首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The chemical composition of the CNS (separated into cerebrum, cerebellum, brain stem and spinal cord) was determined in sheep during foetal and post-natal development and in adults. (2) The spinal cord differed from the remainder of the CNS in growing more after the period studied (50-day-old foetuses to 5-week-old lambs) than before it. This was largely attributable to lipid accumulation. (3) Chemical growth (accumulation of DNA, protein and lipid) proceeded linearly in spinal cord, logarithmically in cerebrum and cerebellum while in brain stem growth was described by a sigmoid function. (4) Fat-free dry matter, protein, total lipid, cholesterol and phospholipid concentrations increased progressively in all parts of the CNS but DNA concentrations changed little. In the cerebrum alone there was an increase in DNA concentration during maturation suggesting an increased cell population. Cholesterol was present predominantly in the free form but esters were detected in foetal tissues from 70 up to 120 days gestation. (5) Cerebroside, the characteristic lipid of myelin, increased in concentration soon after 85 days of gestation, up to which point very low values were recorded, the rate varying according to the region of the CNS examined. Rates of increase in total regional cerebroside content were used to identify periods of myelination and the results suggest that there are two periods of peak activity, one about 20 days before birth and the other at 10-20 days after birth. (6) The composition of lipids added during the two phases of myelination and during maturation were characteristically different. In the spinal cord, lipid analyses best reflect changes in myelin composition.  相似文献   

2.
—Incubation of slices of rat central nervous system in Krebs-Ringer bicarbonate buffer produced a lipoprotein fraction which floated on 10·5% sucrose after homogenization of the slices and centrifugation. This fraction was not found after homogenization and centrifugation of fresh tissue and appeared to depend upon incubation. The amount of the light fraction increased in the following order per 100-mg slice: cerebrum < thalamic area < cerebellum < brain stem < spinal cord. The lipid composition of this fraction was similar to that of myelin, but contained a lower protein content compared to myelin of the corresponding area. This fraction was termed ‘dissociated myelin’. Upon incubation of slices a portion of the basic protein was lost from myelin subsequently isolated, and the dissociated fraction was slightly enriched in basic protein. The distribution of myelin protein among the characteristic three groups (basic, proteolipid and high mol. wt.) was quite different in myelin from spinal cord compared to that from other CNS area. Spinal cord myelin contained about 17% protein compared to about 23% in cerebrum, with brain stem myelin intermediate (19%), and the difference appeared to be due to lesser amounts of proteolipid in the caudal areas. The amount of dissociation after incubation was about 3–5 per cent of the total myelin in the cerebral cortex, 10 per cent in the thalamic area, 20 per cent in cerebellum, 35 per cent in the brain stem, and around 45 per cent in spinal cord. The smaller amount of proteolipid protein in spinal cord myelin may result in a deficiency of cohesive forces holding lipids and proteins together, thus causing greater instability and dissociation. Myelin dissociation increased with time of incubation up to 3 h, was augmented by Ca2+, and was substantial at pH 11, reaching a peak at pH 7, then decreased in the acid range. A similar fraction has been isolated previously from fresh CNS tissue made edematous by chronic treatment of rats with triethyl tin. The possible relationship of swelling in the disease process and myelin dissociation are discussed.  相似文献   

3.
Abstract— The non-metabolizable amino acid, 1-aminocyclopentane-l-carboxylic acid (ACPC), when administered to mice, induces primary degeneration of axons in the cerebellum, rostral spinal cord and peripheral nerves. One to 4 weeks after a single intraperitoneal injection of ACPC (0.5–2 mg/g body wt) in adult mice, the fresh and dry weights of brain, cerebellum and spinal cord were reduced compared with those of normal and pair-fed controls. The protein content of all CNS regions, but particularly that of the cerebellum and cervical spinal cord, was lowered in ACPC-treated mice relative to that of normal controls. Sciatic nerve protein was also decreased in mice following 2 mg/g of ACPC. Pair-fed controls exhibited protein deficits in the cerebellum and cervical spinal cord but to a significantly smaller degree. In ACPC-treated mice, the sulfatide content of spinal cord and peripheral nerve was reduced but that of brain was normal. Sphingomyelin levels in these three regions increased except in the brains of mice given 0.5 mg/g of ACPC where the levels fell.
The protein and sulfatide deficits were greatest in the regions which are known to exhibit the highest proportion of degenerating nerve fibers. The correlation of ACPC treatment with protein and sulfatide loss is consistent with the reported disruptive effects of ACPC on protein metabolism and with the involvement of proteins in sulfatide. metabolism. The protein deficits in pair-fed mice are considered in relation to the exacerbating effect of reduced dietary protein intake on ACPC neurotoxicity.  相似文献   

