首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-repair characteristics of xeroderma pigmentosum belonging to complementation group F were investigated. The cells exhibited an intermediate level of repair as measured in terms of (1) disappearance of T4 endonuclease-V-susceptible sites from DNA, (2) formation of ultraviolet-induced strand breaks in DNA, and (3) ultraviolet-induced unscheduled DNA synthesis during post-irradiation incubation. The impaired ability of XP3YO to perform unscheduled DNA synthesis was restored, to half the normal level, by the concomitant treatment with T4 endonuclease V and ultraviolet-inactivated Sendai virus. It is suggested that xeroderma pigmentosum cells of group F may be defective, at least in part, in the incision step of excision repair.  相似文献   

2.
A single human chromosome derived from normal human fibroblasts and tagged with the G418 resistance gene was transferred into SV40-transformed xeroderma pigmentosum group A (XP-A) cells via microcell fusion. When chromosome 1 or 12 was transferred, UV sensitivity of microcell hybrid cells was not changed. By contrast, after transferring chromosome 9, 7 of 11 recipient clones were as UV-resistant as normal human cells. Four other clones were still as UV-sensitive as the parental XP-A cells. Southern hybridization analysis using a polymorphic probe, pEKZ19.3, which is homologous to a sequence of the D9S17 locus on chromosome 9, has confirmed that at least a part of normal human chromosome 9 was transferred into the recipient clones. However, amounts of UV-induced unscheduled DNA synthesis in the UV-resistant clones were only one-third of those in normal human cells. These results indicate that a gene on chromosome 9 can confer complementation of high UV sensitivity of XP-A cells although it is still possible that 2 or more genes might be involved in the defective-repair phenotypes of XP-A.  相似文献   

3.
DNA-dependent ATPase activities in crude extracts prepared from HeLa cells were separated into five peaks by fast protein liquid chromatography Mono Q column chromatography. Similar elution profiles were observed with the extracts from human cells normal in repair and xeroderma pigmentosum cells belonging to complementation groups A through G except for group C. An alteration in elution of one of the five ATPases, designated DNA-dependent ATPase Q1, was observed with a cell line of complementation group C. This alteration was observed with all tested cell lines that belonged to group C. ATPase Q1 in HeLa cell extracts exhibited about 2-fold higher activity with ultraviolet light-irradiated DNA as compared to that with non-irradiated DNA, whereas little difference in the effects of two DNAs was observed with the ATPase activities in the extract from group C cells.  相似文献   

4.
5.
To assess the contribution to mutagenesis of human DNA repair defects, the UV-irradiated shuttle vector plasmid pZ189 was propagated in fibroblasts derived from a xeroderma pigmentosum (XP) patient in DNA repair complementation group C. In comparison to results with DNA repair-proficient human cells (WI-38 VA13), UV-irradiated pZ189 propagated in the XP-C (XP4PA(SV)) cells showed fewer surviving plasmids and a higher frequency of mutated plasmids. Base sequence analysis of 67 mutated plasmids recovered from the XP-C cells revealed similar classes of point mutations and mutation spectrum, and a higher frequency of G:C to A:T transitions along with a lower frequency of transversions among plasmids with single or tandem mutations compared to plasmids recovered from the normal line. Most single-base substitution mutations (83%) occurred at G:C base pairs in which the 5'-adjacent base of the cytosine was thymine or cytosine. These results indicate that the DNA repair defects in XP-C, in comparison to data previously reported for XP-A, XP-D and XP-F, result in different UV survival and mutation frequency but in similar types of base substitution mutations.  相似文献   

