首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first described alpha-subunit mutation of yeast mitochondrial F1 has been recently identified as a single Gln173----Leu substitution in a strongly conserved sequence (Falson, P., Maffey, L., Conrath, K., and Boutry, M. (1991) J. Biol. Chem. 266, 287-293). This mutation is shown here to greatly modify the biphasic pattern of ATPase activity as a function of pH: (i) the shoulder observed at acidic pH is significantly increased; (ii) the main peak, at alkaline pH, is markedly lowered; (iii) the optimal pH is shifted from 8.8 to 7.7. The mutation lowers both apparent negative cooperativity and sensitivity to azide inhibition which concomitantly increase when the assay pH decreases. Azide partial inhibition produces apparent negative cooperativity which can be further abolished by bicarbonate. The mutation increases both activation energies determined from biphasic Arrhenius plots. The mutation decreases the inactivation rate by 5'-p-fluorosulfonylbenzoyladenosine and abolishes the protection by nucleotide binding at the adenine-specific regulatory site. On the contrary, it does not modify the reactivity of 5'-p-fluorosulfonylbenzoylguanosine at the less-selective catalytic site. In addition, partial inactivation by 5'-p-fluorosulfonylbenzoyladenosine, as opposed to 5'-p-fluorosulfonylbenzoylguanosine, produces apparent negative cooperativity under conditions where unmodified-enzyme kinetics are noncooperative. The results show that alpha-Gln173 participates in nucleotide interaction at a regulatory site which controls the negative cooperativity of F1-ATPase activity.  相似文献   

2.
S Nadanaciva  J Weber  A E Senior 《Biochemistry》1999,38(24):7670-7677
Beta-Arg-182 in Escherichia coli F1-ATPase (beta-Arg-189 in bovine mitochondrial F1) is a residue which lies close to catalytic site bound nucleotide (Abrahams et al. (1994) Nature 370, 621-628). Here we investigated the role of this residue by characterizing two mutants, betaR182Q and betaR182K. Oxidative phosphorylation and steady-state ATPase activity of purified F1 were severely impaired by both mutations. Catalytic site nucleotide-binding parameters were measured using the fluorescence quench of beta-Trp-331 that occurred upon nucleotide binding to purified F1 from betaR182Q/betaY331W and betaR182K/betaY331W double mutants. It was found that (a) beta-Arg-182 interacts with the gamma-phosphate of MgATP, particularly at catalytic sites 1 and 2, (b) beta-Arg-182 has no functional interaction with the beta-phosphate of MgADP or with the magnesium of the magnesium-nucleotide complex in the catalytic sites, and (c) beta-Arg-182 is directly involved in the stabilization of the catalytic transition state. In these features the role of beta-Arg-182 resembles that of another positively charged residue in the catalytic site, the conserved lysine of the Walker A motif, beta-Lys-155. A further role of beta-Arg-182 is suggested, namely involvement in conformational change at the catalytic site beta-alpha subunit interface that is required for multisite catalysis.  相似文献   

3.
Previously we have shown that beef heart mitochondrial F1 contains a total of six adenine nucleotide binding sites. Three "catalytic" sites exchange bound ligand rapidly during hydrolysis of MgATP, whereas three "noncatalytic" sites do not. The noncatalytic sites behave asymmetrically in that a single site releases bound ligand upon precipitation of F1 with ammonium sulfate. In the present study, we find this same site to be the only noncatalytic site that undergoes rapid exchange of bound ligand when F1 is incubated in the presence of EDTA at pH 8.0. Following 1000 catalytic turnovers/F1, the site retains the unique capacity for EDTA-induced exchange, indicating that the asymmetric determinants are permanent and that the three noncatalytic sites on soluble F1 do not pass through equivalent states during catalysis. Measurements of the rate of ligand binding at the unique noncatalytic site show that uncomplexed nucleotide binds preferentially. At pH 7.5, in the presence of Mg2+, the rate constant for ADP binding is 9 X 10(3) M-1 s-1 and for dissociation is 4 X 10(-4) s-1 to give a Kd = 50 nM. The rate of dissociation is 10 times faster in the presence of EDTA or during MgATP hydrolysis, and it increases rapidly at pH below 7. EDTA-induced exchange is inhibited by Mg2+, Mn2+, Co2+, and Zn2+ but not by Ca2+ and is unaffected by dicyclohexylcarbodiimide modification. The unique noncatalytic site binds 2-azido-ADP. Photolysis results in the labeling of the beta subunit. Photolabeling of a single high-affinity catalytic site under conditions for uni-site catalysis also results in the labeling of beta, but a different pattern of labeled peptides is obtained in proteolytic digests. The results demonstrate the presence of two different nucleotide binding domains on the beta subunit of mitochondrial F1.  相似文献   

