首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mayaca is an aquatic monocot of the monogeneric family Mayacaceae. The flavonol glycosides quercetin 3-O-glucoside, quercetin 3-O-rutinoside, and kaempferol 3-O-glucoside, and the flavone luteolin 5-O-glucoside were found in methanolic leaf extracts. The presence of flavonol and flavone O-glycosides sets the Mayacaceae apart from the Commelinaceae, which accumulates predominantly flavone C-glycosides.  相似文献   

2.
More than 50 collections of 12 species forming the A. ptarmica group have been analysed for their leaf flavonoids. C-Glycosylflavones (iso-orientin and derivatives, vicenins and lucenins) were found to be the main components, whereas flavonol 3-O-glycosides (based on quercetin and kaempferol) and flavone 7-O-glycosides (based on luteolin and diosmetin) were of restricted distribution. Infraspecific variability regarding C-glycosylflavones was observed in most of the taxa investigated. By contrast, flavonol 3-O-glycosides appeared to be stable characters and were sometimes accumulated instead of C-glycosylflavones. In addition to the flavonoids, the geographical distribution patterns and the possible origin of the A. sibirica in Eastern Asia are briefly discussed.  相似文献   

3.
The major flavonoids of Marchantia polymorpha var. polymorpha and aquatica are the 7-O-β-d-glucuronides of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide, luteolin 7,3′-di-O-β-d-glucuronide, and the 7,4′-di-O-β-d-glucuronides of apigenin and luteolin. These are accompanied by minor amounts of apigenin, luteolin, luteolin 3′,4′-di-O-β-d-glucuronide and luteolin 7,3′,4′-tri-O-β-d-glucuronide. All the luteolin di- and triglucuronides except the 3′,4′-di- substituted compound are new natural products.  相似文献   

4.
Two new 5-methyl ether flavone glucosides (7,4′,5′-trihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside and 7,4′-dihydroxy-5-methoxyflavone 7-O-β-D-glucopyranoside) were isolated from the leaves of Thai mangrove Bruguiera gymnorrhiza together with 7,3′,4′,5′-tetrahydroxy-5-methoxyflavone, 7,4′,5′-trihydroxy-5,3′-dimethoxyflavone, luteolin 5-methyl ether 7-O-β-D-glucopyranoside, 7,4′-dihydroxy-5,3′-dimethoxyflavone 7-O-β-D-glucopyranoside, quercetin 3-O-β-D-glucopyranoside, rutin, kaempferol 3-O-rutinoside, myricetin 3-O-rutinoside and an aryl-tetralin lignan rhamnoside. The structure of a lignan rhamnoside was found to be related to racemiside, an isolated compound from Cotoneaster racemiflora, and also discussed. Structure determinations were based on analyses of physical and spectroscopic data including 1D- and 2D-NMR.  相似文献   

5.
Sullivantia species were found to produce quercetin 3-O-glycosides, several of which contain glucuronic acid, as well as pedalitin (6-hydroxy-7-O-methyl luteolin), pedalitin 6-O-glycosides, and small amounts of luteolin. Sullivantia has a unique combination of compounds that distinguishes it from other genera in the Saxifraginae for which flavonoid data are available. The nature of the flavonoid compounds is in accordance with a general trend within the Saxifragaceae of reduction and replacement of flavonols by flavones.  相似文献   

6.
The major flavonoid of Marchantia berteroana is hypolaetin 8-O-β-d-glucuronide. This is accompanied by apigenin and luteolin, isoscutellarein (8-hydroxyapigenin) 8-O-β-d-glucuronide, the 7-O-β-d-glucuronide and -galacturonide of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide and -galacturonide, luteolin 7,3′-di-O-β-d-glucuronide and -galacturonide, luteolin 3′,4′-di-O-β-d-glucuronide and -galacturonide, luteolin 7,4′-di-O-β-d-glucuronide, and hypolaetin 8,4′-di-O-β-d-glucuronide. The isoscutellarein and hypolaetin glucuronides, and the galacturonide flavones are all new natural products.  相似文献   

