首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological risk assessment is a common environmental management tool. It is routinely used for physical and chemical stressors, and has recently been used for biological stressors such as invasive species and genetically modified organisms. Identifying hazards correctly is critical to any risk assessment. In many ecological examples, however, this stage of the analysis is very poor. This paper applies a hazard-analysis tool that is commonly used in complex engineering systems – fault-tree analysis – to an ecological system – ballast-water introductions. The analysis, which is rigorous and systematic, highlights the complexity of the ballast-water introduction cycle. The top event in the fault-tree is the successful infection of a port. The fault-tree identifies the parallel and sequential events leading up to the top event, including multiple vessel-infection scenarios, determined by the origin (hard substrate, soft substrate, water column and another organism) and behaviour of the target organism. The analysis also identifies the role of ballast-tank populations, ballast-water carry-over, crevice-seeking species and third-party risks. These phenomena add considerably to the complexity of the problem. Fault-trees will have a limited application to ecological systems because of the difficulty of estimating the probability of the basic or undeveloped events in the tree. As this paper demonstrates, however, fault-tree analysis has considerable heuristic potential when applied to ecological systems.  相似文献   

2.
Thiel  Martin  Kruse  Inken 《Hydrobiologia》2001,456(1-3):21-32
The ecology of nemertean predators in marine ecosystems is reviewed. Nemerteans occur in most marine environments although usually in low abundances. Some species, particularly in intertidal habitats, may reach locally high densities. During specific time periods appropriate for hunting, nemerteans roam about in search of prey. Upon receiving a stimulus (usually chemical cues), many nemertean species actively pursue their prey and follow them into their dwellings or in their tracks. Other species (many hoplonemerteans) adopt a sit-and-wait strategy, awaiting prey items in strategic locations. Nemerteans possess potent neurotoxins, killing even highly mobile prey species within a few seconds and within the activity range of its attacker. Most nemertean species prey on live marine invertebrates, but some also gather on recently dead organisms to feed on them. Heteronemerteans preferentially feed on polychaetes, while most hoplonemerteans prey on small crustaceans. The species examined to date show strong preferences for selected prey species, but will attack a variety of alternative prey organisms when deprived of their favourite species. Ontogenetic changes in prey selection appear to occur, but no further information about, e.g. size selection, is available. Feeding rates as revealed from short-term laboratory experiments range on the order of 1–5 prey items d–1. These values apparently are overestimates, since long-term experiments report substantially lower values (0.05–0.3 prey items d–1). Nemerteans have been reported to exert a strong impact on the population size of their prey organisms through their predation activity. Considering low predation rates, these effects may primarily be a result of indirect and additive interactions. We propose future investigations on these interactive effects in combination with other predators. Another main avenue of nemertean ecological research appears to be the examination of their role in highly structured habitats such as intertidal rocky shore and coral reef environments.  相似文献   

3.
Hg concentrations in benthic invertebrates of the Elbe estuary were analyzed by atomic absorption spectrophotometry and instrumental neutron activation analysis. In general Hg levels in organisms decreased from the limnic region to the marine environment. Highest Hg levels were found inAsellus aquaticus andRadix balthica taken from the Elbe upstream of Hamburg (0.35 and 0.34 ppm wet weight). The concentrations in gammarid species decreased from 0.20 ppm (limnic region) to 0.02–0.05 ppm (brackish and marine environment). Hg levels in organisms from the brackish region proved to be 0.08–0.16 ppm(Littorina littorea), 0.04–0.09(Crangon crangon) 0.05–0.10(Corophium volutator) and 0.04–0.08 ppm (wet weight)(Nereis diversicolor). Some factors which may influence the heavy metal concentrations in aquatic organisms are discussed, such as: food chain, weight of organisms, and elimination via moulting products in the case of crustaceans.  相似文献   

4.
Summary The partitioning of energy in three species of nematode, Paroigolaimella bernensis, Diplogasteritus nudicapitatus and Rhabditis curvicaudata, from a polysaprobic environment is considered. Temperature was shown to have a profound impact on the rate at which these organisms obtained food resources and on the partitioning of energy into growth, reproduction and maintenance. Declining temperature resulted in a reduction in energy consumption and in production and maintenance costs. Absorption efficiencies were relatively low, rarely exceeding 20% and lying on average between 5–15%. Net production efficiencies varied throughout the life-cycle, but attained maximum levels of 70–80%. Females achieved higher net production efficiency than males. The physiology and ecological implications are discussed.  相似文献   