4.
Modification of Tyr-345 at a catalytic site in a single beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) by 5'-p-fluorosulfonylbenzoylinosine did not affect subsequent labeling of noncatalytic sites at Tyr-368 and His-427 in three copies of the beta subunit by 5'-p-fluorosulfonylbenzoyladenosine (FSBA). These results clearly show that the beta subunit contains at least parts of the catalytic and noncatalytic nucleotide binding sites. Inactivation of MF1 by 96% with FSBA was accompanied by a decrease in the endogenous ADP content from 1.86 to 0.10 mol per mol of MF1. Decrease in the endogenous ADP content during the inactivation of the enzyme with FSBA paralleled loss in activity in a manner which suggests that the reaction of FSBA with an open noncatalytic site promoted release of ADP from another noncatalytic site until the third site reacted with FSBA. Two pKa values of about 5.9 and 7.6 were observed on the acid side of the pH optimum in the pH-rate profile for ATP hydrolysis catalyzed by MF1 in neutral acid buffers. In contrast, a single pKa of 5.9 was present in the pH-rate profile for ITP hydrolysis catalyzed by the enzyme in the same buffers. The augmented rate observed for ATP hydrolysis at pH 8.0, over that observed at pH 6.5, was lost as the enzyme was inactivated by FSBA in a manner suggesting that modulation is lost as the third noncatalytic site is modified. This suggests that ATP hydrolysis by MF1 is modulated in a pH-dependent manner by ATP binding to an open noncatalytic site. Two other modulations associated with binding of adenine nucleotides to noncatalytic sites, ADP-induced hysteretic inhibition and apparent negative cooperativity reflected by the Hill coefficient for the hydrolysis of 50-3000 microM ATP at pH 8.0, also disappeared as the third noncatalytic site reacted with FSBA.  相似文献   

5.
J G Wise  B J Hicke  P D Boyer 《FEBS letters》1987,223(2):395-401
Under appropriate conditions tight, noncovalent binding of 2-azido-adenine nucleotides to either catalytic or noncatalytic binding sites on the E. coli F1-ATPase occurs. After removal of unbound ligands, UV-irradiation results primarily in the covalent incorporation of nucleotide moieties into the beta-subunit in both catalytic and noncatalytic site labeling experiments. Minor labeling of the alpha-subunit was also observed. After trypsin digestion and purification of the labeled peptides, microsequencing studies identified two adjacent beta-subunit tryptic peptides labeled by 2-azido-ADP or -ATP. These beta-subunit peptides were labeled on tyrosine-331 (catalytic sites) and tyrosine-354 (noncatalytic sites) in homology with the labeling patterns of the mitochondrial and chloroplast enzymes.  相似文献   

6.
Weber J  Senior AE 《Biochemistry》2000,39(18):5287-5294
Catalytic and noncatalytic nucleotide sites of the F(1) sector of ATP synthase were characterized by tryptophan fluorescence techniques. Seven Trp residues inserted in varied microenvironments in the catalytic sites, and one in the noncatalytic sites, were studied in mutant F(1) enzymes which were otherwise devoid of Trp. Parameters measured were fluorescence lifetimes and dynamic and static quenching by acrylamide in the absence or presence of nucleotide. The results indicated that the solution structures of the mutant enzymes were consistent with reported crystal structures. In enzyme with three empty noncatalytic sites, all sites were relatively inaccessible to acrylamide, indicating a closed conformation. In contrast, when the three catalytic sites were empty, they were relatively and equally accessible to acrylamide, indicating an open conformation. This was the case in the presence or absence of Mg(2+). Residue beta-Trp-331 has been extensively used previously to determine nucleotide binding parameters in F(1). Results here showed that in betaY331W mutant F(1), each of the three beta-Trp-331 residues has an unusually long fluorescence lifetime, confirming that each contributes equally to the overall fluorescence signal.  相似文献   

