首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Phytochemistry》1986,25(12):2765-2768
Incorporation of [14C]sucrose into difructosyl glucose (F2G), trifructosyl glucose (F3G) and tetrafructosyl glucose (F4G) in the presence of various nucleoside triphosphates revealed that formation of F4G and F3G is retarded in the presence of ATP, and formation of F3G and F2G is significantly enhanced in the presence of CTP, whereas UTP has no effect on the synthesis of these oligosaccharides. Different fructosyl transferases seem to be responsible for the different fructosylation steps and self transfer seems to be the major pathway for fructosan synthesis. Utilization of added glucose, which is formed by sucrose sucrose fructosyl transferase action in vivo, is completely inhibited in acetate buffer whereas in phosphate, citrate and citrate-phosphate buffers glucose is actively utilized. In the presence of fluoride ions both glucose utilization and its conversion to CO2 is inhibited by ca 50%. CO2 production from [14C]glucose is completely inhibited in acetate ions. No evidence for the incorporation of 14C from [14C]glucose into [14C]sucrose is observed. The ratio of bound fructose to bound glucose is the same in the entire length of the root indicating that there is no preferential zone for fructosan synthesis.  相似文献   

2.
Pathway of Phloem unloading of sucrose in corn roots   总被引:12,自引:8,他引:12       下载免费PDF全文
The pathway of phloem unloading and the metabolism of translocated sucrose were determined in corn (Zea mays) seedling roots. Several lines of evidence show that exogenous sucrose, unlike translocated sucrose, is hydrolyzed in the apoplast prior to uptake into the root cortical cells. These include (a) presence of cell wall invertase activity which represents 20% of the total tissue activity; (b) similarity in uptake and metabolism of [14C]sucrose and [14C]hexoses; and (c) randomization of 14C within the hexose moieties of intracellular sucrose following accumulation of [14C] (fructosyl)sucrose. Conversely, translocated sucrose does not undergo apoplastic hydrolysis during unloading. Asymmetrically labeled sucrose ([14C](fructose)sucrose), translocated from the germinating kernels to the root, remained intact indicating a symplastic pathway for unloading. In addition, isolated root protoplasts and vacuoles were used to demonstrate that soluble invertase activity (Vmax = 29 micromoles per milligram protein per hour, Km = 4 millimolar) was located mainly in the vacuole, suggesting that translocated sucrose entered via the symplasm and was hydrolyzed at the vacuole prior to metabolism.  相似文献   

3.
Chemical analysis of leaf base tissue of Dactylis glomerate failed to detect any low MW oligosaccharide intermediates during fructosan synthesis. Extracts of tissue harvested at various times after the incorporation of 14CO2 showed a decline in radioactivity in sucrose and an equivalent rise in high MW fructosan with no significant accumulation of radioactivity in oligosaccharides. No evidence was obtained for the existence of nucleotide fructose in the tissue, indicating that fructosan synthesis occurs by direct transfer of fructosyl residues from sucrose to the polymer.  相似文献   

4.
The possible role of fructosyl transferase in the biosynthesis of fructosans in Agave americana was investigated. This enzyme was extracted from A. americana stem and purified 17.5-fold by salt fractionation and DEAE-cellulose chromatography. The optimum conditions for the enzyme were pH 6. 1, temperature 37°, substrate concentration 20% and Km 3.6 × 10?1 M; Ag+, Pb 2+, Hg2+, Al3+, Sn2+, CN? acted as inhibitors and Ca2+, Mg2+, Co2+ and Li+ actemd as activators. Only sugars of the type F ~ R (R-aidose), e.g. sucrose and raffinose acted as substrates for the enzyme. The donor acceptor specificity of the enzyme was studied extensively. Sugars sucrose. None of the intermediates of fructosan biosynthesis from sucrpse acted as fructose donors. The possible acceptors from sucrose and raffinose. The enzyme was capable of building up oligosaccharides up to FIOG from sucrose. None of the intermediates of fructosan biosynthesis from sucrose acted as fructose donors. The possible mechanism of fructosan biosynthesis from sucrose is discussed.  相似文献   

5.
A.K. Gupta  I.S. Bhatia 《Phytochemistry》1980,19(12):2557-2563
Low MW glucofructosans have been detected in the medium of Fusarium oxysporum. A 53-fold purification of fructosyl transferase has been achieved by ethanol precipitation, DEAE-cellulose and Sephadex G-100 column chromatography. Maximum fructosyl transferase activity coincided with maximum glucofructosan concentration in the medium. Invertase showed greatest activity in the later stages of growth when glucofructosans were absent. Fructosyl transferase and invertase have been separated by DEAE-cellulose column chromatography. On the basis of kinetic studies and effect of nucleotides on fructosyl transferase in the presence and absence of MgCl2, a two site active centre linked through a nucleotide bridge is proposed. Fructosyl transferase and invertase are highly phosphorylated.  相似文献   

