首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 2',3'-dialdehyde of NADPH (NADPH dialdehyde) appears to act as an affinity label toward the respiratory burst oxidase of human neutrophils, inactivating the enzyme by attaching covalently to a residue at its NADPH-binding site. Although the oxidase in activated neutrophils is known to reside in the plasma membrane, our studies showed that in resting neutrophils the NADPH dialdehyde-sensitive component of the enzyme was located in the cytosol. These findings suggest that one of the steps in the activation of the respiratory burst oxidase is the transfer of its NADPH-binding component from the cytosol to the plasma membrane of the cell.  相似文献   

2.
Diphenylene iodonium (Ph2I), a lipophilic reagent, is an efficient inhibitor of the production of O2- by the activated NADPH oxidase of bovine neutrophils. In a cell-free system of NADPH oxidase activation consisting of neutrophil membranes and cytosol from resting cells, supplemented with guanosine 5'-[gamma-thio]triphosphate, MgCl2 and arachidonic acid, or in membranes isolated from neutrophils activated by 4 beta-phorbol 12-myristate 13-acetate, addition of a reducing agent, e.g. NADPH or sodium dithionite, markedly enhanced inhibition of the NADPH oxidase by Ph2I. The membrane fraction was found to contain the Ph2I-sensitive component(s). In the presence of a concentration of Ph2I sufficient to fully inhibit O2- production (around 10 nmol/mg membrane protein), addition of catalytic amounts of the redox mediator dichloroindophenol (Cl2Ind) resulted in a by-pass of the electron flow to cytochrome c, the rate of which was about half of that determined in non-inhibited oxidase. A marked increase in the efficiency of this by-pass was achieved by addition of sodium deoxycholate. The Cl2-Ind-mediated cytochrome c reduction was negligible in membranes isolated from resting neutrophils. At a higher concentration of Ph2I (100 nmol/mg membrane protein), the Cl2Ind-mediated cytochrome c reductase activity was only half inhibited, which indicated that, in the NADPH oxidase complex, there are at least two Ph2I sensitive components, differing by their sensitivity to the inhibitor. At low concentrations of Ph2I (less than 10 nmol/mg protein), the spectrum of reduced cytochrome b558 in isolated neutrophil membranes was modified, suggesting that the component sensitive to low concentrations of Ph2I is the heme binding component of cytochrome b558. Higher concentrations of Ph2I were found to inhibit the isolated NADPH dehydrogenase component of the oxidase complex. A number of membrane and cytosolic proteins were labeled by [125I]Ph2I. However, the radiolabeling of a membrane-bound 24-kDa protein, which might be the small subunit of cytochrome b558, responded more specifically to the conditions of activation and reduction which are required for inhibition of O2- production by Ph2I. The O2(-)-generating form of xanthine oxidase was also inhibited by Ph2I. Inhibition of xanthine oxidase, a non-heme iron flavoprotein, by Ph2I had a number of features in common with that of the neutrophil NADPH oxidase, namely the requirement of reducing conditions for inhibition of O2- production by Ph2I and the induction of a by-pass of electron flow to cytochrome c by Cl2Ind in the inhibited enzyme, suggesting some similarity in the molecular organization of the two enzymes.  相似文献   

3.
Two-dimensional gel electrophoresis was used to study protein phosphorylation in granules, membranes, and soluble fractions from human neutrophils that had been loaded with 32Pi. In resting cells, label was incorporated primarily into proteins of the membranes and the soluble supernatant; little appeared in the granules. Activation of 32P-loaded neutrophils resulted in an increase in the 32P content of a small number of membrane and soluble proteins without a change in the labeling of the granule fraction. The identity of the proteins affected by activation depended on the activating agent used; all of the activating agents, however, caused an increase in the labeling of a group of approximately 48-kDa proteins that appeared to be distributed between the membranes and the soluble supernatant. To investigate the role of phosphorylation in the activation of the respiratory burst oxidase, the incorporation of 32P into phosphoproteins was studied in neutrophils from patients with chronic granulomatous disease. When these cells were exposed to phorbol myristate acetate, one of the agents used for the activation of normal neutrophils, the 48-kDa proteins in the membranes and supernatants failed to take up additional 32P. Phosphorylation patterns in normal neutrophils activated under nitrogen were similar to the patterns seen with cells activated in air, suggesting that the differences in phosphorylation between normal and chronic granulomatous disease neutrophils did not represent secondary effects of the oxidants produced by the normal cells, but reflected primary biochemical differences between the normal and the defective phagocytes. We postulate from these results that the uptake of phosphate by the 48-kDa protein group may be involved in the activation of the respiratory burst oxidase.  相似文献   

