首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determination of DNA Content of Aquatic Bacteria by Flow Cytometry   总被引:3,自引:2,他引:1       下载免费PDF全文
The distribution of DNA among bacterioplankton and bacterial isolates was determined by flow cytometry of DAPI (4′,6′-diamidino-2-phenylindole)-stained organisms. Conditions were optimized to minimize error from nonspecific staining, AT bias, DNA packing, changes in ionic strength, and differences in cell permeability. The sensitivity was sufficient to characterize the small 1- to 2-Mb-genome organisms in freshwater and seawater, as well as low-DNA cells (“dims”). The dims could be formed from laboratory cultivars; their apparent DNA content was 0.1 Mb and similar to that of many particles in seawater. Preservation with formaldehyde stabilized samples until analysis. Further permeabilization with Triton X-100 facilitated the penetration of stain into stain-resistant lithotrophs. The amount of DNA per cell determined by flow cytometry agreed with mean values obtained from spectrophotometric analyses of cultures. Correction for the DNA AT bias of the stain was made for bacterial isolates with known G+C contents. The number of chromosome copies per cell was determined with pure cultures, which allowed growth rate analyses based on cell cycle theory. The chromosome ratio was empirically related to the rate of growth, and the rate of growth was related to nutrient concentration through specific affinity theory to obtain a probe for nutrient kinetics. The chromosome size of a Marinobacter arcticus isolate was determined to be 3.0 Mb by this method. In a typical seawater sample the distribution of bacterial DNA revealed two major populations based on DNA content that were not necessarily similar to populations determined by using other stains or protocols. A mean value of 2.5 fg of DNA cell−1 was obtained for a typical seawater sample, and 90% of the population contained more than 1.1 fg of DNA cell−1.  相似文献   

2.
The aim of this study was to evaluate genome size and ploidy of the dimorphic pathogenic fungus Paracoccidioides brasiliensis. The cell cycle analysis of 10 P. brasiliensis isolates by flow cytometry (FCM) revealed a genome size ranging from 26.3+/-0.1Mb (26.9+/-0.1fg) to 35.5+/-0.2Mb (36.3+/-0.2fg) per uninucleated yeast cell. The DNA content of conidia from P. brasiliensis ATCC 60855-30.2+/-0.8Mb (30.9+/-0.8fg) -showed no significant differences with the yeast form, possibly excluding the occurrence of ploidy shift during morphogenesis. The ploidy of several P. brasiliensis isolates was assessed by comparing genome sizing by FCM with the previously described average haploid size obtained from electrophoretic karyotyping. The analysis of intra-individual variability of a highly polymorphic P. brasiliensis gene, GP43, indicated that only one allele seems to be present. Overall, the results showed that all analysed isolates presented a haploid, or at least aneuploid, DNA content and no association was detected between genome size/ploidy and the clinical-epidemiological features of the studied isolates. This work provides new knowledge on P. brasiliensis genetics/genomics, important for future research in basic cellular/molecular mechanisms and for the development/design of molecular techniques in this fungus.  相似文献   

3.
Marine bacterioplankton were isolated and grown in batch cultures until their growth became limited by organic carbon (C), nitrogen (N), or phosphorus (P). Samples were taken from the cultures at both the exponential and stationary phases. The elemental composition of individual bacterial cells was analyzed by X-ray microanalysis with an electron microscope. The cell size was also measured. The elemental content was highest in exponentially growing cells (149 +/- 8 fg of C cell(-1), 35 +/- 2 fg of N cell(-1), and 12 +/- 1 fg of P cell(-1); average of all isolates +/- standard error). The lowest C content was found in C-limited cells (39 +/- 3 fg of C cell(-1)), the lowest N content in C- and P-limited cells (12 +/- 1 and 12 +/- 2 fg of N cell(-1), respectively), and the lowest P content in P-limited cells (2.3 +/- 0.6 fg of P cell(-1)). The atomic C:N ratios varied among treatments between 3.8 +/- 0.1 and 9.5 +/- 1.0 (average +/- standard error), the C:P ratios between 35 +/- 2 and 178 +/- 28, and the N:P ratios between 6.7 +/- 0.3 and 18 +/- 3. The carbon-volume ratios showed large variation among isolates due to different types of nutrient limitation (from 51+/- 4 to 241 +/- 38 fg of C microm(-1); average of individual isolates and treatments +/- standard error). The results show that different growth conditions and differences in the bacterial community may explain some of the variability of previously reported elemental and carbon-volume ratios.  相似文献   