6.
The XPC-HR23B complex is involved in DNA damage recognition and the initiation of global genomic nucleotide excision repair (GG-NER). Our previous studies demonstrate that XPC-HR23B recognizes and binds DNA containing a helix distortion, regardless of the presence or absence of damaged bases. Here, we describe an extended analysis of the DNA binding specificity of XPC-HR23B using various defined DNA substrates. Although XPC-HR23B showed significantly higher affinity for single-stranded DNA than double-stranded DNA, specific secondary structures of DNA, involving a single- and double-strand junction, were strongly preferred by the complex. This indicates that the presence of bases, which cannot form normal Watson-Crick base pairs in double-stranded DNA, is a critical factor in determining the specificity of XPC-HR23B binding. A DNase I footprint analysis, using a looped DNA substrate, revealed that a single XPC-HR23B complex protected a distorted site in an asymmetrical manner, consistent with the preferred secondary structure. The specific binding of XPC-HR23B is undoubtedly an important molecular process, based on which NER machinery detects a wide variety of lesions that vary in terms of chemical structure during DNA repair.  相似文献   

7.
Cells from patients with xeroderma pigmentosum, complementation group A (XPA), are known to be defective in repair of pyrimidine dimers and other forms of damage produced by 254-nm ultraviolet (UVC) radiation. We have isolated a DNA endonuclease, pI 7.6, from the chromatin of normal human lymphoblastoid cells which recognizes damage produced by UVC light, and have introduced this endonuclease into UVC-irradiated XPA cells in culture to determine whether it can restore their markedly deficient DNA repair-related unscheduled DNA synthesis (UDS). Introduction of the normal endonuclease, which recognizes predominantly pyrimidine dimers, but not the corresponding XPA endonuclease into UVC-irradiated XPA cells restored their levels of UDS to approximately 80% of normal values. Electroporation of both the normal and the XPA endonuclease into normal human cells increases UDS in normal cells to higher than normal values. These results indicate that the normal endonuclease can restore UDS in UVC-irradiated XPA cells. They also indicate that XPA cells have an endonuclease capable of increasing the efficiency of repair of UVC damage in normal cells.  相似文献   

8.
cDNA cloning of porcine interleukin 2 by polymerase chain reaction   总被引:11,自引:0,他引:11  
Porcine interleukin 2 (IL-2) cDNA was cloned by polymerase chain reaction (PCR), using primers derived from the corresponding bovine sequence. The resulting porcine DNA sequence encodes a 154 residue IL-2 primary translation product. Comparison of the mature, secreted form of porcine IL-2 with those of other species was carried out in an attempt to identify differences that might contribute to the observed differing species specificities.  相似文献   

9.
Defects in the human gene XPV result in the variant form of the genetic disease xeroderma pigmentosum (XP-V). XPV encodes DNA polymerase η, a novel DNA polymerase that belongs to the UmuC/DinB/Rad30 superfamily. This polymerase catalyzes the efficient and accurate translesion synthesis of DNA past cis-syn cyclobutane di-thymine lesions. In this report we present the cDNA sequence and expression profiles of the mouse XPV gene and demonstrate its ability to complement defective DNA synthesis in XP-V cells. The mouse XPV protein shares 80.3% amino acid identity and 86.9% similarity with the human XPV protein. The recombinant mouse XPV protein corrected the inability of XP-V cell extracts to carry out DNA replication, by bypassing thymine dimers on template DNA. Transfection of the mouse or human XPV cDNA into human XP-V cells corrected UV sensitivity. Northern blot analysis revealed that the mouse XPV gene is expressed ubiquitously, but at a higher level in testis, liver, skin and thymus compared to other tissues. Although the mouse XPV gene was not induced by UV irradiation, its expression was elevated ~4-fold during cell proliferation. These results suggest that DNA polymerase η plays a role in DNA replication, though the enzyme is not essential for viability.  相似文献   