4.
Abstract— The chemical composition of four parts of the CNS (cerebrum, cerebellum, brain stem and spinal cord) was determined in 107 pigs at 11 stages of fetal and postnatal development and also in 6 adults. In cerebrum, cerebellum and brain stem, but not in spinal cord, the rate of increase in weight and the rates of change in lipid content slowed down for a period of about 10 days before and after birth. Cholesterol esters and desmosterol were only found in progressively decreasing amounts during the fetal stages of development and together with DNA these were exceptions to the general increases in the tissue concentrations and total amounts of other components during the period studied.
The onset of myelination, as measured by calculated daily increases in tissue contents of cerebroside took place between 70 and 80 days conceptual age and there were two peaks of activity, the first occurring 2 weeks before and the second 3 weeks after birth. Unlike the rate curve for total spinal cord weight the biphasic accumulation of DNA was not synchronous with myelin lipid accretion and the earlier prenatal DNA peak probably denotes proliferation of oligodendrocytes. The two phases of myelination are discussed in relation to an observed generalized pause in development immediately before and after birth.
Fatty acid analysis of cerebrosides indicated that, in spinal cord, chain elongation and desaturation are associated with myelination and continue with increasing activity until maturity. Consequently there was a progressive decrease in the proportion of saturated fatty acids. The fatty acid components of cholesterol esters in the developing pig were shown to be similar to those found during development in the CNS of other species but different from those found in demyelinating conditions.  相似文献   

5.
Abstract— In a neurochemical study of experimental Border Disease in lambs it was found that the fresh weights of four parts of the CNS (cerebrum, cerebellum, brain stem and spinal cord) from clinically affected lambs were significantly smaller than those of controls at birth but by 20 weeks of age the cerebrum, cerebellum and brain stem had reached near normal weights. The spinal cord was still considerably smaller, however. Clinical symptoms of the disease (muscular spasms and'hairy'birthcoat) had disappeared during this period, accompanied by a regression in the neurochemical abnormalities seen at birth. Thus the deficiency of myelin lipids was partially made up by the rapid deposition of cerebrosides and by 20 weeks differences in the fatty acid composition of this lipid fraction were no longer apparent. Myelin degeneration as indicated by the presence of elevated levels of esterified cholesterol was apparently absent at 20 weeks of age and this was parallelled by a fall in the level of'anti-myelin'antibodies in the sera of affected lambs. The altered distribution of copper in spinal cord myelin seen at birth had also become nearly normal at the end of the period.  相似文献   

6.
Abstract— The effect of zuclomiphene, a hypocholesterolemic agent, on developing rat CNS cholesterol biosynthesis was examined. Sterol content and composition was studied in relation to age in four regions of the CNS, cerebrum, brain stem, spinal cord and cerebellum. Sterol content of all four regions was slightly lower in drug-treated animals than in controls. Brain stem and spinal cord were more susceptible to the effects of zuclomiphene than were cerebrum and cerebellum. Drug treatment resulted in the accumulation of desmosterol and zymosterol (5 x -cholesta-8,24-dien-3β-ol) in all CNS regions. After 15 days of drug treatment, desmosterol constituted more than 50% of the total sterol in the four examined regions. Six to 9% of the total sterol was zymosterol.
Examination by electron microscopy indicated only minimal morphological changes. Occasionally, neuronal membranous cytoplasmic inclusion bodies were evident.  相似文献   