6.
Levels of soluble and bound invertases and amylases were studied in relation to the changes in the free sugars and the accumulation of starch in the developing sorghum [Sorghum bicolor (L.) Moench, cv. spv. 351] caryopsis and its associated bractspedicel. Besides sucrose, glucose and fructose as the principal sugars, small amounts of sugars of the raffinose series were detected in the developing caryopsis. Through out the period of caryopsis development, the amount of reducing sugars was higher than that of sucrose. With the advancement in the development of the caryopsis, the contents and levels of sucrose rose with a concomitant fall in the activity of soluble acid (pH 4.8) invertase (EC 3.2.1.26) in the endosperm. In the pericarp-aleurone layer, the activity of soluble acid invertase predominated over soluble neutral (pH 7.5) invertase (EC 3.2.1.27). The activity of bound acid invertase declined with the ageing of the caryopsis. In bracts-pedicel, the activity of bound invertase and the levels of reducing sugars peaked around 18 days post anthesis. In these organs, the level of starch gradually decreased concomitantly with an increase in its level in the developing caryopsis. Amylases (EC 3.2.1.1 and 3.2.1.2) are distributed in the endosperm as well as in the pericarp-aleurone layer. On culturing detached ears in [U-14C]-sucrose solution for 6 h in the dark at 25°C, 80–90% of the 14C of extracted major sugars (i.e. sucrose + glucose + fructose) of the caryopsis appeared in sucrose alone. In comparison with the effects of glucose or fructose, transport into the caryopsis of 14C from [U-14C]-sucrose supplied to detached ears was promoted by the addition to the radiolabelled sucrose solution of 1% unlabelled sucrose. Addition to the [U-14C]-sucrose solution fed to the detached ears of 20 mM NaN3 or HgCl2 or galactose, lowered the amount of 14C in the free sugars and starch of the earyopsis.  相似文献   

7.
Evidence for the uptake of sucrose intact into sugarcane internodes   总被引:3,自引:2,他引:1       下载免费PDF全文
Application of [14C]fructosyl sucrose was used to determine whether sucrose cleavage was necessary for sucrose uptake by sugarcane (Saccharum spp.) internode tissue. Although approximately 25% of 14C in the apoplast was present as fructose, indicating some sucrose cleavage, less than 15% of the label was randomized in the sucrose that remained in the tissue after a 30 minute osmoticum rinse. This is insufficient to support cleavage and resynthesis as the sole sucrose transport scheme. The lack of randomization of label between the glucose and fructose moieties of the sucrose molecule was taken as presumptive evidence that sucrose does not have to be cleaved prior to uptake by parenchyma cells in sugarcane internode tissue.  相似文献   

8.
Studies designed to investigate the cellular pathway of phloem unloading were conducted on two tomato lines with either high or low fruit invertase activities. Experiments were based on determination of the degree to which 3H label from [3H]-(fructosyl)-sucrose was randomized between fructose and glucose following exposure of excised fruit to a pulse of labelled sucrose delivered through pedicels. Fruit from the low invertase line harvested 10, 20 and 40 d after anthesis had similar sucrose uptake kinetics to the high invertase line. A positive correlation was found between sucrose synthase activity and sucrose uptake in both low and high invertase lines. In contrast, no correlation was observed between acid or neutral invertase activities and sucrose uptake. Within the putative apoplasmic sap collected from fruit, label in [3H]-(fructosyl)-sucrose was randomized between the free hexoses and sucrose hexose moieties. Label asymmetry was retained in sucrose on arrival within the tissues. Randomization patterns were similar in both the low and high acid invertase lines. These data support the view that sucrose imported into the fruit was not exposed to extracellular hydrolysis. This suggests that movement from the phloem is likely to occur predominantly through a symplastic pathway. About 25% of the sucrose taken up by the fruit was converted into starch regardless of fruit age, suggesting that starch turnover remains constant throughout fruit development and that starch synthesis was dependent on sucrose supply.  相似文献   