7.
In order to get insight into the origin of apparent negative cooperativity observed for F(1)-ATPase, we compared ATPase activity and ATPMg binding of mutant subcomplexes of thermophilic F(1)-ATPase, alpha((W463F)3)beta((Y341W)3)gamma and alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma. For alpha((W463F)3)beta((Y341W)3)gamma, apparent K(m)'s of ATPase kinetics (4.0 and 233 microM) did not agree with apparent K(m)'s deduced from fluorescence quenching of the introduced tryptophan residue (on the order of nM, 0.016 and 13 microM). On the other hand, in case of alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma, which lacks noncatalytic nucleotide binding sites, the apparent K(m) of ATPase activity (10 microM) roughly agreed with the highest K(m) of fluorescence measurements (27 microM). The results indicate that in case of alpha((W463F)3)beta((Y341W)3)gamma, the activating effect of ATP binding to noncatalytic sites dominates overall ATPase kinetics and the highest apparent K(m) of ATPase activity does not represent the ATP binding to a catalytic site. In case of alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma, the K(m) of ATPase activity reflects the ATP binding to a catalytic site due to the lack of noncatalytic sites. The Eadie-Hofstee plot of ATPase reaction by alpha((K175A/T176A/W463F)3)beta((Y341W)3)gamma was rather linear compared with that of alpha((W463F)3)beta((Y341W)3)gamma, if not perfectly straight, indicating that the apparent negative cooperativity observed for wild-type F(1)-ATPase is due to the ATP binding to catalytic sites and noncatalytic sites. Thus, the frequently observed K(m)'s of 100-300 microM and 1-30 microM range for wild-type F(1)-ATPase correspond to ATP binding to a noncatalytic site and catalytic site, respectively.  相似文献   

8.
Because Tyr35beta is located at the convergence of the alpha1beta1, alpha1beta2, and alpha1alpha2 interfaces in deoxyhemoglobin, it can be argued that mutations at this position may result in large changes in the functional properties of hemoglobin. However, only small mutation-induced changes in functional and structural properties are found for the recombinant hemoglobins betaY35F and betaY35A. Oxygen equilibrium-binding studies in solution, which measure the overall oxygen affinity (the p50) and the overall cooperativity (the Hill coefficient) of a hemoglobin solution, show that removing the phenolic hydroxyl group of Tyr35beta results in small decreases in oxygen affinity and cooperativity. In contrast, removing the entire phenolic ring results in a fourfold increase in oxygen affinity and no significant change in cooperativity. The kinetics of carbon monoxide (CO) combination in solution and the oxygen-binding properties of these variants in deoxy crystals, which measure the oxygen affinity and cooperativity of just the T quaternary structure, show that the ligand affinity of the T quaternary structure decreases in betaY35F and increases in betaY35A. The kinetics of CO rebinding following flash photolysis, which provides a measure of the dissociation of the liganded hemoglobin tetramer, indicates that the stability of the liganded hemoglobin tetramer is not altered in betaY35F or betaY35A. X-ray crystal structures of deoxy betaY35F and betaY35A are highly isomorphous with the structure of wild-type deoxyhemoglobin. The betaY35F mutation repositions the carboxyl group of Asp126alpha1 so that it may form a more favorable interaction with the guanidinium group of Arg141alpha2. The betaY35A mutation results in increased mobility of the Arg141alpha side chain, implying that the interactions between Asp126alpha1 and Arg141alpha2 are weakened. Therefore, the changes in the functional properties of these 35beta mutants appear to correlate with subtle structural differences at the C terminus of the alpha-subunit.  相似文献   