10.
11.
12.
A protein factor which corrects the defect in xeroderma pigmentosum cells belonging to complementation group A (XP-A cells) was detected in a cell extract prepared from calf thymus. The activity of this factor was measured as the amount of unscheduled DNA synthesis (UDS) reappearing in UV-irradiated XP-A cells after microinjection of the extract. The native molecular mass of this factor was estimated to be 80 kDa by gel-filtration and 25 kDa by glycerol gradient centrifugation. The activity was, however, recovered at a position corresponding to 43 kDa after renaturation on an SDS-PAGE gel. The isoelectric point was determined to be approximately 7.5 by measuring the activity after renaturation on an IEF gel. These values were obtained with a partially purified sample. A spot corresponding to these values was detected on two-dimensional gel electrophoresis with a highly purified sample recovered from an SDS-PAGE gel. The purified protein stimulated UDS specifically in the XP-A cells and endowed the cells with a normal level of UV-resistance. The XP-A cells injected with the factor also showed a normal level of UDS after treatment with either 4HAQO or psoralen plus UV-A. This factor (XP-A complementing factor; XP-ACF) may be involved in the repair of DNA damage induced by various agents.  相似文献   

13.
Xeroderma pigmentosum (XP) and trichothiodystrophy (TTD) are rare heritable diseases. Patients suffering from XP and 50% of TTD afflicted individuals are photosensitive and have a high susceptibility to develop skin tumors. One solution to alleviating symptoms of these diseases is to express the deficient cDNAs in patient cells as a form of gene therapy. XPC and TTD/XPD cell lines were complemented using retroviral transfer. Expressed wild-type XPC or XPD cDNAs in these cells restored the survival to UVC radiation to wild-type levels in the respective complementation groups. Although complemented XP cell lines have been studied for years, data on cyclobutane pyrimidine dimer (CPD) repair in these cells at different levels are sparse. We demonstrate that CPD repair is faster in the complemented lines at the global, gene, strand specific, and nucleotide specific levels than in the original lines. In both XPC and TTD/XPD complemented lines, CPD repair on the non-transcribed strand is faster than that for the MRC5SV line. However, global repair in the complemented cell lines and MRC5SV is still slower than in normal human fibroblasts. Despite the slower global repair rate, in the complemented XPC and TTD/XPD cells, almost all of the CPDs at "hotspots" for mutation in the P53 tumor database are repaired as rapidly as in normal human fibroblasts. Such evaluation of repair at nucleotide resolution in complemented nucleotide excision repair deficient cells presents a crucial way to determine the efficient re-establishment of function needed for successful gene therapy, even when full repair capacity is not restored.  相似文献   

14.
We report the results of DNA repair studies and cytogenetic investigations in a patient presenting acute phothosensitivity and cancerous skin lesions. In lymphocytes and fibroblasts a reduced level of unscheduled DNA synthesis after UV irradiation was found and the presence of xeroderma pigmentosum, complementation group C, mutation was demonstrated by complementation analysis. In lymphocyte and fibroblast cultures the frequency of spontaneous chromosome gaps and breaks was normal, whereas the frequency of chromosome rearrangements was higher than expected. In fibroblasts from the 4th to the 18th passage of the culture, 4 reciprocal translocations with a clonal distribution were identified. The rearranged chromosomes were Nos. 2, 13, 14 and 15, Nos. 2 and 13 being both involved in 3 different translocations with breakpoints at 2q21, 2q31, 2p23 and 13q31, 13q12 or 3. The biological significance of this finding is discussed in view of a possible correlation with the DNA repair defect and a possible relevance in tumor development of specific chromosome rearrangements.  相似文献   

15.
Xeroderma pigmentosum is a human disease consisting of several complementation groups that are deficient in excision repair. Group C is one in which excision repair occurs at about 20-30% of normal levels. The distribution of mended sites in relation to unrepaired sites has been determined by cutting remaining unrepaired pyrimidine dimers with Microccocus luteus UV endonuclease. The mended sites have been found clustered together in a fashion that depended on cell proliferation. In confluent group C cells, the mended sites were clustered in regions where dimer excision was as efficient as excision in the DNA of normal cells. In proliferating group C cells, however, mended sites were randomly dispersed. The total amount of repair replication was the same in confluent and proliferating cells. Since previous work has shown that confluent group C cells show more extensive recovery from the lethal effects of UV irradiation than some other groups, clustered repair may correlate with a more efficient mechanism of restoring cell viability. The different distribution of repaired sites during DNA replication may be the result of changes in the state of the substrate for repair or changes in the metabolic priorities of DNA polymerases.  相似文献   