4.
Phagocytic leukocytes contain an activatable NADPH:O2 oxidoreductase. Components of this enzyme system include cytochrome b558, and three soluble oxidase components (SOC I, SOC II, and SOC III) found in the cytosol of resting cells. Previously, we found that SOC II copurifies with, and is probably identical to, a 47-kDa substrate of protein kinase C. In the present study we investigated the change in location of several of these oxidase components after activation of intact neutrophils with phorbol myristate acetate (PMA) and separation of subcellular fraction on sucrose density gradients. On Western blots with fractions of resting cells, the alpha subunit of cytochrome b558 was detected with a monoclonal antibody as a doublet of Mr 22,000 and 24,000 in the specific granules and as a single band of Mr 24,000 in the plasma membrane. PMA induced an increase of cytochrome b558 in the plasma membrane, including the Mr 22,000 band. PMA also induced translocation of the 47-kDa protein from the cytosol to the membrane fraction, as revealed by in vitro phosphorylation experiments. When NADPH oxidase activity was determined in a cell-free system in the presence of sodium dodecyl sulfate and GTP with plasma membranes from resting cells, cytosol from PMA-treated cells was deficient compared with cytosol from resting cells. This deficiency could be partially restored by the addition of SOC I. Concomitantly, SOC I activity appeared in the plasma membranes of PMA-treated cells. These studies support the hypothesis that PMA stimulation of neutrophils results in assembly of oxidase components from the cytosol and the specific granules in the plasma membrane with subsequent expression of NADPH oxidase activity.  相似文献   

5.
A superoxide-forming oxidase from activated human neutrophil membranes was solubilized by two slightly different methods, then purified by "dye-affinity" chromatography. Kinetic studies of the purified preparations gave Vmax values of 5-10 mumol of O-2/min/mg of protein, and Km values for NADH and NADPH that were in reasonable agreement with values determined previously using particulate and crude solubilized preparations of the respiratory burst oxidase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed prominent bands at 67, 48, and 32 kDa, together with some minor contaminants, whereas gel electrophoresis under non-denaturing conditions gave a single major band that when eluted and re-electrophoresed in the presence of sodium dodecyl sulfate showed bands at 67, 48, 32 kDa. We believe that all three bands represent oxidase components. The flavin content of the purified enzyme was 20.4 +/- 2.0 S.E. pmol of FAD/microgram of protein, whereas heme averaged 0.1 +/- 0.02 pmol/microgram and ubiquinone could not be detected. Assuming that the enzyme is composed of one 67-kDa subunit, one 48-kDa subunit, and one 32-kDa subunit (i.e. that its molecular mass is approximately 150 kDa), it can be calculated to have a turnover number of 700-1500 min-1, in agreement with a value reported previously for oxidase in a particulate O-2-forming system (Cross, A. R., Parkinson, J. F., and Jones, O. T. G. (1985) Biochem. J. 226, 881-884), and to contain the following quantities of redox carriers (mol/mol): FAD, 3.0; heme, 0.015; ubiquinone, less than 0.06. It remains to be determined whether this preparation represents the complete respiratory burst oxidase or is only the pyridine nucleotide dehydrogenating component of a more complex enzyme.  相似文献   

6.
Whether or not cytochrome b-559 is a necessary component of NADPH oxidase activity in neutrophils is still controversial. In highly purified plasma membranes isolated from resting neutrophils and lacking cytochrome b, addition of arachidonic acid induced an NADPH oxidase activity. This activity was similar to that of plasma membranes isolated from phorbol myristate acetate (PMA)-stimulated cells which possessed cytochrome b. Addition of arachidonic acid to the latter plasma membranes did not alter the oxidase activity. It can be concluded that plasma membranes isolated from resting neutrophils have, in the presence of arachidonic acid, an NADPH oxidase activity similar to that of PMA-stimulated cells, except that it is independent of cytochrome b-559.  相似文献   

7.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of Km and Vmax for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, Km values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophil oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.  相似文献   