7.
Fertilized hens' eggs were treated externally with 2,4-Dichlorophenoxyacetic butyl ester (2,4-D b.e.) (3.1 mg/egg) immediately before starting incubation, and after different times of incubation (5, 10 and 15 days). Controls were treated externally with ether. Hatchability studies demonstrated that fetotoxic effects of 2,4-D b. e. were similar on the 0, 5 and 10 incubation day, but the 15 Day Group improved the hatching percentage. One day after hatching, chicks were decapitated, and CNS tissue was dissected. Myelin markers, as cerebrosides and CNP, were determined in cerebrum, cerebellum, brain stem and spinal cord of the four groups. They were reduced in cerebrum and brain stem of the 0, 5 and 10 Day Groups, but in the 15 Day Group they were in normal levels. Cerebellum presented normal myelin marker contents in each group studied, while spinal cord only presented decreased marker contents in the 5 Day Group. UDP galactose-ceramide galactosyl transferase (EC 2.4.1.45) activity was reduced in whole brain of chicks born from eggs treated preincubation. The results show the importance of time drug application and suggest that the vulnerable period in CNS development includes proliferation and development of myelin forming cells. Among CNS regions, cerebrum and brain stem seem to be the most vulnerable to the toxic action of 2,4-D b.e. in the chick.  相似文献   

8.
Abstract— The distribution of the soluble, membrane bound and myelin carbonic anhydrase in different regions of the rat CNS was examined as a function of age. A neuraxial progression from spinal cord to upper brain stem was observed for all three enzyme fractions in the 90 day old rat: upper brain stem > lower brain stem and cerebellum > spinal cord. The membrane bound fraction accounted for close to 60% of the total carbonic anhydrase in all regions except the cerebellum where it accounted for only 40%. The developmental pattern of the total membrane bound and soluble fractions were virtually parallel in all regions studied suggesting that they are derived from a common enzyme pool. The myelin enzyme accounts for a small but significant part of the membrane bound fraction and is present at adult levels by 16 days of age indicating it is an early and specific myelin component.  相似文献   

9.
Both experimental and clinical studies suggests that oxidative stress plays an important role in the pathogenesis of diabetes mellitus type 1 and type 2. Hyperglycaemia leads to free radical generation and causes neural degeneration. In the present study we investigated the possible neuroprotective effect of mexiletine against streptozotocin-induced hyperglycaemia in the rat brain and spinal cord.30 adult male Wistar rats were divided into three groups: control, diabetic, and diabetic-mexiletine treated group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Mexiletine (50 mg/kg) was injected intraperitoneally every day for six weeks. After 6 weeks the brain, brain stem and cervical spinal cord of the rats were removed and the hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for biochemical analysis (the level of Malondialdehide [MDA], Nitric Oxide [NO], Reduced Glutathione [GSH], and Xanthine Oxidase [XO] activity). MDA, XO and NO levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group increased significantly, when compared with control and mexiletine groups (P < 0.05). GSH levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the diabetic group decreased significantly when compared with control and mexiletine groups (P < 0.05).This study demonstrates that mexiletine protects the neuronal tissue against the diabetic oxidative damage.  相似文献   

10.
11.
It is well known that hyperglycaemia due to diabetes mellitus leads to oxidative stress in the central nervous system. Oxidative stress plays important role in the pathogenesis of neurodegenerative changes. In the present study we investigated the possible neuroprotective effect of etomidate against streptozotocin-induced (STZ-induced) hyperglycaemia in the rat brain and spinal cord. A total of 40 rats were used in this study. Rats were divided into four groups: sham-control, diabetic, diabetic-etomidate treated and vehicle for etomidate treatment group. Diabetes mellitus was induced by a single injection of streptozotocin (60 mg/kg body weight). Three days after streptoztocin injection, etomidate (2 mg/kg) was injected intraperitoneally for etomidate group and lipid emulsion (10%) for vehicle group was injected with corresponding amount intraperitoneally every day for 6 weeks. Six weeks after streptozotocin injection, seven rats from each group were killed and brain, brain stem and cervical spinal cord were removed. The hippocampus, cortex, cerebellum, brain stem and spinal cord were dissected for the biochemical analysis (the level of malondialdehyde [MDA], total nitrite, reduced glutathione [GSH], and xanthine oxidase [XO] activity). STZ-induced diabetes resulted in significantly elevation of MDA, XO and nitrite levels in the hippocampus, cortex, cerebellum, brain stem and spinal cord of the rats (P < 0.05) while etomidate treatment provided significantly lower values (P < 0.05). This study demonstrated that etomidate have neuroprotective effect on the neuronal tissue against the diabetic oxidative damage.  相似文献   

