首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The archaeal diversity in salt pan sediment from Mumbai, India, was investigated by 16S rDNA-dependent molecular phylogeny. Small-subunit rRNA (16S rDNA) from salt pan sediment metagenome were amplified by polymerase chain reaction (PCR) using primers specific to the domain archaea. Thirty-two unique phylotypes were obtained by PCR-based RFLP of 16S rRNA genes using endonucleases Hae111 and Msp1, which were most suitable to score the genetic diversity. These phylotypes spanned a wide range within the domain Archaea including both Crenarchaeota and Euryarcheaota. However, none of the retrieved Crenarchaeota sequences could be grouped with previously cultured Crenarchaeota. Of all the Euryarcheaota sequences, three sequences were related to Haloarchaea, two were related to cultured Methanosarcina sp., and the remaining sequences were affiliated with uncultured Methanosarcina sp., Methanogenium sp., and Methanolobus sp. Most of the sequences determined were closely related to the sequences that had been previously obtained from metagenome of a variety of marine environments. The phylogenetic study of a site investigated for the first time revealed the presence of a highly diverse archaeal population and may represent novel sequences and organisms specially adapted to the salt pan sediment of Mumbai. These findings are of fundamental value for understanding the complexity of salt pan ecosystems.  相似文献   

2.
Marine subsurface sediments represent a novel archaeal biosphere with unknown physiology. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of active archaea in a sediment core were characterized by 16S rRNA phylogenetic analysis of clone libraries derived from RNA. In this study, the archaeal diversity above, within, and beneath the sulfate-methane transition zone (SMTZ) in the Pearl River Estuary sediment core was described. The majority of the clones obtained from the metabolically active fraction of the archaeal community were most closely related to miscellaneous crenarchaeotal group and terrestrial miscellaneous euryarchaeotal group. Notably, although the Pearl River Estuary sediment belong to high methane and high organic carbon environment, sequences affiliated with methanotrophic and methanogenic archaea were detected as minor group in 16S rRNA clone libraries. No obvious evidence suggested that these unknown archaeal phylotypes related directly to anaerobic oxidation of methane in SMTZ. This is the first phylogenetic analysis of the metabolically active fraction of the archaeal community in the coastal sediment environments.  相似文献   

3.
The diversity of the methyl‐coenzyme reductase A (mcrA) and 16S rRNA genes was investigated in gas hydrate containing sediment from the Kazan mud volcano, eastern Mediterranean Sea. mcrA was detected only at 15 and 20 cm below seafloor (cmbsf) from a 40‐cm long push core, while based on chemical profiles of methane, sulfate, and sulfide, possible anaerobic oxidation of methane (AOM) depth was inferred at 12–15 cmbsf. The phylogenetic relationships of the obtained mcrA, archaeal and bacterial 16S rRNA genes, showed that all the found sequences were found in both depths and at similar relative abundances. mcrA diversity was low. All sequences were related to the Methanosarcinales, with the most dominant (77.2%) sequences falling in group mcrA‐e. The 16S rRNA‐based archaeal diversity also revealed low diversity and clear dominance (72.8% of all archaeal phylotypes) of the Methanosarcinales and, in particular, ANME‐2c. Bacteria showed higher diversity but 83.2% of the retrieved phylotypes from both sediment layers belonged to the δ‐Proteobacteria. These phylotypes fell in the SEEP‐SRB1 putative AOM group. In addition, the rest of the less abundant phylotypes were related to yet‐uncultivated representatives of the Actinobacteria, Spirochaetales, and candidate divisions OP11 and WS3 from gas hydrate‐bearing habitats. These phylotype patterns indicate that AOM is occurring in the 15 and 20 cmbsf sediment layers.  相似文献   

4.
Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan, were characterized using 16S rRNA gene sequencing and lipid biomarker analysis. Characterization of 16S rRNA gene isolated from these samples suggested a predominance of bacterial phylotypes related to Gammaproteobacteria (57-64%) and Deltaproteobacteria (27-29%). The Epsilonproteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. Significantly different archaeal phylotypes were found in Calyptogena sediment and microbial mats; the former contained only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones, including the anaerobic oxidation of methane archaeal groups ANME-2a and ANME-2c. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggested the presence of sulphate-reducing and sulphur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether lipid analysis indicated the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold-seep environments.  相似文献   

5.
This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the α-subunit of particulate methane monooxygenase ( pmoA ) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum . Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages.  相似文献   