8.
We describe in this paper a monoclonal antibody to pig NADPH oxidase which inhibits enzymatic activity. This antibody, designated 1H8.2, was selected from a group of monoclonal antibodies produced against active preparations of purified NADPH oxidase and which showed selectivity of binding. 1H8.2 is an IgM restricted in binding to pig NADPH oxidase and showing higher binding to NADPH oxidase purified from phorbol myristate acetate-stimulated than from resting neutrophils. The antibody inhibits by about 90% the oxidase activity at 20-50 micrograms/ml. Inhibition is due to a decrease of the Vmax of the oxidase, and the Km is not affected. Incubation of the NADPH oxidase with 1H8.2 in the presence of concentrations of NADPH up to 25-fold the Km does not prevent the inhibition. Together with the evidence that the antibody does not inhibit the neutrophil superoxide dismutase-insensitive NADPH cytochrome c reductase and the liver NADPH-cytochrome c reductase this observation indicates that the 1H8.2 does not bind to an epitope belonging to the NADPH-binding site. Experiments of immunoprecipitation of iodinated membrane proteins and of immunoaffinity purification showed that 1H8.2 recognizes a heterodimer of apparent molecular mass of 16/18 and 14 kDa. These polypeptides can be involved in the NADPH oxidase activity or represent still unrecognized molecules able to modulate its function.  相似文献   

9.
Cytochrome b558 is the only membrane component of the phagocyte O2(-)-producing NADPH oxidase. The O2- production by the oxidase reconstituted in vitro with the crude membrane fraction is enhanced several-fold by addition of FAD, whereas that with the partially purified cytochrome is completely dependent on exogenous FAD, suggesting that FAD acts through the membrane component, cytochrome b558. The alignments of the amino acid sequence of the large subunit of the cytochrome (gp91-phox) with those of previously characterized flavoproteins reveal that the middle and C-terminal portions of gp91-phox are likely to be FAD- and NADPH-binding domains, respectively. Cytochrome b558, thus, appears to be a flavoprotein with an NADPH-binding site, of the NADPH oxidase.  相似文献   

10.
Superoxide (.O2-) production by the NADPH oxidase of a membrane fraction derived from rabbit peritoneal neutrophils activated by 4 beta-phorbol 12-myristate 13-acetate (PMA) was studied at 25 degrees C under different conditions, and measured by the superoxide dismutase inhibitable reduction of cytochrome c. Whereas PMA-activated rabbit neutrophils incubated in a glucose-supplemented medium exhibited a substantial rate of production of .O2-, the membranes prepared by sonication of the activated neutrophils were virtually unable to generate .O2- in the presence of NADPH. Instead, they exhibited an NADPH-dependent diaphorase activity, measured by the superoxide-dismutase-insensitive reduction of cytochrome c. Upon addition of arachidonic acid, which is known to elicit oxidase activation, the NADPH diaphorase activity of the rabbit neutrophil membranes vanished and was stoichiometrically replaced by an NADPH oxidase activity. The emerging oxidase activity was fully sensitive to iodonium biphenyl, a potent inhibitor of the respiratory burst, whereas the diaphorase activity was not affected. Addition of 0.1% Triton X-100 or an excess of arachidonic acid, acting as detergent, resulted in the reappearance of the diaphorase activity at the expense of the oxidase activity. These results indicate that the diaphorase-oxidase transition is reversible. When the rabbit neutrophil membranes were supplemented with rabbit neutrophil cytosol, guanosine 5'-[gamma-thio]triphosphate and Mg2+, in addition to arachidonic acid, not only the NADPH diaphorase activity disappeared, but the emerging NADPH oxidase activity was markedly enhanced (about 10 times compared to that of membranes treated with arachidonic acid alone). The diaphorase-oxidase transition was accompanied by a 10-fold increase in the Km for NADPH, suggesting a change of conformation propagated to the NADPH-binding site during the transition. The treatment of PMA-activated rabbit neutrophils with cross-linking reagents, like glutaraldehyde or 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide, prevented the loss of the PMA-elicited oxidase activity upon disruption of the cells by sonication, suggesting that the interactions between the components of the oxidase complex are stabilized by cross-linking.  相似文献   