9.
Mitochondrial ATPases from rat liver and beef heart were used to study the effects of guanylylimidodiphosphate (GMP-P(NH)P) and adenylylimidodiphosphate (AMP-P(NH)P) on the kinetics of MgATP, MgITP, and MgGTP hydrolysis. AMP-P(NH)P was a noncompetitive inhibitor of hydrolysis of all substrates with the rat liver enzyme, whether activating anions were present or not. Also with the liver enzyme, AMP-P(NH)P caused only MgATP hydrolysis to appear to have positive cooperativity. With the beef heart enzyme, AMP-P(NH)P was a competitive inhibitor of ATPase activity and caused positive cooperativity; it gave noncompetitive patterns with GTP or ITP as substrates. In both enzyme systems, GMP-P(NH)P gave complex inhibition patterns with MgATP as the substrate, but was a competitive inhibitor of MgITP and MgGTP hydrolysis. These results are interpreted as indicating the existence of two types of nucleotide binding sites, with varying degrees of specificity and interaction on the ATPase molecules from both sources. It is postulated that MgATP and AMP-P(NH)P bind to regulatory site while MgATP, MgGTP, Mgitp, and GMP-P(NH)P bind to the catalytic site.  相似文献   

10.
To investigate residues involved in the formation of the noncatalytic nucleotide binding sites of the vacuolar proton-translocating adenosine triphosphatase (V-ATPase), cysteine scanning mutagenesis of the VMA2 gene that encodes the B subunit in yeast was performed. Replacement of the single endogenous cysteine residue at position 188 gave rise to a Cys-less form of the B subunit (Vma2p) which had near wild-type levels of activity and which was used in the construction of 16 single cysteine-containing mutants. The ability of adenine nucleotides to prevent reaction of the introduced cysteine residues with the sulfhydryl reagent 3-(N-maleimidopropionyl)biocytin (biotin-maleimide) was evaluated by Western blot. Biotin-maleimide labeling of the purified V-ATPase from the wild-type and the mutants S152C, L178C, N181C, A184C, and T279C was reduced after reaction with the nucleotide analog 3'-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (BzATP). These results suggest the proximity of these residues to the nucleotide binding site on the B subunit. In addition, we have examined the level of endogenous nucleotide bound to the wild-type V-ATPase and to a mutant (the A subunit mutant R483Q) which is postulated to be altered at the noncatalytic site and which displays a marked nonlinearity in ATP hydrolysis (MacLeod, K. J., Vasilyeva, E., Baleja, J. D., and Forgac, M. (1998) J. Biol. Chem. 273, 150-156). The R483Q mutant contained 2.6 mol of ATP/mol of V-ATPase compared with the wild-type enzyme, which contained 0.8 mol of ATP/mol of V-ATPase. These results suggest that binding of additional ATP to the noncatalytic sites may modulate the catalytic activity of the enzyme.  相似文献   

11.
A novel photoaffinity label for studies with the F1-ATPase has been synthesized and found to be an effective reporter of subunit conformational changes that occur in this enzyme upon multiple nucleotide-binding site occupancy. The new probe, 4-benzoyl(benzoyl)-1-amidofluorescein (BzAF), which possesses structural similarity to purine nucleotides, exhibits bifunctional characteristics that enable it to bind covalently to the exchangeable nucleotide sites on beef heart F1 (via photoactivation of the benzophenone moiety) and, once covalently linked, emit environmentally sensitive fluorescence (via selective excitation of the fluorescein moiety). BzAF binds competitively with ATP in the absence of illumination, with a KI of 50 microM. Under actinic irradiation necessary for generating the covalently reacting diradical triplet state of benzophenone, BzAF behaves as a nucleotide site-directed photoaffinity label of exchangeable (catalytic) sites, and the resulting photoinhibition of ATPase activity displays pseudo first-order rate-saturation kinetics that support formation of a dissociable BzAF.F1 complex (k-1/k1 = 58 microM) prior to covalent binding. The BzAF-induced photoinactivation is protectable with native nucleotide ligand (e.g. MgADP, Kprotect = 0.4 mM). Added corroboration of a catalytic cooperativity mechanism for F1 was obtained by finding a molar stoichiometric ratio [( 3H]BzAF:F1) of 1 required for complete inhibition of ATPase activity. Steady-state fluorescence studies with a unisite-labeled BzAF.F1 complex (a catalytically inactive species on which at least one exchangeable nucleotide-binding site remains unoccupied) display a saturable fluorescence quenching of the bound fluorescein upon titration with MgADP, but no change with MgAMP. These data imply that the filling of more than one of the catalytic binding sites/mol of F1 with nucleotide signals a precatalytic conformational adjustment that is transmitted between catalytic sites and across the beta-alpha-beta domain of the enzyme's subunit structure.  相似文献   

