首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Influx of 45Ca2+ into Saccharomyces cerevisiae was measured under experimental conditions which enabled measurements of initial rate of transport across the plasma membrane, without interference by the vacuolar Ca2+ transport system. Addition of glucose or glycerol to the cells, after pre-incubation in glucose-free medium for 5 min, caused a rapid, transient increase in 45Ca2+ influx, reaching a peak at 3-5 min after addition of substrate. Ethanol, or glycerol added with antimycin A, had no effect on 45Ca2+ influx. We have shown previously that this increase is not mediated by an effect of the substrates on intracellular ATP levels. Changes in membrane potential accounted for only a part of the glucose-stimulated 45Ca2+ influx. The roles of intracellular acidification and changes in cellular cAMP in mediating the effects of glucose on 45Ca2+ influx were examined. After a short preincubation in glucose-free medium addition of glucose caused a decrease in the intracellular pH, [pH]i, which reached a minimum value after 3 min. A transient increase in the cellular cAMP level was also observed. Addition of glycerol also caused intracellular acidification, but ethanol or glycerol added with antimycin A had no effect on [pH]i. Artificial intracellular acidification induced by exposure to isobutyric acid or to CCCP caused a transient rise in Ca2+ influx but the extent of the increase was smaller than that caused by glucose, and the time-course was different. We conclude that intracellular acidification may be responsible for part of the glucose stimulation of Ca2+ influx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Leucine, but not isoleucine or valine, inhibited protein degradation and accelerated protein synthesis in hearts perfused with buffer that contained glucose (15 mM) and normal plasma levels of other amino acids, except for the branched chain compounds. Products of leucine, isoleucine, and valine metabolism also inhibited protein degradation and stimulated protein synthesis. These compounds included the transamination and decarboxylation products, as well as acetate, acetoacetate, and propionate. In some, but not all instances, inhibition of degradation and acceleration of synthesis were accompanied by an increase in intracellular leucine. When insulin was added to the perfusate, the rate of degradation was reduced by 40%, but addition of leucine was ineffective in the presence of the hormone. Insulin, leucine (2 mM) and a mixture of branched chain amino acids at normal plasma levels increased latency of cathepsin D in hearts that were perfused with buffer containing glucose. A combination of leucine and insulin increased latency more than either substance alone. These studies indicate that leucine as well as a variety of substrates that are oxidized in the citric acid cycle are involved in regulation of protein turnover in heart muscle.  相似文献   

3.
Prostaglandin generation and its inter-relation to the metabolic effects of insulin and prior exercise were examined in perfused muscle of fed rats. During a 60 min perfusion of the rat hindquarter, a substantial release of the prostaglandins PGF2 alpha, PGE2 and 6-oxoPGF1 alpha was observed. Blood cells present in the perfusate released these substances in negligible amounts indicating the prostaglandins were produced by the hindquarter. Addition of insulin to the perfusate increased both glucose uptake and the generation of PGE2 and 6-oxoPGF1 alpha. At 30 min after intense treadmill exercise, glucose and alpha-aminoisobutyric acid (AIB) uptake by the hindquarter were increased in the absence of added insulin, but prostaglandin release was not increased. Insulin further increased glucose and AIB uptake; however, in contrast with its effects in non-exercised rats, insulin no longer stimulated prostaglandin generation. Indomethacin (10 microM) added to the perfusate inhibited the release of PGF2 alpha and PGE2 by 90% and the release of 6-oxoPGF1 alpha by 54%. It had no effect on the stimulation of glucose uptake by either insulin or prior exercise. The data indicate that insulin increases prostaglandin synthesis by perfused rat muscle, and that prior exercise blocks this effect. They suggest that under the conditions studied prostaglandins do not mediate the effects of insulin or prior exercise on glucose uptake.  相似文献   

4.
The goal of this study was to investigate the effect of 1 mM exogenous lactate on cardiac function, and some metabolic parameters, such as glycolysis, glucose oxidation, lactate oxidation, and fatty acid oxidation, in isolated working rat hearts. Hearts from male Sprague-Dawley rats were isolated and perfused with 5 mM glucose, 1.2 mM palmitate, and 100 μU/ml insulin with or without 1 mM lactate. The rates of glycolysis, glucose, lactate, and fatty acid oxidation were determined by supplementing the buffer with radiolabeled substrates. Cardiac function was similar between lactate+ and lactate− hearts. Glycolysis was not affected by 1 mM lactate. The addition of lactate did not alter glucose oxidation rates. Interestingly, palmitate oxidation rates almost doubled when 1 mM lactate was present in the perfusate. This study suggests that subst rate supply to the heart is crucially important when evaluating the data from metabolic studies.  相似文献   