11.
NADPH oxidase activity in a membrane fraction prepared from phorbol 12-myristate 13-acetate (PMA)-stimulated guinea pig polymorphonuclear leukocytes (PMNL) was inhibited by positively charged myristylamine. The inhibitory effect of myristylamine was significantly suppressed by simultaneous addition of a negatively charged fatty acid, such as myristic acid. However, the suppression by myristylamine was not sufficiently restored when myristic acid was added later. On the other hand, pretreatment of PMA-stimulated PMNL with glutaraldehyde, a protein crosslinking reagent, stabilized NADPH oxidase activity against inhibition by myristylamine, but not against that by p-chloromercuribenzenesulfonic acid. In a cell-free system of reconstituted plasma membrane and cytosolic fractions prepared from unstimulated PMNL, arachidonic acid-stimulated NADPH oxidase activity was also inhibited by myristylamine. During the activation of NADPH oxidase by PMA in intact PMNL and by arachidonic acid in the cell-free system, cytosolic activation factor(s) translocated to plasma membranes. The bound cytosolic activation factor(s) was released from the membranes by myristylamine, accompanied by a loss of NADPH oxidase activity. It is plausible from these results that the inhibitory effect of alkylamine on NADPH oxidase is due to induction of the decoupling and/or dissociation of the cytosolic activation component(s) from the activated NADPH oxidase complex by increments of positive charges in the membranes, and that the glutaraldehyde treatment prevents the dissociation of component(s).  相似文献   

12.
The O2(-)-forming respiratory burst oxidase is present in a dormant state in a fully soluble system containing both cytosol and a deoxycholate extract of membranes from resting human neutrophils. Sodium dodecyl sulfate at low concentrations converts this soluble dormant oxidase into its catalytically active form. The Vmax for the activated oxidase was 2.1 mumol of O2-/min/mg of membrane protein. Michaelis constants for NADPH and NADH (38 microM and 1.7 mM, respectively) were similar to those measured previously in other systems. Oxidase activity was not detected after sodium dodecyl sulfate treatment of systems containing solubilized neutrophil membranes obtained from patients with X-linked chronic granulomatous disease. These results suggest that the deoxycholate extract contains both the resting oxidase and those membrane-associated components needed for its activation, all in functioning states.  相似文献   

13.
A NADPH cytochrome c oxidoreductase purified from membranes of rabbit peritoneal neutrophil was shown to behave as the NADPH dehydrogenase component of the O2- generating oxidase complex. A photoactivable derivative of NADP+, azido nitrophenyl-gamma-aminobutyryl NADP+ (NAP4-NADP+), was synthesized in its labeled [3H] form and used to photolabel the NADPH cytochrome c reductase at different stages of the purification procedure. Control assays performed in dim light indicated that the reduced form of NADP4-NADP+ generated by reduction with glucose-6-phosphate and glucose-6-phosphate dehydrogenase was oxidized at virtually the same rate as NADPH. Upon photoirradiation of the purified reductase in the presence of [3H]NAP4-NADP+ and subsequent separation of the photolabeled species by sodium dodecyl sulfate polyacrylamide gel electrophoresis, radioactivity was found to be present predominantly in a protein band with a molecular mass of 77-kDa and accessorily in bands of 67-kDa and 57-kDa. Evidence is provided that the 67-kDa and 57-kDa proteins arose from the 77-kDa protein by proteolysis. Despite removal of part of the sequence, the proteolyzed proteins were still active in catalyzing electron transport from NADPH to cytochrome c and in binding the photoactivable derivative of NADP+.  相似文献   

14.
The superoxide-generating enzyme of human neutrophils, NADPH oxidase, is converted from an inactive to an active form upon stimulation of the neutrophil. This activation process was examined using a recently developed cell-free system in which dormant oxidase is activated by arachidonic acid in the presence of a soluble factor from the neutrophil (Curnutte, J. T. (1985) J. Clin. Invest. 75, 1740-1743). NADPH oxidase from unstimulated human neutrophils was detected only in the membrane fraction. The soluble activation factor was localized entirely to the cytosolic fraction and exhibited two peaks of activity when partially purified under nondenaturing conditions: a major peak with a molecular mass of approximately 250 kDa and a variable minor peak with a mass of approximately 40 kDa. Both forms activated NADPH oxidase in a similar manner and did not exhibit synergy when combined. The cytosolic factor is not protein kinase C (or another kinase) as both peaks of factor activity could be resolved from the protein kinase C peak and neither required calcium or ATP to activate the oxidase. Activation of NADPH oxidase did require the simultaneous presence of the membrane fraction, the cytosolic factor, arachidonic acid, and magnesium. Following activation, however, only the membrane fraction was then required for O2- production. Cytosolic factor levels were normal in five patients with either X-linked or autosomal recessive cytochrome b-negative chronic granulomatous disease. In contrast, the membrane fractions from each failed to generate O2-, indicating that the defects in these two genetic forms of chronic granulomatous disease reside either in the oxidase itself or in a membrane component required for activation.  相似文献   