12.
Fluorescence titrations of the alpha(3)(betaG(156)C/Y(345)W)(3)gamma, alpha(3)(betaE(199)V/Y(345)W)(3)gamma, and alpha(3)(betaY(345)W)(3)gamma subcomplexes of TF(1) with nucleotides show that the betaG(156)C substitution substantially lowers the affinity of catalytic sites for ATP and ADP with or without Mg(2+), whereas the betaE(199)V substitution increases the affinity of catalytic sites for nucleotides. Whereas the alpha(3)(betaG(156)C)(3)gamma and alpha(3)(betaE(199)V)(3)gamma subcomplexes hydrolyze 2 mM ATP at 2% and 0.7%, respectively, of the rate exhibited by the wild-type enzyme, the alpha(3)(betaG(156)C/E(199)V)(3)gamma hydrolyzes 2 mM ATP at 9% the rate exhibited by the wild-type enzyme. The alpha(3)(betaG(156)C)(3)gamma, alpha(3)(betaG(156)C/E(199)V)(3)gamma, and alpha(3)(betaG(156)C/E(199)V/Y(345)W)(3)gamma subcomplexes resist entrapment of inhibitory MgADP in a catalytic site during turnover. Product [(3)H]ADP remains tightly bound to a single catalytic site when the wild-type, betaE(199)V, betaY(345)W, and betaE(199)V/Y(345)W subcomplexes hydrolyze substoichiometric [(3)H]ATP, whereas it is not retained by the betaG(156)C and betaG(156)C/Y(345)W subcomplexes. Less firmly bound, product [(3)H]ADP is retained when the betaG(156)C/E(199)V and betaG(156)C/E(199)V/Y(345)W mutants hydrolyze substoichiometric [(3)H]ATP. The Lineweaver-Burk plot obtained with the betaG(156)C mutant is curved downward in a manner indicating that its catalytic sites act independently during ATP hydrolysis. In contrast, the betaG(156)C/E(199)V and betaG(156)C/E(199)V/Y(345)W mutants hydrolyze ATP with linear Lineweaver-Burk plots, indicating cooperative trisite catalysis. It appears that the betaG(156)C substitution destabilizes the closed conformation of a catalytic site hydrolyzing MgATP in a manner that allows release of products in the absence of catalytic site cooperativity. Insertion of the betaE(199)V substitution into the betaG(156)C mutant restores cooperativity by restricting opening of the catalytic site hydrolyzing MgATP for product release until an open catalytic site binds MgATP.  相似文献   

13.
Pre-steady-state kinetics of beef heart mitochondrial ATPase   总被引:1,自引:0,他引:1  
The pre-steady-state kinetics of beef heart mitochondrial ATPase (F1) were examined. F1 was found to exhibit hysteretic behavior when hydrolyzing ATP. The hysteretic property was expressed as an activation process which occurred when the enzyme was mixed with its substrate, MgATP. Many catalytic turnovers were required before the activation was complete. The lag in hydrolysis increased hyperbolically as the concentration of enzyme increased. Passage of F1 through Sephadex G25 eliminated the activation process. Several kinetically distinct possibilities for explaining these data, including multiple nucleotide dissociations, enzyme conformational changes, and regulatory site interactions, are discussed. The enzyme was apparently able to recognize nucleotide in a noncatalytic manner, as evidenced by the fact that F1 preincubated with ADP in the absence of substrate achieved partial activation (smaller lag times) before being introduced to substrate. ADP is also a time-dependent inhibitor, exhibiting a slow hysteretic inhibition in addition to immediate competitive inhibition.  相似文献   

14.
The properties of the nucleotides tightly bound with mitochondrial F1-ATPase were examined. One of three bound nucleotide molecules is localized at the site with Kd approximately 10(-7) M and released with koff approximately 0.1 s-1. The second nucleotide molecule is bound with the enzyme with Kd approximately 10(-8) M and koff for its dissociation is 3 X 10(-4) s-1. The third is never released even in the presence of 1 mM ATP or ADP. The last two nucleotides are believed to be bound at the noncatalytic sites of F1-ATPase. Pyrophosphate promotes liberation of two releasable nucleotide molecules, decreasing the affinity of the enzyme to AD(T)P. From the results obtained it follows that the only suitable criterion for localization of the nucleotide at the F1-ATPase catalytic site is the high rate (koff greater than or equal to 0.1 s-1) of its spontaneous release.  相似文献   