5.
Transport results from in vitro studies may not be applicable to in vivo situations. In this study, we extended our previous in vitro observations regarding the intestinal transport of 5-methyltetrahydrofolate to in vivo studies in the unanesthetized rat and examined the effect of the unstirred water layer on the absorption process. We used a well defined intestinal perfusion technique. Absorption of 0.5 and 5 microM 5-methyltetrahydrofolate proceeded in a linear manner for 40 min of perfusion at 0.31 and 1.74 nmol/100 cm per min, respectively. Absorption of 0.5 microM 5-methyltetrahydrofolate increased with increasing perfusate flow-rate from 0.5 to 2 to 4 ml/min, indicating an unstirred water layer influence on the absorption rate. Absorption of the substrate was saturable with an apparent Kt of 5.7 microM and Vmax of 3.45 nmol/100 cm per min. Absorption was pH-dependent, and was inhibited by structural analogues. In contrast to the in vitro data, addition of glucose (20 mM) to the perfusate was unnecessary for in vivo absorption to proceed. Unconjugated cholic (5 mM) and deoxycholic (1 mM) acids and the organic anion rose bengal (0.1 mM) inhibited the absorption of 0.5 microM 5-methyltetrahydrofolate when added to the perfusate. Conclusions: the results of previous in vitro studies of 5-methyltetrahydrofolate intestinal transport are applicable to in vivo situations, except that luminal glucose was found to be unnecessary in the latter. The unstirred water layer modulated the absorption of 5-methyltetrahydrofolate, while unconjugated bile acids and rose bengal inhibited it.  相似文献   

6.
The characteristics and kinetics of calcium uptake activity were studied in isolated hepatic microsomes. The sustained accumulation of calcium was ATP- and oxalate-dependent. Glucagon increased microsomal Ca2+ uptake upon either in vivo injection, or in vitro perfusion of the hormone in the liver. In contrast, the effect of insulin depended on the route of administration. Calcium accumulation by subsequently isolated hepatic microsomes increased when insulin was injected intraperitoneally whereas it decreased when the hormone was perfused directly into the liver. These effects of glucagon and insulin were dose dependent. When insulin was added to the perfusate prior to the addition of glucagon, insulin blocked the glucagon-stimulated increase in microsomal Ca2+ uptake. Cyclic AMP mimicked the effect of glucagon on microsomal Ca2+ accumulation when the cyclic nucleotide was perfused into the liver. The effects of glucagon and insulin on the kinetics of hepatic microsomal Ca2+ uptake were investigated. In microsomes isolated from perfused rat livers treated with glucagon the V of the uptake was significantly increased over the control values (12.2 vs. 8.6 nmol Ca2+ per min per mg protein, P less than 0.02). In contrast, the addition of insulin to the perfusate significantly decreased the V of Ca2+ uptake by subsequently isolated microsomes (6.8 vs. 8.3 nmol Ca2+ per min per mg protein, P less than 0.05). However, neither hormone had an effect on the apparent Km for Ca2+ (4.1 +/- 0.5 microM) of the reaction. The effect of these hormones on the activity of Ca2+-stimulated ATPase was also studied. No significant changes in either V or Km for Ca2+ of the enzymatic reaction were detected.  相似文献   

7.
Three calcium (Ca) antagonists and dipyridamole were examined in the isolated perfused guinea pig heart at perfusate Ca concentrations of 1.25 and 3.75 mM. The Ca antagonists: FR 7534, nifedipine and D600 produced similar dose-dependent decreases in left ventricular dp/dt and myocardial oxygen consumption (MV?O2) at both Ca concentrations. However, dose response curves were shifted significantly to the right by increased perfusate Ca requiring six to ten times more Ca antagonist to produce equivalent effects. Dipyridamole produced only slight negative inotropic effects which appeared to be less dependent on external Ca concentration. All four agents significantly increased coronary blood flow at 1.25 mM Ca but not at 3.75 mM Ca. The Ca antagonists decreased heart rate at 3.75 mM Ca whereas dipyridamole had strong negative chronotropic effects at both perfusate Ca concentrations. These experiments provide evidence that FR 7534 acts as a Ca antagonist. In addition, Ca antagonists of different structure had similar effects on the isolated heart distinct from those of dipyridamole.  相似文献   