6.
土壤古菌和真菌在温室生态系统是仅次于细菌的微生物,具有类似于细菌的重要生态功能。通过构建古菌16S rRNA和真菌18S rRNA基因克隆文库,分析温室黄瓜近根土壤古菌和真菌群落结构组成,为开发利用温室这一特殊的生态环境中丰富的微生物资源以及理解微生物与植物间的互作提供参考依据。采用研磨-冻融-溶菌酶-蛋白酶K-SDS热处理以及CTAB处理等理化方法,提取和纯化微生物总DNA,构建古菌16S rRNA和真菌18S rRNA基因克隆文库。利用DOTUR软件将古菌和真菌序列按照相似性97%的标准分成若干个可操作分类单元 (OTUs)。土壤古菌克隆文库主要包括泉古菌门和未分类的古菌两大类,并有少部分广域古菌类群,所有泉古菌均属于热变形菌纲,共45个OTUs;真菌克隆文库包括真菌门的大多数亚门真菌,共24个OTUs,未发现担子菌亚门真菌。古菌多样性比较丰富,且发现少量的广域古菌 (甲烷菌),这一情况可能与温室长期高温高湿,高有机质含量,土壤处于缺氧环境有关;土壤真菌的优势种群为子囊菌,占到土壤真菌的80%以上,这可能与绝大多数植物真菌性病害属于土传病害,通过菌丝体、菌核或子囊壳在土壤病残体中越冬有一定的关系。  相似文献   

7.
Li H  Yang SZ  Mu BZ 《Current microbiology》2007,55(5):382-388
The diversity of an archaeal community was analyzed in the water from a continental high-temperature, long-term water-flooded petroleum reservoir in Huabei Oilfield in China. The archaea were characterized by their 16S rRNA genes. An archaeal 16S rDNA clone library was constructed from the DNA isolated from the formation water, and 237 randomly selected positive clones were clustered in 28 phylotypes by sequencing analyses. Phylogenetic analysis of these sequences indicated that the dominant members of the archaeal phylotypes were affiliated with the order Methanomicrobiales. Totally, the archaeal community was composed of methanogens belonging to four orders: Methanobacteriales, Methanococcales, Methanomicrobiales, and Methanosarcinales. Most of the clones clustered with sequences previously described for methanogens, but there was a difference in the relative distribution of sequences detected here as compared to that of previous studies. Some thermophilic methanogens detected had been previously isolated from a number of high-temperature petroleum reservoirs worldwide; thus, they might exhibit adaptations to the environments and be the common habitants of geothermally heated subsurface environments.  相似文献   

8.
Microorganisms are known to play fundamental roles in the biogeochemical cycling of carbon in the coastal environments. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of archaea in a sediment core was reported based on the 16S rRNA and mcrA genes for the first time. Quantitative PCR analysis revealed that archaea were present at 106–107 16S rRNA gene copies/g (wet weight) in the sediment core, and the proportion of mcrA versus 16S rRNA gene copies varied from 11 to 45%. 16S rRNA gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), sulfate-methane transition zone (SMTZ, 32–42 cm), and bottom layer (44–50 cm) sediments. The results indicated that Miscellaneous Crenarchaeotal Group (MCG) was the main component in the sediments. The MCG archaea could be further divided into six subgroups: MCG-A, B, C, D, E, and F. On the other hand, mcrA sequences from methanogens related to the order Methanomicrobiales and ANME-2 methanotrophs were detected in all sediment layers. Taken together, our data revealed a largely unknown archaeal community in which MCG dominated within the Pearl River estuarine sediments, while methanogens and methane-oxidizing archaea putatively involving in methane metabolism, were also found in the community. This is the first important step towards elucidating the biogeochemical roles of these archaea in the Pearl River Estuary.  相似文献   

9.
Archaeal diversity in Lake Ac?göl, a closed-basin, alkaline, hypersaline lake located at the northern edge of western Tourides in southwest Anatolia, was investigated using culture-independent methods. Microbial mat samples were collected from six different points. Archaeal 16S rRNA gene libraries were generated using domain specific oligonucleotide primers, and 16S rRNA gene sequences of clone libraries were analyzed phylogenetically. Denaturing gradient gel electrophoresis of 16S rRNA genes showed a variance in diversity with spatial differences. Archaeal diversity of Ac?göl is dominated by the members of family Halobacteriaceae which requires both high salt concentration and high pH for growth. Sequence analysis of archaeal 16s rRNA genes indicates the presence of the phylotypes affiliated with the genera Halorubrum, Halosimplex, Halorhabdus, Haloterrigena and Natronococcus in the analyzed samples.  相似文献   