15.
Wang X  Kemp RG 《Biochemistry》2001,40(13):3938-3942
Escherichia coli phosphofructokinase (PFK) has been proposed to have a random, nonrapid equilibrium mechanism that produces nonallosteric ATP inhibition as a result of substrate antagonism. The consequences of such a mechanism have been investigated by employing alternative substrates and mutants of the enzyme that produce a variety of nonallosteric kinetic patterns demonstrating substrate inhibition and sigmoid velocity curves. Mutations of a methionine residue in the sugar phosphate binding site produced apparent cooperativity in the interaction of fructose 6-phosphate. Cooperativity could also be seen with native enzyme using a poorly binding substrate, fructose 1-phosphate. With an alternative nucleotide, 1-carboxymethyl-ATP, coupled with a mutation that introduced a negative charge in the nucleotide binding site, one could observe substrate inhibition by fructose 6-phosphate and apparent cooperativity in the interaction with nucleotide. Furthermore, the use of a phosphoryl donor, gamma-thiol-ATP, which greatly reduced the catalytic rate, apparently facilitated the equilibration of all binding reactions and eliminated ATP inhibition. These unusual kinetic patterns could be interpreted within the random, steady-state model as reflecting changes in the rates of particular binding and catalytic events.  相似文献   

16.
The catalytic characteristics of F1-ATPases from uncD412 and uncD484 mutant strains of Escherichia coli were studied in order to understand how these beta-subunit mutations cause defective catalysis. Both mutant enzymes showed reduced affinity for ATP at the first catalytic site. While uncD412 F1 was similar to normal in other aspects of single site catalysis, uncD484 F1 showed a Keq of bound reactants greatly biased toward bound substrate ATP and an abnormally fast rate of Pi release. Impairment of productive catalytic cooperativity was the major cause of the reduced steady state ("multisite") catalytic rate in both mutant enzymes. Addition of excess ATP to saturate second and/or third catalytic sites did promote ATP hydrolysis and product release at the first catalytic site of uncD412 F1, but the multisite turnover rate was significantly slower than normal. In contrast, with uncD484 F1, addition of excess ATP induced rapid release of ATP from the first catalytic site and so productive catalytic cooperativity was almost completely absent. The results show that both mutations affect properties of the catalytic site and catalytic site cooperativity and further that the relatively more severe uncD484 mutation affects a residue which acts as a determinant of the fate of bound substrate ATP during promotion of catalysis. Taken together with previous studies of uncA mutant F1-ATPases (Wise, J. G., Latchney, L. R., Ferguson, A. M., and Senior, A. E. (1984) Biochemistry 23, 1426-1432) the results indicate that catalytic site cooperativity in F1-ATPases involves concerted beta-alpha-beta intersubunit communication between catalytic sites on the beta-subunits.  相似文献   

17.
Mitochondrial F1 from the yeast Schizosaccharomyces pombe exhibits an intrinsic tryptophan fluorescence sensitive to adenine nucleotides and inorganic phosphate [Divita, G., Di Pietro, A., Deléage, G., Roux, B., & Gautheron, D.C. (1991) Biochemistry 30, 3256-3262]. The present results indicate that the intrinsic fluorescence is differentially modified by nucleotide binding to either catalytic or noncatalytic sites. Guanine or hypoxanthine nucleotides, which selectively bind to the catalytic site, produce a hyperbolic saturation monitored by fluorescence quenching at 332 nm, the maximal emission wavelength. On the contrary, adenine nucleotides, which bind to both catalytic and noncatalytic sites, exhibit a biphasic saturation. High-affinity ATP binding produces a marked quenching as opposed to the lower-affinity one. In contrast, ADP exhibits a sigmoidal saturation, with high-affinity binding producing no quenching but responsible for positive cooperativity of binding to the lower-affinity site. The catalytic-site affinity for GDP is almost 20-fold higher at pH 5.0 as compared to pH 9.0, and the high sensitivity of the method allows detection of the 10-fold lower-affinity GMP binding. In contrast, high-affinity binding of ADP, or AMP, is not pH-dependent. The selective catalytic-site saturation induces a F1 conformational change decreasing the Stern-Volmer constant for acrylamide and the tryptophan fraction accessible to iodide. ATP saturation of both catalytic and noncatalytic sites produces an additional reduction of the accessible fraction to acrylamide.  相似文献   