12.
Injury to the central nervous system (CNS) can result in severe functional impairment. The brain and spinal cord, which constitute the CNS, have been viewed for decades as having a very limited capacity for regeneration. However, over the last several years, the body of evidence supporting the concept of regeneration and continuous renewal of neurons in specific regions of the CNS has increased. This evidence has significantly altered our perception of the CNS and has offered new hope for possible cell therapy strategies to repair lost function. Transplantation of stem cells or the recruitment of endogenous stem cells to repair specific regions of the brain or spinal cord is the next exciting research challenge. However, our understanding of the existing stem cell pool in the adult CNS remains limited. This review will discuss the identification and characterization of CNS stem cells in the adult brain and spinal cord.  相似文献   

13.
—The regional distributions of serine hydroxymethyltransferase (SHMT) and glycine transaminase (GT) have been determined in five areas of the CNS of the rat. The SHMT activity per mg protein varied in these areas in the following order: medulia-pons and spinal cord > cerebellum > midbrain > telencephalon. The GT activity per mg protein was essentially the same in the four brain areas, whereas, in the spinal cord it was lower. The activity of GT did not correlate with the glycine content (r=?0.45. P > 0.05). However, SHMT activity per mg protein was correlated with the glycine content in four regions (the telencephalon, midbrain, medulla-pons and spinal cord; r= 0.997, P < 0.05). When the activity of SHMT was expressed per relative number of mitochondria, the enzyme levels were correlated with the glycine content in all five areas (r= 0.952, P < 0.05). The distribution of SHMT was determined in the primary subcellular fractions of the CNS. The SHMT activity in these areas of the CNS appeared to be located predominately in paniculate structures, while only 1 to 4 per cent was found in the soluble fraction. The crude nuclear (P1) and the crude mitochondrial (P2) fractions contained 90–97 per cent of the activity. Subfractionation of P2 pellets obtained from the telencephalon, medulla-pons and spinal cord indicated the SHMT activity was localized in both ‘free’ and occluded mitochondria.  相似文献   

14.
15.
The effects of ayurvedic herbal mixture Maharishi Amrit Kalash(MAK) were studied on brain lipid peroxidation, oxygen consumption, and lipofuscin accumulation in 10 months and 32 months old guinea pigs. Brain regions studied were cerebral cortex, hypothalamus, cerebellum and spinal cord. Parameters assessed were lipid peroxidation, oxygen consumption, and lipofuscin accumulation. The endogenous lipid peroxide was found to be increased significantly (P < 0.05) in the 32-month-old animals. Neuronal lipofuscin accumulation in the neurons of cerebral motor cortex, cerebellum and cervical spinal cord was increased (P < 0.05) in the older animals. Oxygen consumption was found to be decreased significantly(P < 0.05) in the 32-month old guinea pigs. Treatment with MAK at a dose of 500 mg/kg body weight daily for two months reduced the lipid peroxidation and lipofuscin pigment accumulation significantly in brain regions and it also helped in restoring the normal oxygen consumption in the older animals. This indicates antioxidant properties of MAK.  相似文献   

16.
Sustained hyperammonemia resulting from portocaval anastomosis (PCA) in the rat, is accompanied by neurological symptoms and reversible morphological changes in brain, the nature and distribution of which suggest selective vulnerability of certain brain structures. the present study was initiated to investigate the effects of increasing CNS ammonia on the distribution of amino acids in regions of the rat brain in relation to the degree of neurological impairment in PCA rats. Four weeks following PCA, rats were administered ammonium acetate (5.2 mmol/kg, i.p.) to precipitate neurological symptoms of encephalopathy which included diminished locomotor activity, loss of hindlimb extension and righting reflexes and ultimately coma. At various stages during the development of encephalopathy, rats were sacrificed and the amino acids glutamine, glutamate and aspartate measured simultaneously, using a sensitive double-isotope dansyl microassay. Homogenates of the following regions of the CNS were assayed: cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla-pons, spinal cord (gray matter) and spinal cord (white matter). Sustained hyperammonemia associated with PCA alone resulted in a non-uniform 2–4 fold increase of glutamine in all regions of the CNS. Glutamate, on the other hand, was selectively increased in striatum and cerebellum, two regions of brain shown to exhibit early morphologically-characterised astrocytic abnormalities in rats with PCA. Onset of severe neurological dysfunction was accompanied by significantly decreased glutamine and glutamate in striatum and cerebellum. Thus, sustained hyperammonemia in association with portocaval shunting results in region-selective effects with respect to glutamine-glutamate metabolism in the CNS.  相似文献   