5.
Ultrathin sections of oat, wheat, and ryegrass leaves from healthy plants and plants infected with rhabdoviruses by leafhoppers Laodelphax striatellusFallen were studied under the electron microscope. The bacilliform virions often surrounded by endoplasmic reticulum (ER) membranes, viroplasm, and tubular structures conforming, in diameter and structure, to the rhabdovirion nucleocapsid were observed in the cytoplasm of leaf cells of the diseased plants. The cereal pseudorosette virus [(165–200) × (63–70) nm, CPV] is the causative agent of the disease of cereals in Siberia. The mycoplasma-like organisms were found in the phloem cells of plants infected with CPV. The cereal mosaic virus [(360–420) × (56–64) nm, CMV] is the causative agent of the disease of cereals in the Russian Far East. CMV appears to be a strain of the northern cereal mosaic virus.  相似文献   

6.
Of the 29 potentially denitrifying organisms isolated from a denitrifying reactor (DNR) of a fertilizer company, two isolates; I-4 and I-5 were recognized as denitrifiers. Under aerobic conditions, with fusel oil as the carbon source, the organisms decreased nitrate from 1200 mg l–1 to 100 mg l–1 in 48 h. Optimal growth conditions for biological removal of nitrate were established in batch culture. The system was scaled up to 4-L and 50-L bioreactors under continuous culture conditions. Up to 95–100% nitrate removal was achieved in the 50-L bioreactor at a COD:NO3–N ratio of 3.45 with a retention time of 48 h. The isolates showed 1.5 fold higher denitrifying activity than reported previously.  相似文献   

7.
Summary Solar digesters were designed to wet pasteurize straw. Microbial levels were reduced, precluding competition with ligninolytic organisms. The pasteurization treatment alone increased the available cellulose by 20–40%. Ligninolytic organisms produced biomass with 6–8% protein on pasteurized wheat straw.  相似文献   

8.
The ecological importance of resting stages in shallow waters is well known, but their presence in the deep sea is practically unrecorded. Samples of sinking particles were collected from April 1993 to May 1994 in and around the Foix Canyon (northwest Mediterranean Sea) using PPS3 sediment traps located between –600 m and –1180 m. Dead and viable organisms were collected, and inorganic empty shells constituted most of the biologically-derived matter. Resting stages, considered as POM, had a flux of up to 70 000 items m–2 d–1. They were the second most abundant fraction of total POM after tintinnids (mainly represented by empty, chitinous loricas), and first of the viable POM fraction. Most remained unidentified, but 58 morphotypes were referable to coastal species of Dinophyta, Tintinnina and Calanoida. Resting stages were rare in samples collected from the open slope adjacent to the canyon. These preliminary data suggest an important role of submarine canyons in concentrating POM and transferring it from shallow to deep-sea habitats. Due to their resistance to degradation processes, resting stages are probably the only POM component that can return to shallow areas by upwelling currents occurring in the canyon.  相似文献   

9.
Two microcosm designs were compared for their sensitivity to toxic concentrations of copper. One design simulated a littoral zone, including macrophytes, sediment, and associated organisms. The other design used a periphyton community collected on polyurethane foam artificial substrata. Microcosms were dosed with copper sulfate (0–300 µg Cu 1–1, nominal concentrations) and monitored for changes in several structural and process variables. Coefficients of variation of responses measured from the littoral microcosms were greater than from responses measured from the artificial-substrata microcosms. Effects were detected more frequently at lower concentrations of copper in the artificial-substrata microcosms than in the littoral microcosms. Lowest observable effect concentrations (LOECs) for measures of community structure ranged from 20.2–42.8 µg Cu 1–1 in the artificial-substrata microcosms and from 24.0–98.5 µg Cu 1–1 in the littoral microcosms. LOECs for measures of community process ranged from 42.8–310.3 µg 1–1 in the artificial substrata microcosms. Significant differences from controls for community process were detected only at 304.7 µg Cu 1–1 in the littoral microcosms. While there were differences between the two microcosm designs in the concentrations of copper that resulted in adverse effects, response trends were similar. Often, dose-response relationships between variables and copper concentrations were not log-linear, but showed stimulations at intermediate concentrations of copper (10–100 µg 1–1, nominal concentrations). The choice of microcosm design should be dependent on the particular research question, as the designs differ in complexity and in the ease of construction and maintenance.  相似文献   