7.
Documentation of amentoflavone O-glucosides as the predominant flavonoid glycosides in both genera of the Psilotaceae clearly distinguishes this family from all other families of vascular plants. Psilotum and Tmesipteris also possess apigenin C- and O-glycosides as common flavonoid types. Apigenin 7-O-rhamnoglucoside occurs in both genera and the previously undocumented apigenin 7-O-rhamnoglucoside-4′-O-glucoside, although identified only in Tmesipteris, may also be present in Psilotum. The existence of flavone C-glycosides in both genera may provide a phytochemical relationship between the Psilotaceae and some ferns. The phylogenetic significance of these results is discussed.  相似文献   

8.
One new and 5 known flavone C-glycosides were isolated from leaves and stems of Coronilla varia. The new compound was shown to be isoorientin 2″-O-rhamnoside. The known compounds were isovitexin, isoorientin, isovitexin 4′-O-glucoside, isoorientin 4′-O-glucoside, and isoorientin 7-O-glucoside.  相似文献   

9.
Thirty-one accessions of nine species belonging to three subgenera of Ocimum (basil, family Lamiaceae) were surveyed for flavonoid glycosides. Substantial infraspecific differences in flavonoid profiles of the leaves were found only in O. americanum, where var. pilosum accumulated the flavone C-glycoside, vicenin-2, which only occurred in trace amounts in var. americanum and was not detected in cv. Sacred. The major flavonoids in var. americanum and cv. Sacred, and also in all other species investigated for subgenus Ocimum, were flavonol 3-O-glucosides and 3-O-rutinosides. Many species in subgenus Ocimum also produced the more unusual compound, quercetin 3-O-(6″-O-malonyl)glucoside, and small amounts of flavone O-glycosides. The level of flavonol glycosides produced was reduced significantly in glasshouse-grown plants, but levels of flavone glycosides were unaffected. A single species investigated from subgenus Nautochilus, O. lamiifolium, had a different flavonoid glycoside profile, although the major compound was also a flavonol O-glycoside. This was identified as quercetin 3-O-xylosyl(1‴→2″)galactoside, using NMR spectroscopy. The species investigated from subgenus Gymnocimum, O. tenuiflorum (=O. sanctum), was characterised by the accumulation of flavone O-glycosides. These were isolated, and identified as the 7-O-glucuronides of luteolin and apigenin. Luteolin 5-O-glucoside was found in all nine species of Ocimum studied, and is considered to be a key character for the genus.  相似文献   

10.
The flavonoid chemistry of Takakia is described for the first time. T. lepidozioides, thought to be amongst the most primitive of extant liverworts, contains a high level and wide variety of flavone C- and O-glycosides, many of which are unique. New flavonoids include the 8-O-glucuronide and 8-O-xylosylglucoside of takakin (8-hydroxyacacetin), luteolin 6-C-arabinoside-8-C-pentoside, kaempferol 3-O-glucoside-7-O-xyloside and a number of tricetin C-glycosides. The only other known Takakia species, T. ceratophylla, contains the same 4 major constituents but significantly lacks flavonols. The often suggested relationship of Takakia with the order Calobryales is not supported by the available flavonoid data. Biochemical affinities of Takakia with all major liverwort orders are noted and the flavonoid data are interpreted as supporting the concept of Takakia as an isolated branch among the ancestors of modern bryophytes.  相似文献   

11.
Four flavone glycosides isolated from extracts of the leaves of Robinia pseudoacacia (Leguminosae) were characterised by spectroscopic and chemical methods as the 7-O-β-d-glucuronopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranosides of acacetin (5,7-dihydroxy-4′-methoxyflavone), apigenin (5,7,4′-trihydroxyflavone), diosmetin (5,7,3′-trihydroxy-4′-methoxyflavone) and luteolin (5,7,3′,4′-tetrahydroxyflavone). Assignment of glycosidic 1H and 13C resonances in their NMR spectra was facilitated by 2JHC correlations detected using the H2BC (heteronuclear two-bond correlation) pulse sequence. Spectroscopic analysis of two known triglycosides, acacetin 7-O-β-d-glucopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside (previously unrecorded from this species) and acacetin 7-O-β-d-xylopyranosyl-(1 → 2)[α-l-rhamnopyranosyl-(1 → 6)]-β-d-glucopyranoside (‘acacetin trioside’), enabled inconsistencies in the literature relating to these structures to be resolved. Comparison of the flavonoid chemistry of leaves and flowers of R. pseudoacacia using LC-UV and LC-MS showed that flavone 7-O-glycosides, particularly of acacetin, predominated in the former, whereas the latter comprised mainly flavonol 3,7-di-O-glycosides, including several examples new to this species. Tissue dependent differences in flavonoid chemistry were also evident from the glycosylation patterns of the compounds.  相似文献   

