首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH optimum for the stability of the barley leaf polyamine oxidase is 4.8, which is also the pH optimum for its activity with spermine as substrate. Zonal centrifugation indicates that the enzyme is associated with a particle which is slightly more dense than chloroplasts, and the peak of activity corresponds with the peak of nucleic acid. Neither DNase nor RNase released the enzyme from the particles, despite the hydrolysis of more than 50% of the nucleic acid. The enzyme from the leaves of oat seedlings grown in the dark was purified 900-fold. Mg2+ and Ca2+ inhibited both barley and oat enzymes by ca 50% at 50 mM. The optimum pH for both spermine and spermidine oxidation by the oat enzyme was 6.5. The MW of the enzyme from both sources determined by gel chromatography was ca 85 000.  相似文献   

2.
Egg white ribonuclease was first found in green turtle eggs. The general properties were studied on substrate specificity, the optimum pH and temperature, and the effect of pH and temperature on the RNase activity. The enzyme studied was specific for poly (C) and degraded poly (U) at the lower rate and had the pH optimum at 7.0 and the optimum temperature at 40 °C. It was stable at alkaline range (pH 8.0–10.0) and up to 60 °C in pH 9.0 for 1 h, and unstable at acidic side for all temperatures. All of the properties studied showed similarity to RNase A. However, the optimum pH, broad range of optimum temperature and pH stability were different from RNase A. To evaluate the relationship of the structure and enzymatic properties, the 3D-structure of this enzyme was engineered by program MODELLER using two RNases (2BWL and 2BLZ) as starting models. The differences found in activity might be affected from the structure of micro environmental changing caused by amino acids deletion and substitution on the molecule.  相似文献   

3.
When barley (Hordeum vulgare L.) leaf polysomes are incubatedwith two RNase fractions (the pH 5 insoluble and soluble RNases)under limit digestion conditions, the two enzymes exhibit characteristicpreference for messenger and ribosomal RNA (mRNA and rRNA) hydrolysis.The pH 5 insoluble RNase from a cultivar of barley, Prior, andthe corresponding enzyme from two near-isogenic lines (M1622and M1623) cleave polysomal mRNA at specific sites and generatepolysome profiles that are unique to the cultivar. By contrast,the soluble RNase from barley leaves, although a typical endoribonuclease,catalyzes no detectable hydrolysis of polysomal mRNA. Both of these barley leaf RNases hydrolyze rRNA when eitherpolysomes or monosomes are treated with these enzymes. Withpolysomes as substrate, the pH 5 insoluble RNase hydrolyzesthe high molecular weight RNA component of both large and smallsubunits of chloroplast and cytoplasmic ribosomes. The solubleRNase preferentially hydrolyzes the high molecular weight RNAcomponent of the small subunit of chloroplast and cytoplasmicribosomes. Analytical gel electrophoresis of the RNA of theRNase-treated monosomes has revealed that both enzymes hydrolyzerRNA into very small fragments. However, despite scission inrRNA at multiple sites, the RNase-treated monosomes remain activein polyuridylate-directed polyphenylalanine synthesis. (Received January 31, 1980; )  相似文献   

4.
The polyamine oxidase of barley shoots is associated with a particle which sediments in low centrifugal fields. The enzyme was removed from these particles by washing in 0·5 M NaCl and then purified about 24-fold. The purified enzyme oxidized spermine stoicheiometrically to 1,3-diaminopropane and 1-(3-aminopropyl)pyrroline (pH optimum 4·0). Spermidine was oxidized to 1,3-diaminopropane and 1-pyrroline (pH optimum 6·6). At their respective pH optima, spermine is oxidized about 30 times faster than spermidine. Hydrogen peroxide was formed in the course of the polyamine oxidation. The enzyme was not sensitive to several copper chelating reagents but 2-hydroxyethylhydrazine caused 50% inhibition at 5 × 10−4 M. The enzyme was also present in particles in the roots of barley seedlings and in extracts of the leaves of oats, maize, rye and wheat.  相似文献   