4.
Marine bacteria in Resurrection Bay near Seward, Alaska, and in the central North Sea off the Dutch coast were cultured in filtered autoclaved seawater following dilution to extinction. The populations present before dilution varied from 0.11 × 109 to 1.07 × 109 cells per liter. The mean cell volume varied between 0.042 and 0.074 μm3, and the mean apparent DNA content of the cells ranged from 2.5 to 4.7 fg of DNA per cell. All three parameters were determined by high-resolution flow cytometry. All 37 strains that were obtained from very high dilutions of Resurrection Bay and North Sea samples represented facultatively oligotrophic bacteria. However, 15 of these isolates were eventually obtained from dilution cultures that could initially be cultured only on very low-nutrient media and that could initially not form visible colonies on any of the agar media tested, indicating that these cultures contained obligately oligotrophic bacteria. It was concluded that the cells in these 15 dilution cultures had adapted to growth under laboratory conditions after several months of nutrient deprivation prior to isolation. From the North Sea experiment, it was concluded that the contribution of facultative oligotrophs and eutrophs to the total population was less than 1% and that while more than half of the population behaved as obligately oligotrophic bacteria upon first cultivation in the dilution culture media, around 50% could not be cultured at all. During one of the Resurrection Bay experiments, 53% of the dilution cultures obtained from samples diluted more than 2.5 × 105 times consisted of such obligate oligotrophs. These cultures invariably harbored a small rod-shaped bacterium with a mean cell volume of 0.05 to 0.06 μm3 and an apparent DNA content of 1 to 1.5 fg per cell. This cell type had the dimensions of ultramicrobacteria. Isolates of these ultramicrobacterial cultures that were eventually obtained on relatively high-nutrient agar plates were, with respect to cell volume and apparent DNA content, identical to the cells in the initially obligately oligotrophic bacterial dilution culture. Determination of kinetic parameters from one of these small rod-shaped strains revealed a high specific affinity for the uptake of mixed amino acids (A, 1,860 liters/g of cells per h), but not for glucose or alanine as the sole source of carbon and energy (A, ± 200 liters/g of cells per h). The ultramicrobial strains obtained are potentially a very important part of picoplankton biomass in the areas investigated.  相似文献   

5.
The DNA, RNA and protein content of the cyanobacterium Anacystis nidulans was determined in light-limited and carbon dioxide-limited chemostat cultures over the dilution rate range, D=0.02 h-1 to 0.19 h-1. The macromolecular contents as a percentage of the dry weight and on a per cell basis varied significantly as a function of organism growth rate and the nature of the growth conditions. For both limitations the RNA content per cell increased [20–55 fg RNA (cell)-1] with increasing dilution rate and also showed an increase as a percentage of the dry weight. The DNA content as a percentage of the dry weight showed a 2-fold decrease with increasing dilution rate over the range examined. On a per cell basis DNA reached a peak at D=0.1 h-1 [4.5 fg DNA (cell)-1] for light-limited organisms and at D=0.08 h-1 [8.0 fg DNA (cell)-1] for carbon dioxide-limited organisms. The q RNA increased with increasing dilution rates over the complete growth rate range examined whilst q DNA reached a maximum at D=0.09 to 0.10 h-1. The protein content as a percentage of the dry weight was greater in CO2-limited organisms than light-limited organisms but in both cultures declined as the dilution rate was increased above D=0.10 h-1.  相似文献   

6.
应用流式细胞术(FCM)对处于稳定生长阶段的念珠菌属(Candida)的7种8株念珠菌进行了DNA总含量的流式细胞(FCM)分析。这8株念珠菌是:白念珠菌(C.albicans)2株,热带念珠菌(C.tropicalis),克柔念珠菌(C.krusei),近平滑念珠菌(C.parapsiolosis),乳酒念珠菌(C.kefyr),白念珠菌星形变种(C.stellatoidea),即血清B型白念珠菌,季也蒙念珠菌(C.guilliermondii)各一株。应用EB一步插入法染色,用鸡红细胞(CRBC)作为内参标准进行DNA总含量测定。分析结果表明:稳定生长阶段的组方图上,大多数念珠菌细胞处于DNA合成周期的G_0/G_1期;DNA总含量有明显的种间和种内差异。  相似文献   