12.
The major flavonoids in Riccia crystallina are naringenin and its 7-O-glucoside, apigenin 7-O-glucoside and apigenin 7-O-glucuronide and derivatives. Ricciocarpus natans is a rich source of luteolin 7,3′-di-O-glucuronide and also contains the 7-O-glucuronides of apigenin and luteolin and the 3′-O-glucuronide of luteolin. A parallel between the production of biosynthetically simple flavonoids and reduced morphology is evident among these liverworts.  相似文献   

13.
In the course of a chemotaxonomic survey of New Zealand Podocarpus species, a number of new flavonoid glycosides have been isolated from P. nivalis. These are: luteolin 3′-O-β-D-xyloside, luteolin 7-O-β-D-glucoside-3′-O-β-D-xyloside, dihydroquercetin 7-O-β-D-glucoside, 7-O-methyl-(2R:3R)-dihydrokaempferol 5-O-β-D-glucopyranoside, 7-O-methyl-(2R:3R)-dihydroquercetin 5-O-β-D-glucopyranoside, 7-O-methylkaempferol 5-O-β-D-glucopyranoside and 7-O-methylquercetin 5-O-β-D-glucopyranoside. Diagnostically useful physical techniques for distinguishing substitution patterns in dihydroflavonols are discussed and summarized. Glucosylation of the 5-hydroxyl group in (+)-dihydroflavonols is shown to reverse the sign of rotation at 589 nm.  相似文献   

14.
Populations of Primula auricula L. subsp. auricula from Austrian Alps were studied for flavonoid composition of both farinose exudates and tissue of leaves. The leaf exudate yielded Primula-type flavones, such as unsubstituted flavone and its derivatives, while tissue flavonoids largely consisted of flavonol 3-O-glycosides, based upon kaempferol (3, 4) and isorhamnetin (57). Kaempferol 3-O-(2″-O-β-xylopyranosyl-[6″-O-β-xylopyranosyl]-β-glucopyranoside) (3) and isorhamnetin 3-O-(2″-O-β-xylopyranosyl-[6″-O-β-xylopyranosyl]-β-glucopyranoside) (6) are newly reported as natural compounds. Remarkably, two Primula type flavones were also detected in tissues, namely 3′-hydroxyflavone 3′-O-β-glucoside (1) and 3′,4′-dihydroxyflavone 4′-O-β-glucoside (2), of which (1) is reported here for the first time as natural product. All structures were unambiguously identified by NMR and MS data. Earlier reports on the occurrence of 7,2′-dihydroxyflavone 7-O-glucoside (macrophylloside) in this species could not be confirmed. This structure was now shown to correspond to 3′,4′-dihydroxyflavone 4′-O-glucoside (2) by comparison of NMR data. Observed exudate variations might be specific for geographically separated populations. The structural diversification between tissue and exudate flavonoids is assumed to be indicative for different ecological roles in planta.  相似文献   

15.
A number of new flavonoid glycosides have been isolated from foliage of the New Zealand white pine, Dacrycarpus dacrydioides. These include tricetin 3′,5′-di-O-β-glucopyranoside; the 3′-O-β-xylopyranoside, 7-O-α-rhamnopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3-O-methylmyricetin; the 3′-O-β-xylopyranoside, 7-O-α-rhamnopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3-O-methyl-quercetin, and the 3′-O-β-xylopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3,4′-di-O-methylmyricetin. The accumulation of 3-methoxyflavones and B-ring trioxygenated flavonoids appears to distinguish D. dacrydioides from all other New Zealand members of the classical genus Podocarpus. Support for De Laubenfels' proposed separation of Dacrycarpus from this genus is seen in the present work.  相似文献   