10.
Phylogenetic Analysis of Methanogens in the Pig Feces   总被引:2,自引:0,他引:2  
Mao SY  Yang CF  Zhu WY 《Current microbiology》2011,62(5):1386-1389
In order to assess methanogen diversity in feces of pigs, archaeal 16S rRNA gene clone libraries were constructed from feces of the pig. After the amplification by PCR using primers Met86F and Met1340R, equal quantities of PCR products from each of the five pigs were mixed together and used to construct the library. Sequence analysis showed that the 74 clones were divided into ten phylotypes as defined by RFLP analysis. Phylogenetic analysis showed that three phylotypes were most closely affiliated with the genus Methanobrevibacter (46% of clones). The library comprised 55.4% unidentified euryarchaeal clones. Three phylotypes (LMG4, LMG6, LMG8) were not closely related to any known Euryarchaeota sequences. The phylogenetic analysis indicated that the archaea found in the libraries were all clustered into the Euryarchaeota. The data from the phylogenetic tree showed that those sequences belonged to three monophyletic groups. Phylotypes LGM2 and LGM7 grouped within the genus Methanobrevibacter. Phylotypes LGM4, LGM6, LGM8 and LGM9 grouped within the genus Methanosphaera. Other phylotypes grouped together, and formed a distantly related sister group to Aciduliprofundum boonei and species of the Thermoplasmatales including Thermoplasma volcanium and Thermoplasm acidophilum. Our results showed that methanogens belonging to the genus Methanobrevibacter were predominant in pig feces, and that many unique unknown archaea sequences were also found in the library. Nevertheless, whether these unique sequences represent new taxonomic groups and their role in the pig gut need further investigation.  相似文献   

11.
AIMS: To evaluate archaeal diversity in natural and impacted habitats from Rio de Janeiro state, Brazil, a tropical region of South America. METHODS AND RESULTS: 16S rRNA gene was amplified directly by polymerase chain reaction (PCR) from genomic DNA, extracted from Guanabara Bay (GB) water, halomarine sediment (HS), municipal landfill leachate, agricultural soil and wastewater treatment (WT) system. Five archaeal 16S rDNA clone libraries were constructed. A total of 123 clones, within the five libraries analysed, were clustered into 29 operational taxonomic units, related to cultivated (24%) and uncultivated (76%) organisms. Rarefaction analysis showed that the libraries contained different levels of diversity. PCR-denaturing gradient gel electrophoresis (DGGE) of 16S-23S intergenic spacer regions confirmed the presence of a dominant phylotype, revealed by the WT system clone library. CONCLUSIONS: Archaeal communities of impacted environments seem to be confined to specific ecosystems with similar physicochemical properties, while communities from natural environments appear to be widely distributed. The presence of a high number of phylotypes related to uncultivated organisms suggests new archaeal lineages. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports, for the first time, the analysis of archaeal diversity in tropical environments from Brazil, and adds sequences from this region to the developing database of 16S rRNA clone libraries from environmental samples.  相似文献   

12.
Molecular diversity of rumen archaeal populations from bovine rumen fluid incubated with or without condensed tannins was investigated using 16S rRNA gene libraries. The predominant order of rumen archaea in the 16S rRNA gene libraries of the control and condensed tannins treatment was found to belong to a novel group of rumen archaea that is distantly related to the order Thermoplasmatales, with 59.5% (15 phylotypes) and 81.43% (21 phylotypes) of the total clones from the control and treatment clone libraries, respectively. The 16S rRNA gene library of the control was found to have higher proportions of methanogens from the orders Methanomicrobiales (32%) and Methanobacteriales (8.5%) as compared to those found in the condensed tannins treatment clone library in both orders (16.88% and 1.68% respectively). The phylotype distributed in the order Methanosarcinales was only found in the control clone library. The study indicated that condensed tannins could alter the diversity of bovine rumen methanogens.  相似文献   