5.
Wilson CM 《Plant physiology》1968,43(9):1332-1338
Three enzymes with ribonuclease activity, one of which also had deoxyribonuclease activity, have been isolated and partially purified from corn seeds and seedlings. The purification of Ribonuclease I from mature seed was previously reported. This enzyme has a pH optimum near 5.0, is loosely adsorbed to carboxymethyl-cellulose, and has a molecular weight of 23,000, determined by gel filtration.Ribonuclease II was isolated from the microsomes of corn roots, and was partially purified by gel filtration. It has a pH optimum plateau from 5.4 to 7.0, and molecular weight of 17,000.Nuclease I hydrolyzes both RNA and DNA. It was isolated from the large particles of a corn root homogenate and was partially purified on a carboxymethyl-cellulose column. It has a pH optimum at 6.2 and a molecular weight of 31,000.The relative activities of the 3 enzymes for deoxyribonuclease and at pH 5 and pH 6.2 for ribonuclease may be used to characterize them during purification operations. Assays on homogenates of corn roots, and especially of the root tips, suggested that a fourth enzyme, which possesses deoxyribonuclease activity, is also present.  相似文献   

6.
Human granulocytes contain an RNase which is thermostable at pH 4.2 and thermolabile at pH 8.5. It has a pH optimum at 6.5. It exhibits highest preference for the secondary phosphate esters of uridine 3′-phosphates. It has no action on uridine 2′: 3′-cyclic phosphates. Poly (A) and poly (G) are inert to its action. Its rate of hydrolysis of poly (C) is about 1% of that of poly (U). It differs from bovine pancreatic RNase and human serum RNase. Because of its unique specificity, this enzyme might serve as a biochemical marker in certain granulocyte disorders.  相似文献   

7.
Wilson CM 《Plant physiology》1968,43(9):1339-1346
Three enzymes with ribonuclease activity, one of which also had deoxyribonuclease activity, have been isolated and partially purified from corn seeds and seedlings. The purification of Ribonuclease I from mature seed was previously reported. This enzyme has a pH optimum near 5.0, is loosely adsorbed to carboxymethyl-cellulose, and has a molecular weight of 23,000, determined by gel filtration.

Ribonuclease II was isolated from the microsomes of corn roots, and was partially purified by gel filtration. It has a pH optimum plateau from 5.4 to 7.0, and molecular weight of 17,000.

Nuclease I hydrolyzes both RNA and DNA. It was isolated from the large particles of a corn root homogenate and was partially purified on a carboxymethyl-cellulose column. It has a pH optimum at 6.2 and a molecular weight of 31,000.

The relative activities of the 3 enzymes for deoxyribonuclease and at pH 5 and pH 6.2 for ribonuclease may be used to characterize them during purification operations. Assays on homogenates of corn roots, and especially of the root tips, suggested that a fourth enzyme, which possesses deoxyribonuclease activity, is also present.

  相似文献   

8.
We have monitored changes in the properties of two barley (Hordeumvulgare L.) leaf RNases with respect to their action on polysomalmessenger RNA (mRNA) and the RNA of isolated ribosomes duringthe early stages of infection by the powdery mildew fungus (Erysiphegraminis f. sp. hordei). The results presented support the followingconclusions. (i) At 48 hr after inoculation, the pH 5 insolubleRNase undergoes significant changes in its catalytic properties.This is evident from the finding that under limit digestionconditions, the enzyme from inoculated leaves hydrolyzes chloroplastpolysomal mRNA and produces far greater quantities of chloroplastmonosomes than does the corresponding enzyme from healthy leaves.(ii) The acid soluble oligonucleotide fragments produced bythe soluble RNase from healthy and inoculated leaves (at 48hr after inoculation) in the RNA of isolated ribosomes are quantitativelysignificantly different. This suggests a change in the propertiesof the soluble RNase during the initial stages of host-parasiteinteractions. (iii) As early as 24 hr after inoculation, thereis a dramatic change in the distribution of the pH 5 insolubleand soluble RNase cleavage sites in the RNA of ribosomes indicatinga readily detectable conformational change in the ribonucleoproteinparticles. (iv) These changes in the RNases and ribosomes areonly detectable in the susceptible cultivars of barley and notin a cultivar which is genetically resistant to race 3 of thepowdery mildew fungus. (Received January 31, 1980; )  相似文献   