7.
The expression of the nrd operon encoding ribonucleotide reductase in Escherichia coli has been shown to be cell cycle regulated. To identify the cis-acting elements required for the cell cycle regulation of the nrd promoter, different 5' deletions as well as site-directed mutations were translationally fused to a lacZ reporter gene. The expression of beta-galactosidase from these nrd-lacZ fusions in single-copy plasmids was determined with synchronously growing cultures obtained by repeated phosphate starvation as well as with exponentially growing cultures by flow cytometry analysis. Although Fis and DnaA, two regulatory proteins that bind at multiple sites on the E. coli chromosome, have been found to regulate the nrd promoter, the results in this study demonstrated that neither Fis nor DnaA was required for nrd cell cycle regulation. A cis-acting upstream AT-rich sequence was found to be required for the cell cycle regulation. This sequence could be replaced by a different sequence that maintained the AT richness. A flow cytometry analysis that combined specific immunofluorescent staining of beta-galactosidase with a DNA-specific stain was developed and employed to study the nrd promoter activity in cells at specific cell cycle positions. The results of the flow cytometry analysis confirmed the results obtained from studies with synchronized cells.  相似文献   

8.
Marine bacterioplankton were isolated and grown in batch cultures until their growth became limited by organic carbon (C), nitrogen (N), or phosphorus (P). Samples were taken from the cultures at both the exponential and stationary phases. The elemental composition of individual bacterial cells was analyzed by X-ray microanalysis with an electron microscope. The cell size was also measured. The elemental content was highest in exponentially growing cells (149 ± 8 fg of C cell−1, 35 ± 2 fg of N cell−1, and 12 ± 1 fg of P cell−1; average of all isolates ± standard error). The lowest C content was found in C-limited cells (39 ± 3 fg of C cell−1), the lowest N content in C- and P-limited cells (12 ± 1 and 12 ± 2 fg of N cell−1, respectively), and the lowest P content in P-limited cells (2.3 ± 0.6 fg of P cell−1). The atomic C:N ratios varied among treatments between 3.8 ± 0.1 and 9.5 ± 1.0 (average ± standard error), the C:P ratios between 35 ± 2 and 178 ± 28, and the N:P ratios between 6.7 ± 0.3 and 18 ± 3. The carbon-volume ratios showed large variation among isolates due to different types of nutrient limitation (from 51± 4 to 241 ± 38 fg of C μm−1; average of individual isolates and treatments ± standard error). The results show that different growth conditions and differences in the bacterial community may explain some of the variability of previously reported elemental and carbon-volume ratios.  相似文献   

9.
Large-scale variation in chromosome size was analyzed in 35 natural isolates of Escherichia coli by physical mapping with a restriction enzyme whose sites are restricted to rDNA operons. Although the genetic maps and chromosome lengths of the laboratory strains E. coli K12 and Salmonella enterica sv. Typhimurium LT2 are highly congruent, chromosome lengths among natural strains of E. coli can differ by as much as 1 Mb, ranging from 4.5 to 5.5 Mb in length. This variation has been generated by multiple changes dispersed throughout the genome, and these alterations are correlated; i.e., additions to one portion of the chromosome are often accompanied by additions to other chromosomal regions. This pattern of variation is most probably the result of selection acting to maintain equal distances between the replication origin and terminus on each side of the circular chromosome. There is a large phylogenetic component to the observed size variation: natural isolates from certain subgroups of E. coli have consistently larger chromosome, suggesting that much of the additional DNA in larger chromosomes is shared through common ancestry. There is no significant correlation between genome sizes and growth rates, which counters the view that the streamlining of bacterial genomes is a response to selection for faster growth rates in natural populations.   相似文献   

