-251
A new bitter phenylpropanoid glucoside, 2-(4-hydroxyphenyl)-ethyl-(6-O-caffeoyl)-β-D-glucopyranoside and a new bitter tannin-related compound, 3,4,5-trimethoxybenzoyl-β-D-glucopyranoside, have been isolated together with known compounds, 2-(3,4-dihydroxyphenyl)-ethyl-(6-O-caffeoyl)-β-D-glucopyranoside, 2-(3,4-dihydroxyphenyl)-ethyl-β-D-glucopyranoside and 6-O-caffeoyl-D-glucopyranose, from the bark of Prunus grayana. The structures of these compounds have been established on the basis of spectroscopic studies and chemical evidence.  相似文献   

11.
Two new chromone acyl glucosides, 5-hydroxy-7-O-(6-O-p-cis-coumaroyl-β-D-glucopyranosyl)-chromone (1) and 5-hydroxy-7-O-(6-O-p-trans-coumaroyl-β-D-glucopyranosyl)-chromone (2), and a new flavonoid glucoside, ayanin 3′-O-β-D-glucopyranoside (3) were isolated from aerial parts of Dasiphora parvifolia, together with flavonoid glycosides (410), catechins (11, 12), and hydrolysable tannins (13, 14). The chemical structures of these compounds were elucidated on the basis of spectroscopic data. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and the hyaluronidase inhibitory activity of these compounds were evaluated.  相似文献   

12.
Two isomers of megastigmane glycosides, (6R, 9S)-blumenol C 9-O-gentibioside (2) and (6S, 9S)-blumenol C 9-O-gentiobioside (3), and a new 7,9′-dinorlignan glycoside, stepdonorlignoside (4) were isolated from the tubers of Stephania kaweesakii. The structure determinations were considered based on the physical data and spectroscopic evidence. The absolute configurations of two megastigmanes were determined for the first time. Additionally, ten known compounds were isolated: (6R, 9S)-blumenol C 9-O-β-D-glucopyranoside, (+)-isolariciresinol 3a-O-β-D-glucopyranoside, salidroside, N-trans-caffeoyltyramine, (R)-isococlaurine, (R)-isococlaurine 4′-O-β-glucopyranoside, (−)-oblongine, (+)-magnocurarine, fordianoside, and (−)-cyclanoline.  相似文献   

13.
Reaction of methyl 4′,6′-di-O-mesyl-β-lactoside pentabenzoate (8), synthesised via the 4′,6′-O-benzylidene derivative (6), with sodium azide in hexamethylphosphoric triamide gave three products. In addition to the required 4′,6′-diazidocellobioside (9), an elimination product, methyl 4-O-(6-azido-2,3-di-O-benzoyl-4,6-dideoxy-α-L-threo-hex-4-enopyranosyl)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside (12), and an unexpected product of interglycosidic cleavage, methyl 2,3,6-tri-O-benzoyl-β-D-glucopyranoside (13), were formed. The origin of the latter product is discussed. The diazide 9 was converted into 4′,6′-diacetamido-4′,6′-dideoxycellobiose hexa-acetate (16) by sequential debenzoylation, catalytic reduction, acetylation, and acetolysis.  相似文献   

14.
A number of new flavonoid glycosides have been isolated from foliage of the New Zealand white pine, Dacrycarpus dacrydioides. These include tricetin 3′,5′-di-O-β-glucopyranoside; the 3′-O-β-xylopyranoside, 7-O-α-rhamnopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3-O-methylmyricetin; the 3′-O-β-xylopyranoside, 7-O-α-rhamnopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3-O-methyl-quercetin, and the 3′-O-β-xylopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3,4′-di-O-methylmyricetin. The accumulation of 3-methoxyflavones and B-ring trioxygenated flavonoids appears to distinguish D. dacrydioides from all other New Zealand members of the classical genus Podocarpus. Support for De Laubenfels' proposed separation of Dacrycarpus from this genus is seen in the present work.  相似文献   

15.
从梧桐科火绳属桂火绳中提取分离到22个化合物,经结构鉴定为:羽扇豆醇(1),白桦脂酸(2),齐墩果酸(3),丁香脂素(4),(+)-异落叶松树脂醇(5),东莨菪内酯(6),对羟基肉桂酸(7),二十七碳酸单甘油酯(8),2-十八烯酸单甘油酯(9),sitoindosideⅡ(10),儿茶素(11),表儿茶素(12),表儿茶素3-O-β-D-吡喃木糖甙(13),山奈酚3-O-β-D-吡喃葡萄糖甙(14),5,7,4'-三羟基异黄酮(15),4'-O-methylgallocatechin(16),反式-二氢槲皮素-3-O-α-阿拉伯糖甙(17),顺式-二氢槲皮素-3-O-α-阿拉伯糖甙(18),反式-二氢槲皮素-3-O-β-吡喃葡萄糖甙(19),3,5,7,3',5'-五羟基-4'-甲氧基异黄酮(20),山奈酚-3-O-β-D-吡喃葡萄糖(6→1)-α-L-吡喃鼠李糖甙(21),以及槲皮素3-O-β-D-吡喃葡萄糖(6→1)-β-D-吡喃葡萄糖甙(22),这些化学成分首次从该属植物中分离出来。  相似文献   