9.
L-Tyrosine carboxy-lyase (E.C. 4. 1. 1. 25) was isolated fromroots of germinating barley (Hordeum vulgare). The enzyme requirespyridoxal phosphate for maximum activity. The optimum pH foractivity is about 7.0. The enzyme is inhibited by p-chloromercuribenzoateand hydroxylamine at 10–3 M. Enzyme activity is foundin extracts from young roots, especially from those in earlystages of development, but not in extracts from shoots of thesame plant. Localization and changes in the amounts of L-tyrosinecarboxy-lyase and aromatic amines in developing barley seedlingswere measured. Participation of carboxy-lyase in the formationof aromatic amines in barley roots is suggested. (Received July 17, 1970; )  相似文献   

10.
Some properties of sucrose-P synthetases obtained from various plant tissues, including sweet potato roots, potato tubers and leaves of barley, rape and ladino clover were studied. The specific enzyme activity of the sucrose-P synthetase from sweet potato roots was much lower than that of the sucrose synthetase of the other tissues. The enzyme activity decreased gradually as the roots developed. The optimum pH did not differ between enzyme preparations from sweet potato roots and barley leaves. Manganese chloride exhibited a marked stimulative effect on the sucrose-P synthetase from sweet potato roots and potato tubers, whereas it was inhibited the barley leaf enzyme.

Kinetic studies of sucrose-P synthetase showed that the behavior of the enzyme to the substrates did not differ in the enzyme sources examined. The substrate saturation curve of the enzyme with respect to fructose-6-P was sigmodal in shape, giving a straight line with a slope of 1.35~1.5 (n value) in a plot of the data using the empirical Hill equation. On the other hand, enzymes from all the various tissues exhibited a hyperbolic substrate saturation curve for UDP-glucose, obeying the ordinary Michaelis-Menten type reaction. Manganese chloride had no effect on the Km for UDP-glucose, the S0.5 for fructose-6-P and the n value of the enzyme from potato tuber tissues.  相似文献   

11.
The major ribonuclease H from K562 human erythroleukemia cells has been purified more than 4,000-fold. This RNase H, now termed RNase H1, is an endoribonuclease whose products contain 5'-phosphoryl and 3'-hydroxyl termini. The enzyme has a native molecular weight of 89,000 based on its sedimentation and diffusion coefficients. Human RNase H1 has an absolute requirement for a divalent cation. Maximal activity is obtained with either 10 mM Mg2+, 5 mM Co2+, or 0.5 mM Mn2+. The pH optimum is between 8.0 and 8.5 in the presence of 10 mM Mg2+. The isoelectric point is 6.4. RNase H1 lacks double-stranded and single-stranded RNase and DNase activities, and it will not hydrolyze the DNA moiety of an RNA.DNA heteroduplex. Unlike the Escherichia coli enzyme, which requires a heteroduplex that contains at least four consecutive ribonucleotides for activity, human RNase H1 can hydrolyze a DNA.RNA.DNA/DNA heteroduplex that contains a single ribonucleotide. Cleavage occurs at the 5' phosphodiester of this residue. This substrate specificity suggests that human RNase H1 could play a role in ribonucleotide excision from genomic DNA during replication.  相似文献   

12.
王宏英  徐梅  杨宇  张宏杰  李娜  刘剑  薛雁  薛百忠 《蛇志》2011,23(3):229-231,234
目的对重组定点突变巴曲酶的酶学性质进行研究,为开发成临床用药奠定基础。方法测定不同的温度、pH缓冲液和金属离子等条件对重组定点突变巴曲酶活性的影响。结果重组定点突变巴曲酶的最适pH值在6.5~7.5之间。该酶在50℃以下活力保持90%以上,但当温度超过60℃时,该酶已完全失活。Ca^2+和Na^+离子对酶的稳定性无明显影响,而Mg^2+、K^+、Mn^2+离子则表现为激活作用,Zn^2、+Cu^2+、Fe^2+、Co^+离子则表现为明显的抑制作用。结论重组定点突变巴曲酶在中性条件下比较稳定,它不耐高温,金属离子对其活性有一定的影响。  相似文献   