8.
We investigated the effects of in vivo treatment with the angiotensin-converting enzyme inhibitor (ACE-I) captopril and/or of in vitro administration of L-arginine on the metabolism and ischemia-reperfusion injury of the isolated perfused rat myocardium. Captopril (50 mg/l in drinking water, 4 weeks) raised the myocardial content of glycogen. After 25-min global ischemia, captopril treatment, compared with the controls, resulted in lower rates of lactate dehydrogenase release during reperfusion (8.58 +/- 1.12 vs. 13.39 +/- 1.88 U/heart/30 min, p<0.05), lower myocardial lactate contents (11.34 +/- 0.93 vs. 21.22 +/- 4.28 micromol/g d.w., p<0.05) and higher coronary flow recovery (by 25%), and prevented the decrease of NO release into the perfusate during reperfusion. In control hearts L-arginine added to the perfusate (1 mmol/l) 10 min before ischemia had no effect on the parameters evaluated under our experimental conditions, presumably because of sufficient saturation of the myocardium with L-arginine. In the hearts of captopril-treated rats, L-arginine further increased NO production during reperfusion and the cGMP content before ischemia. Our results have shown that long-term captopril treatment increases the energy potential and has a beneficial effect on tolerance of the isolated heart to ischemia. L-arginine added into the perfusate potentiates the effect of captopril on the NO signaling pathway.  相似文献   

9.
Summary To simplify the isolation of neutrophils, we developed a one-step procedure using elutriation. The perfusate (0.2% gelatin and 0.1% glucose in phosphate buffered saline) was pumped through an elutriator rotor at 4 ml/min (25° C) with the rotor speed at 2370 rpm. Twenty milliliters of anticoagulated porcine venous blood were mixed with 60 ml of perfusate and loaded into the elutriator chamber. The flow rate was increased by 2 ml/min increments and 100-ml fractions of effluent were collected at each increment. Concentrations of neutrophils and mononuclear cells were measured in each fraction, and the percentage of total neutrophils or mononuclear cells was plotted against flow rate. The optimal yield (46%) and purity (95.1%) of neutrophils (n=8) was obtained in pooled fractions at flow rates greater than 20 ml/min. Neutrophils in this preparation were round, the granules were intact, and the nuclei were lobulated. In addition, the cells produced superoxide in the presence of phorbol myristate acetate and phagocytosed zymosan particles. These characteristics were similar to those of porcine neutrophils prepared by a conventional sedimentation method. The yield (43%) and purity (94%) of human neutrophils isolated using the elutriator method was similar to that for porcine cells. This one-step method provides a moderate yield of pure neutrophils that have retained their morphology and function. This work was supported by the Canadian Heart Foundation.  相似文献   

10.
Pantothenic acid transport was studied in the isolated perfused rat heart and isolated sheep cardiac sarcolemmal vesicles. In the perfused heart, pantothenic acid transport was significantly greater if hearts were perfused as working hearts rather than Langendorff hearts, but was unaffected by the perfusion substrates used (11 mM glucose or 1.2 mM palmitate). Uptake rates of pantothenic acid in working hearts are dependent on perfusate concentrations of pantothenic acid (a Vmax of 418 nmol/g dry weight/30 min and a Km for pantothenic acid of 10.7 mircoM were obtained). Reduction in perfusate Na+ concentration from 145 to 105 mM (the Na+ was replaced with 40 mM choline) resulted in a small but significant decrease in pantothenic acid uptake. At 145 mM Na+, addition of a mixture of amino acids, whose uptake is Na+-dependent, resulted in a significant decrease in pantothenic acid uptake by the heart (173 +/- 5 to 132 +/- 12 nmol/g dry weight). If an inward Na+ gradient in isolated, purified sarcolemmal vesicles, was imposed, a rapid uptake of pantothenic acid was observed. Uptake rates are markedly reduced if Na+ was replaced by equimolar concentrations of K+ or if external Na+ was reduced below 40 mM. In the presence of Na+, increasing pantothenic acid concentrations resulted in an increase in pantothenic acid uptake by the vesicles. Combined, these data demonstrate that pantothenic acid is transported across the myocardial sarcolemmal membrane by a Na+-dependent mechanism, which may be common to a number of small molecules.  相似文献   