9.
Lemoine R  Daie J  Wyse R 《Plant physiology》1988,86(2):575-580
The objectives of this work were to determine the path of phloem unloading and if a sucrose carrier was present in young sugar beet (Beta vulgaris L.) taproots. The approach was to exploit the characteristics of the sucrose analog, 1'-fluorosucrose (F-sucrose) which is a poor substrate for acid invertase but is a substrate for sucrose synthase. Ten millimolar each of [3H]sucrose and [14C]F-sucrose were applied in a 1:1 ratio to an abraded region of an attached leaf for 6 hours. [14C]F-sucrose was translocated and accumulated in the roots at a higher rate than [3H]sucrose. This was due to [3H]sucrose hydrolysis along the translocation path. Presence of [3H]hexose and [14C]F-sucrose in the root apoplast suggested apoplastic sucrose unloading with its subsequent hydrolysis. Labeled F-sucrose uptake by root tissue discs exhibited biphasic kinetics and was inhibited by unlabeled sucrose, indicating that immature roots have the ability for carrier-mediated sucrose transport from the apoplast. Collectively, in vivo and in vitro data indicate that despite sucrose hydrolysis by the wall-bound invertase, sucrose hydrolysis is not entirely essential for sugar accumulation in this tissue.  相似文献   

10.
Analysis of [3H]-(fructosyl)-sucrose translocation in tomato (Lycopersicon esculentum Mill.) indicates that phloem unloading in the fruit occurs, at least in part, to the apoplast followed by extracellular hydrolysis. Apoplastic sucrose, glucose, and fructose concentrations were estimated as 1 to 7, 12 to 49, and 8 to 63 millimolar, respectively in the tomato fruit pericarp tissue. Hexose concentrations were at least four-fold greater than sucrose at all developmental stages. Short-term uptake of [14C]sucrose, -glucose, and -fructose in tomato pericarp disks showed first order kinetics over the physiologically relevant concentration range. The uptake rate of [14C]-(glucosyl)-1′-fluorosucrose was identical to the rate of [14C]sucrose uptake, suggesting sucrose may be taken up directly without prior extracellular hydrolysis. Short-term uptake of all three sugars was insensitive to 10 micromolar carbonyl cyanide m-chlorophenylhydrazone and to 10 micromolar p-chloromercuribenzene sulfonic acid. However, long-term accumulation of glucose was sensitive to carbonyl cyanide m-chlorophenylhydrazone. Together these results suggest that although sucrose is at least partially hydrolyzed in the apoplast, sucrose may enter the metabolic carbohydrate pool directly. In addition, sugar uptake across the plasma membrane does not appear to be energy dependent, suggesting that sugar accumulation in the tomato fruit is driven by subsequent intracellular metabolism and/or active uptake at the tonoplast.  相似文献   

11.
Fructans are the major storage carbohydrate in vegetative tissues of wheat (Triticum aestivum L.). Fructan:fructan fructosyl transferase (FFT) catalyzes fructosyl transfer between fructan molecules to elongate the fructan chain. The objective of this research was to isolate this activity in wheat. Wheat (cv Caldwell) plants grown at 25°C for 3 weeks were transferred to 10°C to induce fructan synthesis. From the leaf blades kept at 10°C for 4 days, fructosyl transferase activity was purified using salt precipitation and a series of chromatographic procedures including size exclusion, anion-exchange, and affinity chromatography. The transferase activity was free from invertase and other fructan-metabolizing activities. Fructosyl transferase had a broad pH spectrum with a peak activity at 6.5. The temperature optimum was 30°C. The activity was specific for fructosyl transfer from β(2→1)-linked 1-kestose or fructan to sucrose and β(2→1) fructosyl transfer to other fructans (1-FFT). Fructosyl transfer from oligofructans to sucrose was most efficient when 1-kestose was used as donor molecule and declined as the degree of polymerization of the donor increased from 3 to 5. 1-FFT catalyzed the in vitro synthesis of inulin tetra- and penta-saccharides from 1-kestose; however, formation of the tetrasaccharide was greatly reduced at high sucrose concentration. 6-Kestose could not act as donor molecule, but could accept a fructosyl moiety from 1-kestose to produce bifurcose and a tetrasaccharide having a β(2→1) fructose attached to the terminal fructose of 6-kestose. The role of this FFT activity in the synthesis of fructan in wheat is discussed.  相似文献   