10.
Forty-four novel strains of Gammaproteobacteria were cultivated from coastal and pelagic regions of the Pacific Ocean using high-throughput culturing methods that rely on dilution to extinction in very low nutrient media. Phylogenetic analysis showed that the isolates fell into five rRNA clades, all of which contained rRNA gene sequences reported previously from seawater environmental gene clone libraries (SAR92, OM60, OM182, BD1-7, and KI89A). Bootstrap analyses of phylogenetic reliability did not support collapsing these five clades into a single clade, and they were therefore named the oligotrophic marine Gammaproteobacteria (OMG) group. Twelve cultures chosen to represent the five clades were successively purified in liquid culture, and their growth characteristics were determined at different temperatures and dissolved organic carbon concentrations. The isolates in the OMG group were physiologically diverse heterotrophs, and their physiological properties generally followed their phylogenetic relationships. None of the isolates in the OMG group formed colonies on low- or high-nutrient agar upon their first isolation from seawater, while 7 of 12 isolates that were propagated for laboratory testing eventually produced colonies on 1/10 R2A agar. The isolates grew relatively slowly in natural seawater media (1.23 to 2.63 day(-1)), and none of them grew in high-nutrient media (>351 mg of C liter(-1)). The isolates were psychro- to mesophilic and obligately oligotrophic; many of them were of ultramicrobial size (<0.1 micro m(3)). This cultivation study revealed that sporadically detected Gammaproteobacteria gene clones from seawater are part of a phylogenetically diverse constellation of organisms mainly composed of oligotrophic and ultramicrobial lineages that are culturable under specific cultivation conditions.  相似文献   

11.
The ToxA gene of Pyrenophora tritici-repentis encodes a host-selective toxin (Ptr ToxA) that has been shown to confer pathogenicity when used to transform a non-pathogenic wheat isolate. Major karyotype polymorphisms between pathogenic and non-pathogenic strains, and to a lesser extent among pathogenic strains, and among non-pathogenic strains were identified. ToxA was localized to a 3.0 Mb chromosome. PCR-based subtraction was carried out with the ToxA chromosome as tester DNA and genomic DNA from a non-pathogenic isolate as driver DNA. Seven of 8 single-copy probes that originated from the 3.0 Mb chromosome could be assigned to a 2.75 Mb chromosome of a non-pathogenic isolate. Nine different repetitive DNA probes originated from the 3.0 Mb chromosome, including sequences that correspond to known fungal transposable elements. Two additional single-copy probes that originated from a 3.4 Mb chromosome were unique to the pathogens and they correspond to a peptide synthetase gene. Our findings suggest substantial differences between pathogenic and non-pathogenic isolates of P. tritici-repentis.  相似文献   

12.
Summary A 1.2 Mb minichromosome resolved by pulsed-field electrophoresis was present in two independent race 3 isolates of Colletotrichum gloeosporioides causing Type B anthracnose specifically on Stylosanthes guianensis cv. Graham in Australia. This chromosome was absent in duplicate isolates representing races 1, 2 and 4 which infect other S. guianensis cultivars. A gene library was prepared specifically from the 1.2 Mb mini-chromosome and ten independent DNA clones unique to this chromosome were identified by differential hybridisation to whole chromosome probes. All of the ten selected probes hybridised only to the 1.2 Mb minichromosome unique to the race 3 isolates but not to any chromosome in isolates of the other races. These ten probes also hybridised only to restriction-digested DNA of race 3 and were thus both chromosome- and strain-specific for Type B C. gloeosporioides. Hybridisation analysis of NotI fragments of the 1.2 Mb minichromosome with these sequences indicated that they were not tightly clustered on the chromosome. These data demonstrate that the variation in the occurrence of the 1.2 Mb minichromosome did not arise by rearrangement of the genome of a progenitor strain but involved either large scale deletion or addition of DNA. The 1.2 Mb minichromosome did not contain a cloned high-copy-number repeat sequence present on all other mini- and maxichromosomes, suggesting addition from a genetically distinct strain. All ten chromosome-specific DNA probes hybridised to a 2.0 Mb chromosome in all races of C. gloeosporioides causing Type A anthracnose on Stylosanthes spp. including S. guianensis. Restriction fragment length polymorphism analysis demonstrated that only 15% of the hybridising restriction fragments of the Type A 2.0 Mb chromosome and the 1.2 Mb Type B race 3 minichromosome were identical. This indicated that it is unlikely that the 1.2 Mb minichromosome of the race 3 Type B pathogen was recently introgressed from-the Type A pathogen.  相似文献   