11.
The isolated working rat heart is a useful experimental model which allows contractile function to be measured in hearts perfused at physiologically relevant workloads. To maintain these high workloads the heart is required to generate a tremendous amount of energy. In vivo this energy is derived primarily from the oxidation of fatty acids. In many experimental situations it is desirable to perfuse the isolated working heart in the presence of physiologically relevant concentrations of fatty acids. This is particularly important when studying energy metabolism in the heart, or in determining how fatty acids alter the outcome of myocardial ischemic injury [1, 2]. The other major source of energy for the heart is derived from the oxidation of carbohydrates (glucose and lactate), with a smaller amount of ATP also being derived from glycolysis. Two byproducts of both fatty acid and carbohydrate metabolism are H2O and CO2. By labeling the glucose, lactate, or fatty acids in the perfusate with 3H or 14C the experimenter can quantitatively collect either 3H2O or 14CO2 produced by the heart. By using radioisotopes that are labeled at specific hydrogen or carbon molecules on the various energy substrates, and by knowing the specific activity of the radiolabeled substrate used, it is possible to determine the actual rate of flux through these individual pathways. This paper will describe the experimental protocols for directly measuring fatty acid and carbohydrate metabolism in isolated working rat hearts.  相似文献   

12.
Glucose-free perfusion preconditions myocardium against the consequences of subsequent ischemia. We investigated whether mitochondrial ATP-sensitive potassium (mK (ATP)) channels are involved in preconditioning by glucose deprivation, and whether moderate glucose deprivation also preconditions myocardium. Isolated rat hearts underwent 30 min of no-flow ischemia followed by 1 h reperfusion. Controls were not further treated. Three groups were preconditioned by perfusion with 0, 40 or 80 mg/dl (0, 2.22, 4.44 mmol/l) glucose (correction of osmotic pressure by addition of urea) for 10 min followed by 10 min perfusion with normal buffer (150 mg/dl, or 8.33 mmol/l glucose) before the ischemia reperfusion protocol. In one group, 100 micromol/l of the mK (ATP) channel blocker 5-HD was added to the glucose-free perfusate. Two groups were treated with 5-HD or urea before ischemia without preconditioning. Left ventricular developed pressure and maximum ischemic contracture (82 +/- 21 mmHg) were similar in all groups. Mean left ventricular developed pressure was 100 +/- 16 mm Hg under baseline conditions, and poorly recovered to 8 +/- 11 mm Hg during reperfusion. Preconditioning with 0 and 40 mg/dl glucose containing buffer reduced infarct size from 41 +/- 10% (control) to 23 +/- 12% (p = 0.02) and 26 +/- 8% (p = 0.011). The 5-HD blocked preconditioning by glucose deprivation (38 +/- 9%, p = 0.04) while 80 mg/dl glucose, 5-HD and urea had no effect on infarct size (39 +/- 9%; 38 +/- 13%; 37 +/- 8%; p = 1.0 each). We conclude that transient severe glucose deprivation and moderate glucose deprivation preconditions the isolated rat heart. Preconditioning by complete glucose deprivation depends on the opening of mK (ATP) channels.  相似文献   

13.
Vasoactive intestinal polypeptide (VIP) is released into the portal circulation by a meal stimulus, but is rapidly cleared from plasma. Although it is known to bind to receptors on liver cells, the role of the liver in the clearance of VIP is not clearly defined. We therefore studied the disappearance of VIP in recirculating and in single pass isolated perfused rat liver (IPRL) preparations. Disappearance of added VIP was rapid in recirculating IPRL experiments with a half life of ca. 30 min. In single-pass steady-state studies in which livers were perfused at 16 ml/min for 30 min, clearance of VIP was complete (16 ml/min) at concentrations of 500 fmol/ml, but clearance fell to 3 and 1 ml/min at perfusate concentrations of 8 and 40 pmol/ml respectively. Further experiments to evaluate whether VIP was disappearing in perfusate itself demonstrated substantial metabolism of VIP in perfusate which had previously been circulated through a liver for 90 min. The products of metabolism were identical to those found in the IPRL. We conclude that VIP is rapidly cleared as it passes through the isolated perfused rat liver model with a significant proportion of clearance attributable to release of a peptidase from the liver into the perfusate.  相似文献   