10.
The concentrations of copper, zinc, lead and cadmium in the surface sediment (upper 5 mm) were generally higher in the silt fraction than in the bulk sediment. No significant geographical trend in the metal concentrations of the surface sediments was found, nor a correlation between concentrations in bulk sediment as well as in the silt fraction and the % silt could be established. In general, the metal concentrations in both bulk sediment and silt are lower, when compared to marine environments in other climatological regions.In zooplankton, the metal concentrations were relatively high: expressed in µg g–1 on a dry weight (D.W.) basis, they ranged from 15–90 for copper, 70–580 for zinc, 12–55 for lead and 4–10 for cadmium.In epibenthic invertebrate species, both in crustaceans and bivalve molluscs, the concentrations of copper, zinc, and lead were in the same order of magnitude as compared to corresponding species from other geographical latitudes. Cadmium concentrations were relatively low, ranging from 0.13–0.42 µg g–1 D.W. in the bivalve molluscs Pitaria tumens and from 0.04–0.27 µg g–1 D.W. in the shrimp Processa elegantula. Also in the crab species Ilia spinosa, Inachus sp. and Pagurus sp., the cadmium concentrations were low, varying between 0.1 and 0.2 µg g–1 D.W.No significant relation between the metal concentration in whole-body samples and sediment (either bulk or silt) was present. Also no gradient was apparent in concentrations in organisms sampled at different depths (5 to 200 m) along two off-shore transects perpendicular to the Banc d'Arguin. Data indicated lower metal concentration in epibenthic organisms from sampling stations along a northern transect (southwest of Cap Blanc) than in organisms from the southern transect, off Cap Timiris.Evidence was obtained for a considerable atmospheric input of heavy metals, in particular zinc and lead, in a certain area along the continental slope of the Banc d'Arguin.  相似文献   

11.
Summary Cell walls of Schizochytrium aggregatum and Thraustochytrium sp. were mechanically isolated and subjected to chemical analysis. On a dry weight basis the cell walls contain 21–36% carbohydrate and 30–43% protein. The principal sugar (>95%) of the Schizochytrium wall is l-galactose, while the Thraustochytrium cell wall contains l-galactose, d-galactose and xylose with l-galactose predominating. Ultrastructurally the cell walls of both organisms consist of a laminated structure which yields thin, flexible, nearly circular scales (0.5–1.1 in diameter) upon sonic disintegration. Structures presumed to be developing wall scales are found within cisternae of the Golgi apparatus in both organisms. The chemical composition and method of formation of the cell wall in these two protists is distinctly different from that found in the Saprolegniales (Oomycetes), the group with which these organisms have hitherto been aligned.  相似文献   

12.
Seasonal variation and diurnal fluctuations in ephemeral desert pools   总被引:3,自引:3,他引:0  
The physical variables which directly affect organisms inhabiting desert ephemeral pools were examined in four pools in southeastern Utah. During the day, pools were hyperoxic (240 torr) and hypocapnic (0.07 torr) while pH and temperature increased (7.5–9.0 & 17–35 °C respectively). Conversely, predawn pool measurements were hypoxic (40 torr) and hypercapnic (3 torr). While TA increased throughout the season (from 0.4 to 1.43 meq l–1), due largely to increased bicarbonate concentration (from 0.5 to 1.4 mmol l–1), water osmolarity remained relatively constant. These desert ephemeral systems represent unique environmental habitats where organisms experience both diurnal and seasonal changes in numerous physical variables over short time frames.  相似文献   

13.
Summary Dogs with spontaneous osteosarcoma of an extremity were entered into two consecutive trials of adjuvant immunotherapy with BCG. In the first trial, 30 dogs underwent amputation followed by intravenous BCG, 0.4–1.6×108 viable organisms, on the day of amputation, 1 and 3 weeks later and then monthly for 1 year. In the second trial, 2–8×108 viable BCG organisms or 6 mg BCG cell walls in oil were injected intralesionally 10–26 (median=17) days before amputation. Neither time to development of metastatic disease nor survival was prolonged by either immunotherapy protocol.Dr. Deeg is a Fellow of the Leukemia Society of America  相似文献   