13.
Abstract The initial selective adhesion of bacteria, expressing growth on solid media with low, intermediate, and high nutrient concentrations, to immersed glass surfaces in seawater was examined. Copiotrophic-type bacteria grown on high nutrient medium did not show a competitive advantage as primary colonizers. As compared to bacterial numbers in bulk water, relatively higher numbers of adhered oligotrophic-type bacteria, exhibiting growth on low-nutrient media, were found during the initial phase of adhesion. Higher numbers of copiotrophic rather than oligotrophic-type bacteria were seen in the bulk water. The majority of the adherent bacteria was irreversibly bound. Characteristics such as cell size, degree of cell surface hydrophobicity, and motility of bacterial isolates from the different nutrient concentrations did not account for the observed, possibly selective, adhesion. Although bacteria expressed nutritionally different requirements and adaptations at the time of sampling, successive reinoculations of a total of 161 isolates essentially failed to show the existence of obligacy of any given nutritional type of bacteria. The expression of different nutritional adaptations of bacteria in low-nutrient marine waters was also suggested by showing the inability of oligotrophic-like bacteria to possess starvation survival mechanisms such as those displayed by copiotrophs [3].  相似文献   

14.
Escherichia coli strains were grown in batch cultures in different media, and cell size and DNA content were analyzed by flow cytometry. Steady-state growth required large dilutions and incubation for many generations at low cell concentrations. In rich media, both cell size and DNA content started to decrease at low cell concentrations, long before the cultures left the exponential growth phase. Stationary-phase cultures contained cells with several chromosomes, even after many days, and stationary-phase populations exclusively composed of cells with a single chromosome were never observed, regardless of growth medium. The cells usually contained only one nucleoid, as visualized by phase and fluorescence microscopy. The results have implications for the use of batch cultures to study steady-state and balanced growth and to determine mutation and recombination frequencies in stationary phase.  相似文献   

15.
Microscopic estimation of bacterial biomass requires determination of both biovolume and biovolume-to-biomass conversion. Both steps have uncertainty when applied to the very small bacteria typically found in natural seawater. In the present study, natural bacterioplankton assemblages were freshly collected, passed through 0.6-μm-pore-size Nuclepore filters to remove larger particulate materials, and diluted for growth in 0.22-μm-pore-size Millipore filter-sterilized unenriched seawater. This provided cells comparable in size and morphology to those in natural seawater, but the cultures were free of the interfering particulate detritus naturally present. Cells were collected on glass-fiber GF/F filters, and biovolumes were corrected for cells passing these filters; C and N were measured with a CHN analyzer. Our criteria for size measurement by epifluorescence photomicrography were confirmed with fluorescent microspheres of known diameters. Surprisingly, in six cultures with average per-cell biovolumes ranging from 0.036 to 0.073 μm3, the average per-cell carbon biomass was relatively constant at 20 ± 0.08 fg of C (mean ± standard error of the mean). The biovolume-to-biomass conversion factor averaged 0.38 ± 0.05 g of C cm−3, which is about three times higher than the value previously estimated from Escherichia coli, and decreased with increasing cell volume. The C:N ratio was 3.7 ± 0.2. We conclude that natural marine bacterial biomass and production may be higher than was previously thought and that variations in bacterial size may not reflect variations in biomass per cell.  相似文献   

16.
The suitability of applying empirical conversion factors (eCFs) to determine bacterial biomass production remains unclear because seawater cultures are usually overtaken by phylotypes that are not abundant in situ. While eCFs vary across environments, it has not been tested whether differences in eCFs are driven by changes in bacterial community composition or by in situ environmental conditions. We carried out seawater cultures throughout a year to analyse the correlation between eCFs and bacterial community structure, analysed by catalysed reporter deposition fluorescence in situ hybridization. Gammaproteobacteria usually dominated seawater cultures, but their abundance exhibited a wide range (25–73% of cell counts) and significantly increased with inorganic nutrient enrichment. Flavobacteria were less abundant but increased up to 40% of cells counts in winter seawater cultures, when in situ chlorophyll a was high. The correlations between eCFs and the abundance of the main broad phylogenetic groups (Gamma‐, Alphaproteobacteria and Flavobacteria) were significant, albeit weak, while more specific groups (Alteromonadaceae and Rhodobacteraceae) were not significantly correlated. Our results show that the frequent development of the fast‐growing group Alteromonadaceae in seawater cultures does not strongly drive the observed variations in eCFs. Rather, the results imply that environmental conditions and the growth of specific phylotypes interact to determine eCFs.  相似文献   