14.
Adult rat heart cells were isolated by perfusion of the coronary system of the heart with a 0.05% collagenase solution.In one method (A), cells were finally isolated by shaking the heart fragments in a collagenase solution, after which the cells were washed and suspended in a Ca- and Mg-free buffered salt solution. The effect of different DMSO concentrations, 5, 10, 15, 20, 25, and 30% and the effect of the addition and dilution rate of DMSO on the number of trypan blue-excluding, intact, and contracting cells were studied. The highest DMSO concentration which was tolerated by the isolated adult heart cells was 15%. Variation of addition rate and the dilution rate of DMSO had no effect. After freezing at external cooling rates of 1, 5, 10, 30, and 50 °C/min to ?100 °C, and then rapidly to ?196 °C, in the presence of 5, 10, or 15% DMSO, reanimation of these cells was not achieved.In another method (B), heart fragments, after collagenase perfusion of the heart, were first treated with 5, 10, or 15% DMSO, after which the cells were isolated. If these cells were frozen at 1 °C/min with 10% DMSO, 15% of the cells, expressed as a percentage of the control, remained morphologically intact and 38% of the cells were contracting after thawing. Significantly higher survival percentages of 30 and 61%, respectively, were obtained if the heart fragments were left intact during freezing.  相似文献   

15.
《Regulatory peptides》1987,17(5):269-276
The 27-amino acid peptide gastrin releasing peptide (GRP-(1–27)) was infused at 4 dose levels (0.01, 0.1, 1.0, and 10 nM) into the arterial line of the isolated perfused porcine pancreas. Infusions were performed at 3 different perfusate glucose levels (3.5, 5.0, and 8.0 mM) and at two levels of amino acids (5 and 15 mM). GRP-(1–27) stimulated insulin and pancreatic polypeptide secretion and inhibited somatostatin secretion in a dose-dependent manner. Glucagon secretion was unaffected by infusion of GRP under all circumstances. The effect of GRP-(1–27) on insulin secretion was enhanced with increasing perfusate glucose levels, whereas the effects upon somatostatin and pancreatic polypeptide secretion were independent of perfusate glucose levels. The responses to GRP were unaffected by elevation of the concentration of amino acids in the perfusate. The effects of GRP were unaffected by atropine at 10−6 M. The localization of GRP within the porcine pancreas, its release during electrical stimulation of the vagus nerve, and its potent effects upon pancreatic endocrine secretion make it conceiveable that the peptide participates in parasympathetic regulation of pancreatic endocrine secretion.  相似文献   

16.
Influx of Ca2+ into cells of Saccharomyces cerevisiae was measured under non-steady-state conditions, which enable measurements of the initial rate of transport across plasma membranes without interference by the vacuolar Ca2+ transport system. Removal of glucose from the incubation medium led to inactivation of Ca2+ influx within 5 min. Readdition of glucose led to a transient increase in the rate of Ca2+ transport, reaching a peak after 3-5 min. A second increase was observed 60-80 min later. To examine whether the first transient activation of Ca2+ influx by glucose was mediated by membrane hyperpolarization, influx of 45Ca2+ was measured in the presence and absence of metabolic substrates (glucose, glycerol, and glucose plus antimycin A) in cells hyperpolarized to different values of membrane potential (delta psi). Logarithms of the rate of Ca2+ influx were plotted against values of delta psi. Two different slopes were obtained, depending upon whether the metabolic substrate was present or absent. Ca2+ influx in the presence of the metabolic substrates was always higher than expected by their effect on delta psi. Glycerol plus antimycin A did not affect Ca2+ influx. It was concluded that metabolized substrates activate Ca2+ influx not only by effects on delta psi but also by additional mechanism(s). Since no simple correlation between Ca2+ influx and intracellular ATP levels was observed, it was concluded that ATP levels do not affect the initial rates of Ca2+ transport across the plasma membrane of S. cerevisiae.  相似文献   

17.
The short-term effect of L-tri-iodothyronine (T3) on hepatic Ca2+ uptake from perfusate was compared with changes induced by T3 on cellular respiration and glucose output in isolated perfused livers from fasted and fed rats. The same parameters were also studied after the addition of glucagon or vasopressin. T3 (1 microM) induced Ca2+ uptake from the perfusate into the liver within minutes, and the time course was similar to that for stimulation of respiration and gluconeogenesis in livers from fasted rats, and for the stimulation of respiration and glucose output in livers from fed rats. The effects were dose-dependent in the range 1 microM-0.1 nM. Similar changes in the same parameters could be observed with glucagon and vasopressin, but with a completely different time course. Also, the influence of the T3 analogues L-thyroxine (L-T4), 3,5-di-iodo-L-thyronine (L-T2) and 3,3',5-tri-iodo-D-thyronine (D-T3) on hepatic energy metabolism was examined. Whereas D-T3 had practically no effect, L-T4 and L-T2 caused changes in Ca2+ uptake, O2 consumption and gluconeogenesis in livers from fasted rats similar to those with T3. It is concluded that changes in mitochondrial and cytosolic Ca2+ concentrations are involved in the stimulation of respiration and glucose metabolism observed with T3, glucagon and vasopressin.  相似文献   