13.
The bacterial diversity in the forest soil of Kashmir, India was investigated by 16S rDNA-dependent molecular phylogeny. Small subunit rRNA (16S rDNA) from forest soil metagenome were amplified by polymerase chain reaction (PCR) using primers specific to the domain bacteria. 30 unique phylotypes were obtained by PCR based RFLP of 16S rRNA genes using endonucleases Hae 111 and Msp 1, which were most suitable to score the genetic diversity. The use of 16S rRNA analysis allowed identification of several bacterial populations in the soil belonging to the following phyla: Firmicutes (33.3%), Bacteroidetes (13.3%), Proteobacterium (6.6%), Planctomycete (3.3%), and Deferribacteraceae (3.3%) in addition to the others that were not classified, beyond Archaea domain, However, 36.6% of the retrieved bacterial sequences could not be grouped with any phylum/lineage. The large amount of unclassified clone sequence could imply that novel groups of bacteria were present in the forest soil.  相似文献   

14.
We designed and tested a set of specific primers for specific PCR amplification of the biotin carboxylase subunit gene (accC) of the Acetyl CoA carboxylase (ACCase) enzyme. The primer set yielded a PCR product of c. 460 bp that was suitable for denaturing gradient gel electrophoresis (DGGE) fingerprinting followed by direct sequencing of excised DGGE bands and sequence analysis. Optimization of PCR conditions for selective amplification was carried out with pure cultures of different bacteria and archaea, and laboratory enrichments. Next, fingerprinting comparisons were done in several aerobic and anaerobic freshwater planktonic samples. The DGGE fingerprints showed between 2 and 19 bands in the different samples, and the primer set provided specific amplification in both pure cultures and natural samples. Most of the samples had sequences grouped with bacterial accC, hypothetically related to the anaplerotic fixation of inorganic carbon. Some other samples, however, yielded accC gene sequences that clustered with Crenarchaeota and were related to the 3-hydroxypropionate/4-hydroxybutyrate cycle of autotrophic crenarchaeota. Such samples came from oligotrophic high mountain lakes and the hypolimnia of a sulfide-rich lake, where crenarchaeotal populations had been previously reported by 16S rRNA surveys. This study provided a fast tool to look for presence of accC genes in natural environments as potential marker for studies of carbon dioxide assimilation in the dark. After further refinement for better specificity against archaea, the new and novel primers could be very helpful to establish a target for crenarchaeota with implications for our understanding of archaeal carbon biogeochemistry.  相似文献   

15.
Mounting evidence suggests that ammonia-oxidizing archaea (AOA) may play important roles in nitrogen cycling in geothermal environments. In this study, the diversity, distribution and ecological significance of AOA in terrestrial hot springs in Kamchatka (Far East Russia) were explored using amoA genes complemented by analysis of glycerol dialkyl glycerol tetraethers (GDGTs) of archaea. PCR amplification of functional genes (amoA) from AOA and ammonia-oxidizing bacteria (AOB) was performed on microbial mats/streamers and sediments collected from three hot springs (42°C to 87°C and pH 5.5-7.0). No amoA genes of AOB were detected. The amoA genes of AOA formed three distinct phylogenetic clusters with Cluster 3 representing the majority (~59%) of OTUs. Some of the sequences from Cluster 3 were closely related to those from acidic soil environments, which is consistent with the predominance of low pH (<7.0) in these hot springs. Species richness (estimated by Chao1) was more frequently higher at temperatures below 75°C than above it, indicating that AOA may be favored in the moderately high temperature environments. Quantitative PCR of 16S rRNA genes showed that crenarchaeota counted for up to 80% of total archaea. S-LIBSHUFF separated all samples into two phylogenetic groups. The profiles of GDGTs were well separated among the studied springs, suggesting a spatial patterning of archaeal lipid biomarkers. However, this patterning did not correlate significantly with variation in archaeal amoA, suggesting that AOA are not the predominant archaeal group in these springs producing the observed GDGTs.  相似文献   

16.
Molecular diversity of halophilic archaea from Ayakekumu salt lake was investigated by the polymerase chain reaction (PCR) amplification and culture methods. 19 water samples and 15 soil samples were taken from 19 sites within Ayakekumu salt lake in winter and spring. Under aerobic culture conditions, some halophilic microorganisms were isolated by five different media. The 16S rRNA gene sequences of 62 red strains were amplified by using PCR, determined by the DNA sequencer and analyzed through the BLASTn program subsequently. Results revealed that all sequences belonged to six genera grouped within the Halobacteriaceae. Mostly 16S rRNA gene sequences related to the genera Halorubrum (47%) and Natrinema (24%) were detected. Subsequent analysis by using Shannon index indicated that cultured halophilic archaeal diversities are not significantly different between winter and spring samplings in Ayakekumu salt lake. Similarity values of haloarchaeal 16S rRNA gene sequences to known sequences were less than 97%, suggesting the presence of two novel taxa. In addition, taxonomic characteristics of Natrinema altunense and Halobiforma lacisalsi isolated from Ayakekumu salt lake had been described previously. The discovery of the novel species provides new opportunity to further examine the diversity of these halophilic microorganisms in Ayakekumu salt lake.  相似文献   