16.
The flavonoids of 2 samples of Conocephalum conicum gametophyte tissue have been studied, one from U.S.A. and the other from Germany. Common to both samples were vicenin-2, lucenin-2, the 7-O-glucuronides of apigenin, chrysoeriol and luteolin and the previously unknown 7-O-glucuronide 4′-O-rhamnosides of apigenin, chrysoeriol and luteolin. Additionally the German sample contained the 7,4′-di-O-glucuronides of apigenin and luteolin and a new compound, apigenin 7-O-diglucuronide 4′-O-glucuronide. The North American sample contained, additionally, luteolin 7,3′-di-O-glucuronide, luteolin 7-O-glucuronide 3′,4′-di-O-rhamnoside (a new triglycoside) and 2 further derivatives of luteolin 7-O-glucuronide. Evidence is presented for the existence of geographic faces of C. conicum and for the qualitative invariability of the flavonoid patterns with changing season or environment.  相似文献   

17.
In a leaf survey of 142 species from 75 genera of the Orchidaceae, flavone C-glycosides (in 53%) and flavonols (in 37 %) were found to be the most common constituents. However, since these compounds are not found uniformly and their distribution shows a strong correlation with plant geography, it is not possible to represent the Orchidaceae by a single flavonoid profile. Thus, flavone C-glycosides are most common in tropical and subtropical species of the Epidendroid and Vandoid tribes (in 63%) and flavonol glycosides are more characteristic of temperate species of the Neottioid tribes (in 78%). By contrast 6-hydroxyflavones (in 6 species), luteolin (in 2 species) and tricin as the 5-glucoside (in 1 species) are all rare. Three new glycosides were characterised: scutellarein 6-methyl ether 7-rutinoside from Oncidium excavatum and O. sphacelatum, pectolinarigenin 7-glucoside from 0. excavatutn and Eria javanica, and luteolin 3′,4′-diglucoside from Listera ovata. The xanthones, mangiferin and isomangiferin were found in Mormolyca ringens, Maxillaria aff. luteo-alba and 5 Polystachya species and a mangiferin sulphate tentatively identified in P. nyanzensis. Other unusual phenolic constituents include 6,7-methylenedioxy- and 6,7-dimethoxycoumarins from Dendrobium densiflorum and D. farmeri, formed by the rearrangement during the extraction process from the corresponding O-glucosyloxycinnamic acids. The origin and relationship of the Orchidaceae to other monocot groups are discussed in the light of the flavonoid evidence.  相似文献   

18.
The major flavonoid glycosides of Sphaerocarpos texanus are luteolin 7-O-glucuronide and 7,4′-di-O-glucuronide. Riella americana and R. affinis both contain apigenin, chrysoeriol and luteolin 7-O-glucuronides but R. americana additionally contains luteolin 3′-O-glucuronide. This finding supports the inclusion of Sphaerocarpaceae and Riellaceae in the order Marchantiales rather than their separation into another order.  相似文献   

19.
A new flavanone glycoside, naringenin-7-O-β-d-glucuronopyranoside, and a new flavonol glycoside, 6-hydroxykaempferol-7-O-β-d-glucuronopyranoside were isolated together with 12 known compounds, 5 flavone glycoside; hispidulin-7-O-β-d-glucuronopyranoside, apigenin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-glucopyranoside, apigenin-7-O-β-d-glucopyranoside, a flavonol; kaempferol, two flavone; apigenin, and luteolin, a flavanone glycoside; eriodictyol-7-O-β-d-glucuronopyranoside, and three phenol glycoside; arbutin, salidroside, and 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside from Centaurea urvillei subsp. urvillei. The structure elucidation of the new compounds was achieved by a combination of one- (1H and 13C) and two-dimensional NMR techniques (G-COSY, G-HMQC, and G-HMBC) and LC-ESI-MS. The isolated compounds were tested for their antiproteasomal activity. The results indicated that kaempferol, a well known and widely distributed flavonoid in the plant kingdom, was the most active antiproteasomal agent, followed by apigenin, eriodictyol-7-O-β-d-glucuronopyranoside, 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside, and salidroside, respectively.  相似文献   

20.
Two luteolin O-glucuronides have been located exclusively in the photosynthetically active mesophyll of primary leaves of rye (Secale cereale). Their structures have been elucidated as luteolin 7-O-[β-d-glucuronosyl (1 → 2)β-d-glucuronide]-4′-O-β-d-glucuronide and luteolin 7-O-[β-d-glucuronosyl (1 → 2)β-d-glucuronide]. The former glycoside is a new natural compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号