14.
The northern section of the Upper Mississippi River supports a diverse macrobenthic assemblage. Distribution of this benthic fauna, benthic community structure, and factors which influences which influence both of these phenomena in these upper pools are reviewed. Dumping of heavy loads of municipal and industrial wastes from the Minneapolis-St. Paul metropolitan area has severely stressed the benthic community. Once abundant, pollution-sensitive mayflies, Hexagenia bilineata and H. limbata, are noticeably absent, replaced by pollution-tolerant oligochaetes and midges (notably Chironomus). Harmful effects of this pollution are not restricted to the area immediately downstream from the Twin Cities. In Lake Pepin, the Hexagenia population has suffered a drastic decline. The benthic community is characterized by low species diversity and a dominant, pollution-tolerant Chironomus plumosus — Oligochaeta — Sphaeriidae — Hirudinea community complex. Farther south, effects of the high organic load which originates approximately 226 km upstream are ameliorated. Inundation of large, diverse land areas contributes to the great ecological diversity in Pools No. 7 and No. 8. In Navigation Pool No. 7, benthic standing crops in the backwater pool areas (biomass range: 2.08–26.96 g m–2) exceed those in the main channel (biomass range: 0.05–1.02 g m–2). Greater numbers of burrowing mayflies and mollusks were found in the pool areas. Of 131 taxa collected from 1976–1977 in Lake Onalaska, which occupies most of Pool No. 7, eight dominant groups — Oligochaeta, Hirudinea, Isopoda, Amphipoda, Lepidoptera, Diptera, Gastropoda, and Pelecypoda — accounted for 90–93% of the macroinvertebrates. In Pool No. 8, over half of the 144 benthic taxa collected during the summer of 1975 were insect nymphs and larvae. Oligochaetes were by far the most ubiquitous and dominant macroinvertebrates. Habitat preferences of particular benthic forms reflected distributional relationships between macroinvertebrates and physical-chemical conditions. Benthic production, in terms of total wet weight m–2 and macroinvertebrate density in each study area, was generally greater in the more eutrophic areas. However, fewer taxa were supported in these areas. These taxa were generally pollution-tolerant organisms, such as oligochaetes and certain chironomids, which were capable of burrowing into depositional-type substrates. More taxa and greater numbers of gill breathers and filter feeders, such as caddisflies, mayflies, stoneflies, and dipterans, were collected from less eutrophic areas.  相似文献   

15.
Seasonally, dissolved and particulate metal concentrations in the Scheldt estuary were assessed over a period of 4 years (1995–1998). High quality data were obtained following stringent analytical protocols for each step: sampling, sample treatment, sample storage and analysis. Of the 5 trace metals, Ni showed the most conservative behaviour, while Cd and Cu were clearly transferred from the particulate to the dissolved phase in the middle estuary. A substantial part of the particulate metals entering the estuarine system are lost through sedimentation. General seasonal patterns are the following: lower concentrations in spring and higher ones in winter (sometimes late fall/early winter) for dissolved metals, while in summer a pronounced rise of the longitudinal concentration profile is observed for the particulate metals. A comparison of the trace metal concentrations (dissolved and particulate) at the mouth of the estuary in 1995–1998 with those from 1981 to 1983, reveal reductions between 30 and 58%. Reductions based on direct emission measurements for almost the same period suggest reductions (dissolved + particulate) between 42 and 64%. Biomagnification (BMF) is the accumulation of a compound through the food-chain. It is in our case expressed as the ratio of the metal concentration in the organism (g g–1, d.w.)/the metal concentration in total suspended matter (g g–1, d.w.). Almost all BMF-values of Periwinkle, Nereis diversicolor and Macoma balthica (3 bottom organisms in the Scheldt estuary) are negative meaning that these organisms contain less heavy metals than the particulate suspended matter. For all organisms log BMFs for Pb, respectively Ni, are around –1.8, respectively –0.7. For Cd, Periwinkle shows slight enrichment (0.05) and for Cu even more (0.45), while negative values were observed for Nereis diversicolour and Macoma balthica. The latter organisms are more enriched in Zn (–0.09) than Periwinkle (–0.43).  相似文献   

16.
A shift from traditional engineering approaches to ecologically-based techniques will require changing societal values regarding ‘how and what’ is defined as engineering and design. Non-human species offer many ecological engineering examples that are often beneficial to ecosystem function and other biota. For example, organisms known as ‘ecosystem engineers’ build, modify, and destroy habitat in their quest for food and survival. Similarly, ‘keystone species’ have greater impacts on community or ecosystem function than would be predicted from their abundance. The capacity of these types of organisms to affect ecosystems is great. They exert controlling influences over ecosystems and communities by altering resource allocation, creating habitats and modifying relative competitive advantages.Species’ effects in ecosystems, although context-dependent, can be evaluated as ‘beneficial’ or ‘detrimental’. The evaluation depends on whether effects on other species or ecosystem function are more or less desirable from a given perspective. Organisms with beneficial impacts facilitate the presence of other species, employ efficient nutrient cycling, and are sometimes characterized by specific mutualisms. In contrast, many cases of detrimental engineering are found from introduced (i.e., exotic) species and are characterized by a loss of species richness, a lack of nutrient retention and the degradation of ecosystem integrity. Species’ impacts on ecosystems and community traits have been quantified in ecological studies and can be used similarly to understand, design and model human engineering structures and impacts on the landscape. Emulation of species with beneficial impacts on ecosystems can provide powerful guidance to the goals of ecological engineering. Using role model organisms that have desirable effects on species diversity and ecosystem function will be important in developing alternatives to traditional engineering practices.  相似文献   