12.
《Plant science》1987,51(1):21-28
With the onset of the degradation of galactomannan, the galactose and mannose levels increased in the endosperm. The hydrolysis of galactomannan was more or less complete within the first 3 days of germination. In the cotyledons, sucrose was the predominant free sugar during the period of rapid galactomannan hydrolysis and reducing sugars (glucose + fructose) were present in only 10–20% proportion. The level of soluble acid invertase activity was in the order of embryonic axis > endosperm > cotyledons. On the basis of (a) absence of galactose and mannose, (b) high proportion of sucrose, (c) very fast conversion of [14C]glucose and [14C]mannose to [14C]sucrose and (d) very low levels of both soluble and bound invertases in cotyledons, we conclude that there is an active synthesis of sucrose in this tissue where disaccharide seems to be least hydrolysed during the period of galactomannan mobilization. A rapid hydrolysis of galactomannan in endosperm during early germination resulted in the synthesis of some starch, as a temporary reserve, in cotyledons. When the cotyledons entered the phase of first leaf formation, cotyledonary sucrose was hydrolysed giving rise to invert sugars. In the embryonic axis, the increase in the ratio of reducing sugars to sucrose coupled with a higher level of invertase, compared with sucrose-UDP glucosyl transferase, indicated that free sugars from the cotyledons are translocated to the embryonic axis as sucrose.  相似文献   

13.
14.
Sucrose in the free space of translocating maize leaf bundles   总被引:1,自引:1,他引:0       下载免费PDF全文
Following exposure of portions of mature maize (Zea mays L.) leaf strips to 14CO2, xylem exudate from the leaf strips contained [14C]sucrose. Sucrose was the only sugar in the xylem exudate which was obtained from the cut surface of the leaf strips by reducing the external pressure. The sucrose found in the xylem exudate apparently was obtained from the free space of the vascular bundles, its concentration amounting up to 0.25%. When [14C]glucose or [14C]fructose was supplied in the dark to one end of a maize leaf strip, each was taken up by the xylem, and transported to the opposite end. Xylem exudate from such leaf strips contained 14C-labeled sucrose in addition to the 14C-labeled hexose. The results of this study support the view that sucrose is loaded into the companion cell-sieve tube complexes from the apoplast of the vascular bundles in the maize leaf.  相似文献   

15.
1′-Fluorosucrose (FS), a sucrose analog resistant to hydrolysis by invertase, was transported from husk leaves into maize (Zea mays L., Pioneer Hybrid 3320) kernels with the same magnitude and kinetics as sucrose. 14C-Label from [14C]FS and [14C]sucrose in separate experiments was distributed similarly between the pedicel, endosperm, and embryo with time. FS passed through maternal tissue and was absorbed intact into the endosperm where it was metabolized and used in synthesis of sucrose and methanol-chloroform-water insolubles. Accumulation of [14C] sucrose from supplied [14C]glucosyl-FS indicated that the glucose moiety from the breakdown of sucrose (here FS), which normally occurs in the process of starch synthesis in maize endosperm, was available to the pool of substrates for resynthesis of sucrose. Uptake of FS into maize endosperm without hydrolysis suggests that despite the presence of invertase in maternal tissues and the hydrolysis of a large percentage of sucrose unloaded from the phloem, hexoses are not specifically needed for uptake into maize endosperm.  相似文献   

16.
《Phytochemistry》1986,25(5):1073-1076
The amounts of glucose and fructose in a range of harvested tubers of Solanum tuberosum were compared with the labelling of these hexoses by [U-14C]sucrose supplied to the tubers. Hexose content varied. Fructose was more heavily labelled than glucose. There was no correlation between the amounts of glucose and fructose in the tuber and their labelling. The maximum catalytic activities of α-glucan phosphorylase, acid invertase, alkaline invertase, sucrose synthase, α-amylase and β-amylase in tubers stored for 17 weeks at 5° and at 10° were estimated. The values showed no clear correlation with hexose content, but provided sound evidence that starch breakdown was phosphorolytic. It is suggested that the amounts of glucose and fructose in mature harvested tubers may be determined more by the partitioning of the translocated sucrose during the development of the tubers than by the metabolism of the harvested tuber.  相似文献   

17.
J. Edelman  A. D. Hanson 《Planta》1971,101(2):122-132
Summary Free space invertase activities were determined in carrot callus strains CRT1 and CRT2 grown under conditions in which sucrose suppression of chlorophyll synthesis occurred in CRT1 but not CRT2. CRT2 possessed a high free space acid invertase activity (pH optimum 5.0 Km for sucrose 3.1×10-3M) while CRT1 lacked this enzyme. [U-14C] sucrose introduced into the free space of calluses was rapidly inverted by CRT2, but not by CRT1.Despite their different invertase levels, CRT1 and CRT2 showed similar sucrose uptake rates and took up [U-14C-glucosyl] sucrose and [5-T-glucosyl] sucrose from external bathing media essentially without prior inversion.It is concluded that acid invertase in callus tissue relieves the suppression of chlorophyll synthesis caused by sucrose in the free space. The invertase may in some circumstances hydrolyse sucrose before uptake, but is not an essential part of the sucrose uptake mechanism in carrot tissue cultures.  相似文献   