17.
Changes of ploidy during the Azotobacter vinelandii growth cycle.   总被引:2,自引:1,他引:1       下载免费PDF全文
The size of the Azotobacter vinelandii chromosome is approximately 4,700 kb, as calculated by pulsed-field electrophoretic separation of fragments digested with the rarely cutting endonucleases SpeI and SwaI. Surveys of DNA content per cell by flow cytometry indicated the existence of ploidy changes during the A. vinelandii growth cycle in rich medium. Early-exponential-phase cells have a ploidy level similar to that of Escherichia coli or Salmonella typhimurium (probably ca. four chromosomes per cell), but a continuous increase of DNA content per cell is observed during growth. Late-exponential-phase cells may contain > 40 chromosomes per cell, while cells in the early stationary stage may contain > 80 chromosomes per cell. In late-stationary-phase cultures, the DNA content per cell is even higher, probably over 100 chromosome equivalents per cell. A dramatic change is observed in old stationary-phase cultures, when the population of highly polyploid bacteria segregates cells with low ploidy. The DNA content of the latter cells resembles that of cysts, suggesting that the process may reflect the onset of cyst differentiation. Cells with low ploidy are also formed when old stationary-phase cultures are diluted into fresh medium. Addition of rifampin to exponential-phase cultures causes a rapid increase in DNA content, indicating that A. vinelandii initiates multiple rounds of chromosome replication per cell division. Growth in minimal medium does not result in the spectacular changes of ploidy observed during rapid growth; this observation suggests that the polyploidy of A. vinelandii may not exist outside the laboratory.  相似文献   

18.
Deoxyribonucleic Acid Characterization of Bdellovibrios   总被引:5,自引:4,他引:1       下载免费PDF全文
The guanine plus cytosine (GC) content of the deoxyribonucleic acid (DNA) of 11 isolates of host-dependent (H-D) bdellovibrios and 18 host-independent (H-I) derivatives was determined from thermal denaturation curves and buoyant densities in CsCl. The H-D and respective H-I cultures have GC contents which are identical within the limits of experimental error. Most cultures of Bdellovibrio bacteriovorus, including the holotype culture, have 50.4 +/- 0.9 moles% GC in their DNA; two bdellovibrio isolates of presently uncertain nomenclatural status contain DNA of about 43% GC. Optical melting profiles of all the DNA from all of these organisms are particularly steep, indicating little compositional heterogeneity. Chromatography of acid hydrolysates of Bdellovibrio nucleic acids reveal no unusual components. The DNA content per cell of one H-I derivative is about one-third the amount per Escherichia coli cell growing at a comparable rate.  相似文献   

19.
The chromosomal DNAs of eight medically important Candida species, C. albicans, C. stellatoidea, C. tropicalis, C. parapsilosis, C. krusei, C. guilliermondii, C. kefyr and C. glabrata, were analysed by pulsed-field gel electrophoresis under various conditions. The corresponding bands in the gels were assigned by three kinds of DNA probe which hybridized to DNA of all the species: rDNA, TUB2 and PEP4. The best conditions for separating the chromosomal DNAs were investigated and the numbers and molecular sizes of the chromosome bands were determined for each species. The chromosomal DNAs of the species were separated into 5-14 bands ranging in size from 0.5 to 4.5 Mb. Based on the quantification of the chromosome band intensities using a laser fluorescent gel scanner, the chromosome numbers were estimated. The apparent average total number of chromosomes per cell was 16 for C. albicans, 16 for C. stellatoidea, 12 for C. tropicalis, 14 for C. parapsilosis, 8 for C. krusei, 8 for C. guilliermondii, 18 for C.kefyr, and 14 for C. glabrata; the total chromosomal DNA size of each species per cell was calculated at about 31 Mb, 33 Mb, 31 Mb, 26 Mb, 20 Mb, 12 Mb, 29 Mb and 14 Mb, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号