13.
RNase M, an enzyme previously purified to homogeneity from Escherichia coli, was suggested to be the RNase responsible for mRNA degradation in this bacterium. Although related to the endoribonuclease, RNase I, its distinct properties led to the conclusion that RNase M was a second, low molecular mass, broad specificity endoribonuclease present in E. coli. However, based on sequence analysis, southern hybridization, and enzyme activity, we show that RNase M is, in fact, a multiply altered form of RNase I. In addition to three amino acid substitutions that confer the properties of RNase M on the mutated RNase I, the protein is synthesized from an rna gene that contains a UGA nonsense codon at position 5, apparently as a result of a low level of readthrough. We also suggest that RNase M is just one of several previously described endoribonuclease activities that are actually manifestations of RNase I.  相似文献   

14.
Human platelets contain an RNase which has a pH optimum at 5.0. It hydrolyzes the secondary phosphate esters of uridine 3′-phosphates. It slowly converts uridine 2′:3′-and cytidine 2′:3′-cyclic phosphates to their corresponding nucleoside 3′-phosphates. Poly (A), poly (G) and poly (C) are not only refractory to the action of this enzyme, but also inhibit its action on poly (U). It differs from human granulocyte RNase, human serum RNase and bovine pancreatic RNase. Because of its unique property, this enzyme could serve as a biochemical marker in disorders involving the platelet destruction.  相似文献   

15.
RNase has been isolated from the homogenate of the Aspergillus clavatus mycelium by gel filtration through Sephadex G-75, chromatography on CM-cellulose and DEAE-cellulose. By gel filtration and electrophoresis in polyacrylamide gel the preparation has been shown to be homogeneous. The enzyme is acid protein with the isoelectric point at pH 4.4 and molecular weight of 27,000. RNase has pH optimum at 6.0--6.2 and temperature optimum 60 degrees for RNA action. The enzyme splits RNA completely in the absence of metal ions. Ions Zn2+, Cu+2, Ag+1 and Ni+2 at a concentration of 10(-4) M are strong inhibitors of RNase activity.  相似文献   

16.
A previously unreported endoRNase present in the spheroplast fraction of Escherichia coli degraded homoribopolymers and small RNA oligonucleotides but not polymer RNA. Like the periplasmic endoRNase, RNase I, the enzyme cleaved the phosphodiester bond between any nucleotides; however, RNase I degraded polymer RNA as fast as homopolymers or oligomers. Both enzymes migrated as 27-kDa polypeptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and could not be separated by various chromatographic procedures. In rna insertion mutants, both enzymes were completely missing; the spheroplast enzyme is called RNase I*, since it must be a form of RNase I. The two forms could be distinguished by physical treatments. RNase I could be activated by Zn2+, while RNase I* was inactive in the presence of Zn2+. RNase I was inactivated very slowly at 100 degrees C over a wide pH range, while RNase I* was inactivated slowly by heat at pH 4.0 but much more rapidly as the pH was increased to 8.0. In the presence of a thiol-binding agent, the inactivation at the higher pH values was much slower. These results suggest that RNase I*, but not RNase I, has free sulfhydryl groups. RNase I* activity in the cell against a common substrate was estimated to be several times that of RNase I. All four 2',3'-phosphomonoribonucleotides were identified in the soluble pools of growing cells. Such degradative products must arise from RNase I* activity. The activity would be suited for the terminal step in mRNA degradation, the elimination of the final oligonucleotide fragments, without jeopardizing the cell RNA. An enzyme with very similar specificity was found in Saccharomyces cerevisiae, suggesting that the activity may be widespread in nature.  相似文献   