17.
In vivo effects of diethylhydroxylamine (DEHA) on lipid peroxidation and lipofuscin formation in the nervous tissues of rat have been investigated. Rats were fed DEHA for 30, 60 and 90 days and lipid peroxidation levels and lipofuscin concentration measured in cerebellum, brain stem and spinal cord. Lipofuscin contents were also assessed histochemically. The results showed that the drug caused a significant reduction in lipid peroxidation level and lipofuscin concentration related to ageing.  相似文献   

18.
为了观察Nestin在新生SD大鼠中枢神经系统中的分布,探讨神经干细胞在新生鼠的分布.采用免疫荧光法,显示含神经干细胞特征性的标志物Nestin的阳性结构在新生SD大鼠中枢神经系统中的分布.结果表明在新生SD大鼠中枢神经系统中,Nestin在前脑、脑干和小脑的各个部位均有表达,阳性结构多为纤细的纤维状突起,分布密集,标记强度多为中等强度,分布相对比较均匀.在脊髓实质的Nestin免疫阳性产物明显减少,分布稀疏,染色也较浅,中央管Nestin免疫染色阳性的室管膜细胞很少,但在脊髓中央管的背侧(延髓见于腹侧和背侧)可见到“喷泉”状免疫强阳性纤维束垂直伸展,直达软膜.由此可得出结论:新生SD大鼠中枢神经系统的广泛脑区均存在大量的神经干细胞,而脊髓的神经干细胞数目较少,提示神经干细胞在生后从神经系统的尾端开始逐渐减少.  相似文献   

19.
Neural components important in control of the cardiovascular system during exercise can be divided into central nervous system (CNS) components and peripheral components. CNS components would include the cerebral cortex, cerebellum, medullary region of the brain stem, and the spinal cord. Peripheral components would include the efferent limbs of the autonomic nervous system and afferent fibers carrying information to the CNS. The neural pathways involved in the control of cardiovascular system during exercise and the relationship between the various neural components have been actively pursued in the last few years. Several new studies suggest that information arising from the active muscles and the cardiovascular system itself may be important in the control of the cardiovascular system during exercise. The cerebellum may play a modulating role in the cardiovascular response. The information from the peripheral afferent fibers, the cerebellum, and the cerebral cortex is integrated in the brain to result in overall neural control. Exercise training probably modifies the central integration of information and modifies the cardiovascular response to exercise and other stresses.  相似文献   

20.
—The activity of the glycine cleavage system (GCS) was determined in homogenates from five specific regions of the rat CNS (telencephalon, midbrain, cerebellum, medulla-pons, and spinal cord). An inverse trend was noted between the glycine content and the specific activity of the GCS in the regions. A 25-fold range in the enzyme activities was found between the telencephalon (highest) and the spinal cord (lowest). The properties of the GCS activity in CNS homogenates agreed with those properties previously described for this system in partially purified preparations of liver and brain mitochondria (Kikuchi , 1973; Bruin et al., 1973). Within the CNS homogenates, the liberation of CO2 from the carboxyl carbon of glycine was quantitatively coupled to the formation of serine. The presence of an endogenous inhibitor(s) within neural tissues was suggested by the non-additivity of the activities when homogenates from the various regions were combined. Moreover, homogenates of CNS tissue inhibited the GCS activity of liver homogenates, and an inverse relationship was found between the level of GCS activity in a given region of the CNS and its ability to inhibit the GCS activity of liver homogenates. This inhibition of liver activity was greatest when liver was incubated with homogenates of spinal cord (86%) and lowest when incubated with homogenates of telencephalon (20%). Because of this endogenous inhibition, the apparent activity of the GCS measured in vitro may not reflect the contribution of this enzyme system in the metabolism of glycine in vivo. Although the significance of this inhibition is not known, a possible role is discussed for the regulation of the levels in glycine and one-carbon pools within the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号