18.
Beef-heart mitochondrial F1 ATPase can be induced to synthesize ATP from ADP and inorganic phosphate in 30% Me2SO. We have analyzed the adenine nucleotide content of the F1 ATPase during the time-course of ATP synthesis, in the absence of added medium nucleotide, and in the absence and presence of 10 mM inorganic phosphate. The enzyme used in these investigations was either pretreated or not pretreated with ATP to produce F1 with a defined nucleotide content and catalytic or noncatalytic nucleotide-binding site occupancy. We show that the mechanism of ATP synthesis in Me2SO involves (i) an initial rapid loss of bound nucleotide(s), this process being strongly influenced by inorganic phosphate; (ii) a rebinding of lost nucleotide; and (iii) synthesis of ATP from bound ADP and inorganic phosphate.  相似文献   

19.
The photoaffinity analog of ATP, 3'-O-(4-benzoyl) benzoyl ATP (BzATP), was used to covalently modify the catalytic sites on the beef heart mitochondrial F1-ATPase. In the absence of actinic illumination, BzATP was a slow substrate for the enzyme (Vmax = 0.19 mumol min-1 mg-1; kcat/Km = 2.2 X 10(6) M-1s-1) and behaved as a classical competitive inhibitor versus ATP (Ki = 0.85 microM). Under photolytic conditions, BzATP inactivated F1 with pseudo first-order kinetics, and the photoinactivation reaction showed rate saturation suggesting specific, reversible binding of BzATP to F1 prior to covalent bond formation. ATP protected against F1 photoinactivation (Kprotect = 0.3 microM) and partially covalently modified F1 yielded the same Km for ATP as unmodified enzyme. These results strongly suggested that BzATP was bound to catalytic sites on the enzyme. In the absence of photolysis, BzATP saturated two binding sites on the F1 (KD = 1.6 microM), and under photolytic conditions, 1 mol of BzATP was shown to be covalently liganded to the beta subunit of the enzyme coincident with 100% loss in ATPase activity. Previous studies with the mitochondrial F1-ATPase have suggested a mechanism involving catalytic cooperativity during ATP hydrolysis. Our demonstration of a molar stoichiometry of 1 for photoinactivation is in accord with this mechanism. It is suggested that either F1 is unable to hydrolyze covalently bound BzATP, or that subsequent to hydrolysis, the BzADP product can not be released from the catalytic site. It is therefore inferred that F1 hydrolytic activity requires cooperativity between multiple, viable catalytic sites and that covalent modification of a single catalytic site is sufficient for complete enzyme inactivation.  相似文献   

20.
Preincubation of skeletal muscle sarcoplasmic reticulum vesicles in the presence of the calcium chelator, [ethylenebis(oxyethylenenitrilo)tetraacetic acid] (EGTA), irreversibly uncouples calcium transport from ATP hydrolysis. Uncoupling cannot be explained by increased membrane permeability, but is associated with decreased capacity of the Ca2+-ATPase to bind noncatalytic, tightly bound ATP and ADP (Berman, M. C. (1982) Biochim. Biophys. Acta 694, 95-121). The effects of EGTA-induced uncoupling on absorbance and fluorescence properties of the bound ATP analog, 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), have been studied under static and turnover conditions. Binding of 4.5-4.9 nmol of TNP-ATP/mg, as determined by absorbance difference titration, was relatively unaffected in the uncoupled state. TNP-ATP, bound to coupled vesicles during turnover, showed 6-8-fold enhanced fluorescence and a shift in the difference absorbance maximum from 510 to 493 nm, indicating increased hydrophobicity of the noncatalytic site. Turnover-dependent fluorescence enhancement was diminished by 60-70% in the uncoupled state, while the absorbance maximum wavelength shift was abolished. These data, correlating changes in the environment of the noncatalytic or regulatory nucleotide binding site on the Ca2+-ATPase with coupling activity, indicate that uncoupling is an intramolecular process, involving a ligand binding site on the ATPase, and that exclusion of H2O from the site occupied by noncatalytic nucleotides, during at least part of the catalytic cycle, is an event associated with energy transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号