15.
The respiratory burst oxidase of neutrophils can be activated in a cell-free system in which solubilized membranes, cytosol, and Mg2+ are required and in which sodium dodecyl sulfate is used to convert the dormant oxidase to an active form. The 2',3'-dialdehyde analog of NADPH was used as an affinity label for the cytosolic NADPH binding component of the respiratory burst oxidase from human neutrophils. When treated with this affinity label in the presence of sodium cyanoborohydride to reduce Schiff bases, neutrophil cytosol was shown to lose at least 90% of its activity in the cell-free system. In contrast to normal cytosol, treated cytosol had lost its ability to abolish the lag time required for activation of the oxidase, suggesting that the treated cytosol was no longer able to participate in the rate-limiting activation step. Furthermore, the treated cytosol had lost its ability to convert the oxidase from a form with a high Km to a form with a low Km for NADPH. The ability of dialdehyde-treated cytosol to activate the oxidase could be restored by untreated cytosol with a concentration dependence suggesting that only one kinetically active component of the oxidase was inhibited by treatment with the NADPH analog. Like the dialdehyde-treated cytosol, cytosols from patients with chronic granulomatous disease caused by a deficiency in a cytosolic Mr = 47,000 protein (pp47) fail to participate in the rate-limiting activation step (Curnutte, J. T., Scott, P. J., and Babior, B. M. (1989) J. Clin. Invest. 83, 1236-1240). These chronic granulomatous disease cytosols were nevertheless able to restore limited activity to the dialdehyde-inactivated cytosol in a cell-free activation system. These results are consistent with a model in which (a) the NADPH binding subunit of the oxidase exists in a very slowly dissociating complex with one or more additional cytosolic components, including pp47, and (b) the NADPH binding component of the oxidase controls the affinity of the enzyme for NADPH, either directly or through the binding of additional cytosolic factors.  相似文献   

16.
In an attempt to elucidate properties and activation mechanisms of the NADPH oxidase system, which is known to be responsible for the production of superoxide anion (O2-) in cell membranes of polymorphonuclear leukocytes (PMNL), intact guinea pig PMNL were treated with glutaraldehyde, a protein crosslinking reagent, before or after stimulation with phorbol 12-myristate 13-acetate (PMA). Then, PMNL were disrupted and NADPH oxidase activity was measured. After the treatment of resting PMNL with glutaraldehyde, NADPH oxidase was no longer activated by PMA. On the other hand, the NADPH oxidase activity enhanced by PMA in advance was markedly retained by the glutaraldehyde treatment of such PMA-stimulated PMNL as compared to that in untreated cells. Similar retention by glutaraldehyde of the stimulated NADPH oxidase activity was observed in PMNL stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP) and cytochalasin D. Furthermore, the oxidase activity of glutaraldehyde-treated PMNL was stable during incubation at 37 degrees C, the half life of the oxidase activity of the treated PMNL being more than 90 min whereas that of the untreated PMNL is about 15 min. This ability of the glutaraldehyde treatment to retain the activity was also observed against inactivation by high concentrations of NaCl and by positively charged alkylamine.  相似文献   