18.
The relative contributions of invertase and sucrose synthase to initial cleavage of phloem-imported sucrose was calculated for sink leaves of soybean (Glycine max L. Merr cv Wye) and sugar beet (Beta vulgaris L. monohybrid). Invertase from yeast hydrolyzed sucrose 4200 times faster than 1′-deoxy-1′-fluorosucrose (FS) while sucrose cleavage by sucrose synthase from developing soybean leaves proceeded only 3.6 times faster than cleavage of FS. [14C]Sucrose and [14C]FS, used as tracers of sucrose, were transported at identical rates to developing leaves through the phloem. The rate of label incorporation into insoluble products varied with leaf age from 3.4 to 8.0 times faster when [14C]sucrose was supplied than when [14C]FS was supplied. The discrimination in metabolism was related to enzymatic discriminations against FS to calculate the relative contributions of invertase and sucrose synthase to sucrose cleavage. In the youngest soybean leaves measured, 4% of final laminar length (FLL), all cleavage was by sucrose synthase. Invertase contribution to sucrose metabolism was 47% by 7.6% FLL, increased to 54% by 11% FLL, then declined to 42% for the remainder of the import phase. In sugar beet sink leaves at 30% FLL invertase contribution to sucrose metabolism was 58%.  相似文献   

19.
The objective of this research was to develop a system in which the direction of fructan metabolism could be controlled. Three-week-old wheat seedlings (Triticum aestivum L. cv Caldwell) grown at 25°C were transferred to cold temperature (10°C) to induce fructan synthesis and then were transferred to continuous darkness at 25°C after defoliation and fructan degradation monitored. The total fructan content increased significantly 1 day after transferring from 25°C to 10°C in both leaf blades and the remainder of the shoot tissue, 90% of which was leaf sheath tissue. Leaf sheaths contained higher concentrations of fructan and greater portions of high molecular weight fructan than did leaf blades. Fructan content in leaf sheaths declined rapidly and was gone completely within 48 hours following transfer to 25°C in darkness. In leaf blades the invertase activity fluctuated during cold treatment. The activity of sucrose:sucrose fructosyl transferase increased markedly during cold treatment, while fructan hydrolase activity decreased slightly. In leaf sheaths, however, the activity of invertase decreased rapidly upon transfer to cold temperature and remained low. Trends in sucrose:sucrose fructosyl transferase and hydrolase activity in sheaths were the same as those of leaf blades. Sheath invertase and hydrolase activity increased when plants were transferred back to darkness at 25°C, while sucrose:sucrose fructosyl transferase activity decreased. These results indicate that changing leaf sheath temperature can be utilized to control the direction of fructan metabolism and thus provide a system in which the synthesis or degradation of fructan can be examined.  相似文献   

20.
Experiments were carried out to investigate whether sucrose synthase (Susy) catalyses a readily reversible reaction in vivo in potato (Solanum tuberosum L.) tubers, Ricinus communis L. cotyledons, and heterotrophic Chenopodium rubrum L. cell-suspension cultures. (i) The contents of sucrose, fructose, UDP and UDP-glucose were measured and the mass-action ratio compared with the theoretical equilibrium constant. In all three tissues the values were similar. (ii) Evidence for rapid turnover of label in the sucrose pool was obtained in pulse-chase experiments with potato discs and with intact tubers attached to the plant. The unidirectional rates of sucrose synthesis and degradation were considerably higher than the net flux through the sucrose pool in the tubers. (iii) Labelling of the glucosyl and fructosyl moieties of sucrose from [14C]glucose in the presence of unlabelled fructose provided evidence that Susy contributes to the movement of label into sucrose. Methods for estimating the contribution of sucrose-phosphate synthase and Susy are presented and it is shown that their relative contribution varies. For example, the contribution of Susy is high in developing tubers and is negligible in harvested tubers which contain low Susy activity. (iv) The absolute values of the forward (v+1) and backward (v?1) reaction direction of Susy are calculated from the kinetic labelling data. The estimated values of v+1 and v?1 are comparable, and much higher than the net flux through the sucrose pool. (v) The estimated concentrations of the substrates and products of Susy in tubers are comparable to the published K m values for potato-tuber Susy. (vi) It is concluded that Susy catalyses a readily reversible reaction in vivo and the relevance of this conclusion is discussed with respect to the regulation of sucrose breakdown and the role of Susy in phloem unloading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号