17.
NADH-nitrate reductase (EC 1.6.6.1) was purified 800-fold from roots of two-row barley ( Hordeum vulgare L. cv. Daisen-gold) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on TSK-gel (G3000SW). The specific activity of the purified enzyme was 6.2 μmol nitrite produced (mg protein)−1 min−1 at 30°C.
Besides the reduction of nitrate by NADH, the root enzyme, like leaf nitrate reductase, also catalyzed the partial activities NADH-cytochrome c reductase, NADH-ferricyanide reductase, reduced methyl viologen nitrate reductase and FMNH2-nitrate reductase. Its molecular weight was estimated to be about 200 kDa, which is somewhat smaller than that for the leaf enzyme. A comparison of root and leaf nitrate reductases shows physiologically similar or identical properties with respect to pH optimum, requirements of electron donor, acceptor, and FAD, apparent Km for nitrate, NADH and FAD, pH tolerance, thermal stability and response to inorganic orthophosphate. Phosphate activated root nitrate reductase at high concentration of nitrate, but was inhibitory at low concentrations, resulting in increases in apparent Km for nitrate as well as Vmax whereas it did not alter the Km for NADH.  相似文献   

18.
A new sequence-specific RNase was isolated from human colon carcinoma T84 cells. The enzyme was purified to electrophoretical homogeneity by pH precipitation, HiTrapSP and Superdex 200 FPLC. The molecular weight of the new enzyme, which we have named RNase T84, is 19 kDa. RNase T84 is an endonuclease which generates 5'-phosphate-terminated products. The new RNase selectively cleaved the phosphodiester bonds at AU or GU steps at the 3' side of A or G and the 5' side of U. 5'AU3' or 5'GU3' is the minimal sequence required for T84 RNase activity, but the rate of cleavage depends on the sequence and/or structure context. Synthetic ribohomopolymers such as poly(A), poly(G), poly(U) and poly(C) were very poorly hydrolysed by T84 enzyme. In contrast, poly(I) and heteroribopolymers poly(A,U) and poly(A,G,U) were good substrates for the new RNase. The activity towards poly(I) was stronger in two colon carcinoma cell lines than in three other epithelial cell lines. Our results show that RNase T84 is a new sequence-specific enzyme whose gene is abundantly expressed in human colon carcinoma cell lines.  相似文献   

19.
Juma  N. G.  Tabatabai  M. A. 《Plant and Soil》1988,107(1):39-47
Studies with sterile root materials showed that the optimum pH values of phosphatase activity in three varieties of each of corn (Zea mays L.) and soybean (Glycine max. L.) were 4 and 5, respectively. The activity on either side of the optimum pH fell sharply, and there was no activity at pH 9. Thus, these roots contain acid but no alkaline phosphatase activity. Acid phosphatase activity was not uniformly distributed in roots and root hairs. Studies with 20 metals showed that their effectiveness in inhibiting acid phosphatase activity of roots varied with the type of plant used. When the metals were compared at 250 μM (1.25 μmole. 5 mg−1 of homogenized roots), the inhibition of acid phosphatase of corn and soybean roots showed that Ag(I), Fe(III), Se(IV), V(IV), As(V) and Mo(VI) were the most effective inhibitors of this enzyme in corn roots, with percentage inhibition ≥30%. In addition to these metals, Sn(II), Hg(II), and W(VI) inhibited acid phosphatase in soybean roots by >30%. Other metals and one non-metallic element that inhibited acid phosphatase activity in corn and soybean roots were: Cu(I), Cu(II), Cd(II), Ni(II), Fe(II), Pb(II), Ba(II), Co(II), Mn(II), Zn(II), B(III), As(III), Cr(III), and Al(III); their degrees of effectiveness varied with type of roots used. Generally, the inhibitory effect of the metals was much less when their concentration was decreased by 10-fold. In addition to the effect of these elements, phosphate ion inhibited acid phosphatase activity of corn and soybean roots. Related anions such as NO 2 , NO 3 , Cl, and SO 4 2− were not inhibitory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号