18.
Experiments were performed on the effects of differences in substrate supply on canine kidneys. Following 2 min of ischemia and flush perfusion for 5 min the kidneys were continuously perfused at 6 °C using albumin perfusate containing free fatty acids and glucose or Haemaccel perfusate without substrates.During 120 hr of perfusion neither potassium nor LDH nor GOT accumulation differed between the two perfusates and up to the 48th hr the tissue contents of adenine nucleotides as well as the energy charge potential were almost identical. The results show that in canine kidneys glucose or FFA supply during hypothermic continuous perfusion does not influence the overall cellular integrity and energetic capacity of the renal cortex at least up to the 48th hr of preservations.  相似文献   

19.
Allopurinol, a competitive inhibitor of xanthine oxidase, was found to have a protective effect on ischemic myocardium. Its mechanism of action is still controversial. We used Langendorff isolated rat heart preparation to test the hypothesis that allopurinol could maintain a level of the adenine nucleotide pool (ATP, ADP, and AMP) that would protect and improve the functional activity of the heart during a period of hypoxia. Hearts were initially perfused for 30 min until steady state was attained. This was followed by 20 min of experimental perfusion divided into 5 min of control perfusion followed by 15 min of hypoxic perfusion with or without allopurinol in the perfusate. Hearts were quick-frozen and enzymatically analyzed for adenine nucleotides and creatine phosphate at the end of the hypoxic period. Left ventricular pressure, heart rate, and coronary flow were measured in all preparations. Allopurinol (0.1 mM) treated hearts had greater levels of ATP (12.3 ± 0.8 vs. 9.3 ± 0.8 µmol/g dry weight; p < 0.01). This improvement occurred in the presence as well as the absence of glucose. Total adenine nucleotides improved from 17 ± 1 to 20.3 ± 2.4 µmol/g dry weight (p < 0.01). This improvement also occurred in the presence as well as in the absence of glucose in the perfusate. It also improved cell energy state significantly in the presence as well as the absence of glucose. There was insignificant change in creatine phosphate. Allopurinol improved left ventricular pressure from 38 ± 7% to 55 ± 9% (p < 0.002) in the presence of glucose and from 8 ± 3% to 27 ± 6.3% (p < 0.001) in the absence of glucose. Coronary flow improved from 110 ± 5% to 120 ± 8% (p < 0.04) in the presence of glucose. These results support the suggestion that allopurinol at 0.1 mM exerts its protective effect on rat heart during hypoxia by enhancing the adenine nucleotide pool.  相似文献   

20.
We determined whether addition of human lipoprotein-TG to the perfusate for the isolated rat kidney would increase net Na+ reabsorption or maintain renal tissue K+ content. Rat kidneys (n = 6) were perfused for 75 min with a perfusate containing 6 g% of substrate-free albumin in Krebs-Ringer bicarbonate and a mixture of human chylomicrons and very low density lipoproteins (human lipoprotein-triacylglycerol (HL-TG]. Control kidneys (n = 6) were perfused in the substrate-limited state, i.e., without any exogenous substrates added to the perfusate. Means (n = 6) for function of control kidneys were GFR = 808 +/- 50 microliter g-1 X min-1; %T-Na+ = 63.3 +/- 1.3%. A significant loss of tissue K+ occurred: tissue K+ remaining after 75 min of perfusion = 79.1 +/- 1.9%. Although kidney tissue contains lipoprotein lipase, HL-TG (n = 6) did not increase %Na+ reabsorption (64.3 +/- 2.6%) or maintain tissue K+ content (80.6 +/- 2.0%). Therefore, the TG might have been hydrolyzed and taken up for biosynthesis, the rat kidney lipoprotein lipase might have been inactive, or the rat kidney might not use lipoprotein-TG for biosynthesis or oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号