17.
Neutrophil NADPH:O2 oxidoreductase activity, essential in the killing of bacteria by neutrophils, can be elicited in a cell-free system that requires plasma membranes, cytosol and sodium dodecyl sulfate. In addition, GTP or its nonhydrolyzable analog guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) enhances NADPH oxidase activity. We investigated the mechanism of this effect of GTP gamma S in the cell-free system. Cytosol from human neutrophils was separated in three different soluble oxidase components (SOC I, SOC II, and SOC III). Previously we (Bolscher, B. G. J. M., Van Zwieten, R., Kramer, I. J. M., Weening, R. S., Verhoeven, A. J., and Roos, D. (1989) J. Clin. Invest. 83, 757-763) reported that the cytosol contains two components which act synergistically. We now report that one component (previously labeled SOC II) contains two different components that can be separated by ion exchange chromatography. Immunoblotting with antiserum B-1 (Volpp, B. D., Nauseef, W. M., and Clark, R. A. (1988) Science 242, 1295-1297), directed against a cytosolic complex capable of activating latent membranes in the cell-free system, showed a 47-kDa protein in SOC II and a 67-kDa protein in SOC III. SOC II also contains the 47-kDa phosphoprotein, which indicates that this phosphoprotein and the protein recognized by the antiserum are identical. Low rates of NADPH-dependent O2 consumption can be elicited by SOC II and SOC III in the absence of SOC I. This activity is independent of GTP gamma S. Addition of SOC I increases this activity 3-4-fold, only when GTP gamma S is present. Plasma membranes, incubated with SOC I plus GTP gamma S and re-isolated, showed a similar 3-4-fold enhanced O2 consumption with SOC II and SOC III. The GTP gamma S effect is exerted primarily at the level of the plasma membrane. The concentration of GTP gamma S that causes a half-maximal stimulation was 0.4 mu M. It is concluded that SOC I is a functional component of the NADPH oxidase.  相似文献   

18.
Professional phagocytes (neutrophils, eosinophils, monocytes and macrophages) possess an enzymatic complex, the NADPH oxidase, which is able to catalyze the one-electron reduction of molecular oxygen to superoxide, O2-. The NADPH oxidase is dormant in non-activated phagocytes. It is suddenly activated upon exposure of phagocytes to the appropriate stimuli and thereby contributes to the microbicidal activity of these cells. Oxidase activation in phagocytes involves the assembly, in the plasma membrane, of membrane-bound and cytosolic components of the oxidase complex, which were diassembled in the resting state. One of the membrane-bound components in resting phagocytes has been identified as a low-potential b-type cytochrome, a heterodimer composed of two subunits of 22-kDa and 91-kDa. The link between NADPH and cytochrome b is probably a flavoprotein whose subcellular localization in resting phagocytes remains to be determined. Genetic defects in the cytochrome b subunits and in the cytosolic factors have been shown to be the molecular basis of chronic granulomatous disease, a group of inherited disorders in the host defense, characterized by severe, recurrent bacterial and fungal infections in which phagocytic cells fail to generate O2- upon stimulation. The present review is focused on recent data concerning the signaling pathway which leads to oxidase activation, including specific receptors, the production of second messengers, the organization of the oxidase complex and the molecular defects responsible for granulomatous disease.  相似文献   

19.
A flavin-linked NADPH cytochrome c oxido-reductase of molecular mass 77-kDa was extracted from membranes of rabbit peritoneal neutrophils and purified in the presence of Triton X-100. The redox properties of this enzyme were examined. By some criteria including its high sensitivity to mersalyl, and its relatively high specificity for NADPH compared to NADH, the rabbit neutrophil NADPH cytochrome c reductase resembled NADPH-cytochrome P-450 reductase. Limited proteolysis generated water soluble fragments, with molecular masses of 67-kDa and 57-kDa, which were still endowed with a substantial reductase activity. When added to a lysate of neutrophil membranes in octylglucoside, in the presence of an oxidase activation medium consisting of rabbit neutrophil cytosol, GTP-gamma-S, arachidonic acid and Mg2+, the purified reductase enhanced the production of O2-., suggesting that it forms part of the O2-. generating oxidase.  相似文献   

20.
Platelets contain exceptionally high levels of pp60c-src and, thus, provide a convenient system for investigating the physiological function of this protein-tyrosine kinase. We have employed chemical cross-linking of myristylated amino-terminal peptides of pp60c-src to platelet membranes in order to identify platelet membrane components that interact with pp60c-src to regulate or mediate its activity. We detected specific binding of radioiodinated peptides to platelet membrane proteins of 32, 50, 92, and 105 kDa. The 32-kDa protein may be related to the putative src receptor component recently identified in fibroblast membranes. The most reactive platelet protein, however, is the 50-kDa protein, which is either absent or nonreactive in fibroblast membranes. Binding of src peptides to this protein was saturable, and we estimate the presence of approximately 1 x 10(6) of the 50-kDa binding sites per platelet. The specificity of the peptide binding to the 50- and 32-kDa platelet proteins was analyzed by competition with different peptides. The binding sites displayed an absolute requirement for an N-myristoyl moiety and a strong preference for pp60c-src amino-terminal sequences. The identification of these src-interacting proteins may help to decipher the biochemical pathways in which platelet pp60c-src is involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号