17.
Variations of structure (probable taxonomic generic groups; ecological profiles), diversity (Shannon index, ¯H), and average catabolic potentialities (strain's average exoenzyme equipment, EAI; average carbonaceous compound utilization, UAI) of bacterial populations during two experimental phytoplankton blooms are described and show a certain overall unity. Oligotrophic conditions are characterized by high diversity levels (¯H from 3.60 to 4) and moderate catabolic potentialities (EAI and UAI close to 40%). During phytoplankton exponential growth phase bacteria show an EAI stability, but there is an increase of UAI with maximal values at the beginning of chlorophyll plateau (52–57%) and higher values of diversity (¯H greater than 4). Phytoplankton mortalities appear to cause an EAI increase and a decrease of both UAI and ¯H (1.50 to 2). Vibrio-like organisms seem to be closely related to this period.In spite of these similar patterns, many differences appear between both experiments from a taxonomic point of view, the autumnal population being more diversified than the spring one.The results obtained show the value of simultaneous analysis of these different aspects and of this ecological methodology allowing spatial or temporal comparisons.  相似文献   

18.
Matsui  Kazuaki  Kono  Shigeki  Saeki  Asuka  Ishii  Nobuyoshi  Min  Man-Gi  Kawabata  Zen' ichiro 《Hydrobiologia》2000,435(1-3):109-116
Mechanisms for coexistence among micro-organisms were studied by using a species-defined microcosm, consisting of the bacterium Escherichia coli, the ciliate Tetrahymena thermophila and the alga Euglena gracilis. These organisms were chosen as representative of ecological functional groups i.e. decomposer, consumer and producer, respectively. Direct and indirect interactions among these organisms were evaluated by comparisons of their population dynamics in culture with different combinations of the three species. There was an E. coli cell density dependent predator–prey interaction between T. thermophila and E. coli which was only established when there were more than 106 cells ml–1 of E. coli. Indirect interactions were evaluated from the cultivation of each organism in media containing metabolites of the others. Metabolites from each population strongly accelerated the growth of their own populations and those of the others except for the self-toxicity effect of E. coli metabolites. These observations suggested that not only the cell–cell contact of direct interactions, but also metabolite-mediated indirect interactions supported the maintenance of the populations of each micro-organism and their coexistence. In natural ecosystems, there are many interactions and it is difficult to evaluate all those regulating community dynamics. The gnotobiotic microcosm used in this study was shown to be suitable for examining the specific, species–species microbial interactions.  相似文献   

19.
Zaitseva  S. V.  Kozyreva  L. P.  Namsaraev  B. B. 《Microbiology》2004,73(4):372-377
Growth parameters (temperature and pH) were determined for collection cultures of aerobic heterotrophic bacteria. Analysis of the experimental data with the use of the Rosso model made it possible to calculate the extreme values of temperature and pH permissive for culture growth. The cultures examined were subdivided into three groups with respect to their growth temperature and pH. The first group is represented by cultures with minimum, maximum, and optimal growth temperatures of <20, 60–64, and 38–40°C, respectively, and with the optimal growth pH 8.0–8.5. Bacteria of the second group are true alkalithermophilic organisms with a temperature optimum of 45–50°C and a pH optimum of 8.5–9.0. The third group includes a culture of a thermophilic alkalitolerant bacterium.  相似文献   

20.
Synopsis The optimal density of plankton required for the growth and development ofCoregonus lavaretus (L.) larvae is calculated on the basis of the volume of water searched, the probability of successful feeding responses, and the results of experimental growth studies. This amounts to 200–260 individual food organisms 1–1 (individual plankton 0.004 mg), or 14–17 individuals 1–1 (individual plankton 0.057 mg). The feeding optimum depends on water temperature and the time at which feeding begins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号