16.
The glycosylation of sesamol was investigated using cultured cells of Nicotiana tabacum and Eucalyptus perriniana. The cultured suspension cells of N. tabacum converted sesamol into its β-glucoside (7%) as well as the disaccharide, sesamyl 6-O-(β-D-glucopyranosyl)-β-D-glucopyranoside (β-gentiobioside, 30%). On the other hand, sesamyl 6-O-(α-L-rhamnopyranosyl)-β-D-glucopyranoside (β-rutinoside, 56%), together with the β-glucoside (3%), was produced when sesamol was incubated with suspension cells of E. perriniana.  相似文献   

17.
The condensation of 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl bromide and 2,3,4,6-tetra-O-benzyl-D-mannopyranosyl chloride with benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside (1), under Koenigs-Knorr conditions, gave the fully benzylated derivatives of benzyl 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranoside, benzyl 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranoside, and benzyl 2-acetamido-2-deoxy-4-O-α-D-mannopyranosyl-α-D-glucopyranoside. Three further compounds, namely, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)-α-D-glucopyranoside, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D)-mannopyranosyl)-α-D-glucopyranoside, and benzyl 2-acetamido-3-O-benzyl-2-deoxy-4,6-di-O-(2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)-α-D-glucopyranoside, were formed by reaction of the respective glycosyl halide with benzyl 2-acetamido-3-O-benzyl-2-deoxy-α-D-glucopyranoside present as contaminant in 1.  相似文献   

18.
(2R,3R)-2 3-Dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-5-benzofuranpropanol 4′-O-β-d-glucopyranoside [dihydrodehydrodiconiferyl alcohol glucoside], (2R,3R)-2 3-dihydro-7-hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol 4′-O-β-d-glucopyranoside and 4′-O-α-l-rhamnopyranoside, 1-(4′-hydroxy-3′-methoxyphenyl)-2- [2″-hydroxy-4″-(3-hydroxypropyl)phenoxy]-1, 3-propanediol 1-O-β-d-glucopyranoside and 4′-O-β-d-xylopyranoside, 2,3-bis[(4′-hydroxy-3′-methoxyphenyl)-methyl]-1,4-butanediol 1-O-β-d-glucopyranoside [(?)-seco-isolariciresinol glucoside] and (1R,2S,3S)-1,2,3,4-tetrahydro-7-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-6-methoxy-2 3-naphthalenedimethanol α2-O-β-d-xylopyranoside [(?)-isolariciresinol xyloside] have been isolated from needles of Picea abies and identified.  相似文献   

19.
Two new furostanol glycosides trigofoenosides A and D have been isolated from the Trigonella foenum-graecum seeds as their methyl ethers, A-1 and D-1. Their structures have been determined as (25S)-22-O-methyl-furost-5-ene-3β,26-diol, 3-O-α-L-rhamnopyranosyl (1 → 2)-β-D-glucopyranoside; 26-O-β-D-glucopyranoside (A-1) and (25S)-22-O-methyl-furost-5-ene-3β,26-diol, 3-O-α-L-rhamnopyranosyl (1 → 2)-[β-D-glucopyranosyl (1 → 3)]-β-D-glucopyranoside; 26-O-β-D-glucopyranoside (D-1).  相似文献   

20.
The ethanol extract of roots of Derris taiwaniana gave two undescribed compounds, 3,3′-dimethoxy-5′-hydroxystilbene-4-O-β-apiofuranosyl-(1→6)-β-D-glucopyranoside ( 1 ) and 4′,5-dihydroxy-3′-methoxyisoflavone-7-O-β-apiofuranosyl-(1→6)-β-D-glucopyranoside ( 2 ), along with thirty known components. Among them, compounds 14 , 16 – 17 , 23 , 26 – 32 were isolated from this genus for the first time. Their structures were established based on physico-chemical properties and spectroscopic data, the lung epithelial cell protective effects were evaluated using NNK-induced MLE-12 cells. Among them, 2α,3α-epoxy-5,7,3′,4′-tetrahydroxyflavan-(4β-8-catechin) ( 30 ) showed the best significant protective effect, speculated to be the key component of D. taiwaniana that plays a protective role in lung epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号