16.
17.
Excision repair of damage from ultraviolet light in both normal and xeroderma pigmentosum variant fibroblasts at early times after irradiation occurred preferentially in regions of DNA accessible to micrococcal nuclease digestion. These regions are predominantly the linker regions between nucleosomes in chromatin. The alterations reported at polymerization and ligation steps of excision repair in the variant are therefore not associated with changes in the relative distributions of repair sites in linker and core particle regions of DNA.  相似文献   

18.
DNA repair in xeroderma pigmentosum complementation groups C and D occurs at a low level. Measurements of pyrimidine dimers remaining in bulk DNA from the whole genome indicated very little excision in either complementation group. The repair sites in group C cells were, however, clustered together in small regions of the genome which appeared to be mended nearly as efficiently as the whole genome is mended in normal cells, while repair in group D cells was randomly distributed. Growth of normal cells in cycloheximide or 3-aminobenzamide neither inhibited repair nor altered the distribution of repair sites. Growth of normal cells in novobiocin or aphidicolin inhibited excision but repair remained randomly distributed. On the basis of these observations, and consideration of other cellular features of group C and D, we suggest that group C may represent a mutation which results in a low level of repair enzymes with normal function. Group D, on the other hand, may represent a mutation resulting in functionally defective repair enzymes.  相似文献   

19.
We describe a simple polymerase chain reaction (PGR)-based method for isolating short stretches of nontelomeric DNA adjacent to arrays of telomere repeat units, in principle applicable to any species for which the telomere repeat sequence is known. Application of this approach to human DNA resulted in the isolation of many candidate telomere junction clones, at least some of which were shown to be derived from telomere-adjacent regions. Most of the isolated clones detect multiple sequences in the human genome which represent one or a few sequence families present at the ends of most or all autosomes and variably truncated before the start of the telomere repeat array. Substantial sequence divergence between different members of these sequence families suggests a low rate of sequence homogenization by telomere exchange processes. The pseudoautosomal telomere junction has also been isolated and contains a shortened version of a recently described family of short interspersed repetitive elements (SINEs), only 14 base pairs (b.p.) from the start of the telomere.  相似文献   

20.
Cells of some excision-proficient xeroderma pigmentosum (XP) cell lines are highly sensitive to post-UV caffeine treatment in terms of sister-chromatid exchange (SCE) induction as well as cell lethality. In the present study, we conducted a detailed investigation of the enhancing effect of caffeine on SCE frequency induced by UV in excision-proficient XP cells, and obtained the following results. (1) Continuous post-UV treatment with 1 mM caffeine markedly enhances UV-induced SCEs and such enhanced SCEs occur with similar frequency during either the 1st or the 2nd cell cycle in the presence of caffeine and 5-bromodeoxyuridine (BrdUrd). (2) The high sensitivity of the cells to post-UV caffeine treatment persists for at least 2 days after UV when irradiated cells are held in either the proliferating or the nonproliferating state prior to the addition of BrdUrd. (3) Caffeine exerts its effect on cells in S phase. (4) Neither BrdUrd in the medium nor the incorporated 5-bromodeoxyuridine monophosphate (BrdUMP) in DNA plays an appreciable role in the expression of the enhancing effect of caffeine. The most likely explanation for our findings is as follows. In excision-proficient XP cells, the cause of SCE formation such as UV-induced lesions or resulting perturbations of DNA replication persists until the 2nd round or more of post-UV DNA replication. If caffeine is given as post-UV treatment, such abnormalities may be amplified, resulting in a synergistic increase in SCE frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号