17.
Guanabara Bay is an eutrophic estuarine system located in a humid tropical region surrounded by the second largest metropolitan area of Brazil. This study explores the contrasting environmental chemistry and microbiological parameters that influence the archaeaplankton diversity in a pollution gradient in Guanabara Bay ecosystem. The environments sampled ranged from completely anoxic waters in a polluted inner channel to the adjacent, relatively pristine, coastal Atlantic Ocean. Partial archaeal 16S rDNA sequences in water samples were retrieved by polymerase chain reaction (PCR) and analyzed using denaturing gradient gel electrophoresis (DGGE), cloning, and sequencing. Sequences were subjected to phylogenetic and diversity analyses. Community structure of the free-living archaeal assemblages was different from that of the particle-attached archaea according to DGGE. Gene libraries revealed that phylotype identification was consistent with environmental setting. Archaeal phylotypes found in polluted anoxic waters and in more pristine waters were closely related to organisms that have previously been found in these environments. However, inner bay archaea were related to organisms found in oil, industrial wastes, and sewage, implying that water pollution controls archaea communities in this system. The detection of a substantial number of uncultured phylotypes suggests that Guanabara Bay harbors a pool of novel archaeaplankton taxa.  相似文献   

18.
Archaea are known to play important roles in carbon cycling in marine sediments. The main compositions of archaeal community in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1 cm-, 3 cm-, 6 cm-, 10 cm-, 12 cm- layer) of the 12 cm sediment core of WP-0 were checked and compared by denaturing gradient gel electrophoresis and 16 S rRNA gene sequencing. It was revealed that all the deep-sea sediment samples checked contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. To further detect groups of archaea possibly relating with C1 metabolism, PCR amplification was carried out using primers targeting methane-oxidizing archaea. Although no methane-oxidizing archaea was detected, a group of novel archaea (named as WPA) was instead identified from all these five WP samples by clone analysis. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. The vertical distributions of WPA, archaea and bacteria along the WP-0 sediment column were determined by quantitative-PCR. It was found that bacteria dominated at all depths, the numbers of bacteria were 10–104 times more than those of archaea. The proportion of archaea versus bacteria had a depth related increasing tendency, it was lowest at the first layer (0.01%), reached highest at the 12 cm- layer (10%). WPA only constituted a small proportion of the archaeal community (0.05% to 5%) of west Pacific Warm Pool sediment.Peng Wang and Xiang Xiao contributed equally to this paper  相似文献   

19.
Xu X W  Wu M  Wu Y H  Zhang H B 《农业工程》2007,27(8):3119-3123
Molecular diversity of halophilic archaea from Ayakekumu salt lake was investigated by the polymerase chain reaction (PCR) amplification and culture methods. 19 water samples and 15 soil samples were taken from 19 sites within Ayakekumu salt lake in winter and spring. Under aerobic culture conditions, some halophilic microorganisms were isolated by five different media. The 16S rRNA gene sequences of 62 red strains were amplified by using PCR, determined by the DNA sequencer and analyzed through the BLASTn program subsequently. Results revealed that all sequences belonged to six genera grouped within the Halobacteriaceae. Mostly 16S rRNA gene sequences related to the genera Halorubrum (47%) and Natrinema (24%) were detected. Subsequent analysis by using Shannon index indicated that cultured halophilic archaeal diversities are not significantly different between winter and spring samplings in Ayakekumu salt lake. Similarity values of haloarchaeal 16S rRNA gene sequences to known sequences were less than 97%, suggesting the presence of two novel taxa. In addition, taxonomic characteristics of Natrinema altunense and Halobiforma lacisalsi isolated from Ayakekumu salt lake had been described previously. The discovery of the novel species provides new opportunity to further examine the diversity of these halophilic microorganisms in Ayakekumu salt lake.  相似文献   

20.
Genetic diversity of archaea in deep-sea hydrothermal vent environments.   总被引:33,自引:0,他引:33  
K Takai  K Horikoshi 《Genetics》1999,152(4):1285-1297
Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号