首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review, we summarize the role of hyperglycemia during cerebral ischemia. Hyperglycemia occurring during experimental and clinical stroke has been associated with increased cerebral damage. Increased oxidative stress resulting from hyperglycemia is believed to contribute to the exacerbated damage. More specifically, superoxide, nitric oxide and peroxynitrite are believed to play an important role in cerebral damage. This also involves increased recruitment of various blood cells to the ischemic zone that contribute to inflammation. We present data from our group and others that demonstrate that free radical production is increased during hyperglycemic stroke in rodents. Recent data suggest that inflammation is an important component of ischemic damage under both normo- and hyperglycemic conditions. We summarize numerous studies that indicate that a variety of antioxidant (inhibition of free radical production, scavenging of free radicals and increasing free radical degradation) and anti-inflammatory strategies decrease cerebral infarction. Finally, we compare the success of some of these strategies in clinical trials compared to the animal models.  相似文献   

2.
3.
Stroke is a life-threatening disease with major cause of mortality and morbidity worldwide. The neuronal damage following cerebral ischemia is a serious risk to stroke patients. Oxidative stress and apoptotic damage play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The objective of this study was to test the hypothesis that administration of edaravone (Edv) maintains antioxidant status in brain, improves the cholinergic dysfunction and suppresses the progression of apoptosis response in rat. To test this hypothesis, male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) of 2 h followed by reperfusion for 22 h. Edv was administered (10 mg/kg bwt) intraperitoneally 30 min before the onset of ischemia and 1 h after reperfusion. After reperfusion, rats were tested for neurobehavioral activities and were sacrificed for the infarct volume, estimation of oxidative damage markers. Edv treatment significantly reduced ischemic lesion volume, improved neurological deficits, contended oxidative loads, and suppressed apoptotic damage. In conclusion, treatment with Edv ameliorated the neurological and histological outcomes with elevated endogenous anti-oxidants status as well as reduced induction of apoptotic responses in MCA occluded rat. We theorized that Edv is among the pharmacological agents that reduce free radicals and its associated cholinergic dysfunction and apoptotic damage and have been found to limit the extent of brain damage following stroke.  相似文献   

4.
Ischemic stroke is a neurovascular disease treatable by thrombolytic therapy, but the therapy has to be initiated within 3 h of the incident. This therapeutic limitation stems from the secondary injury which results mainly from oxidative stress and inflammation. A potent antioxidant/anti-inflammatory agent, caffeic acid phenethyl ester (CAPE) has potential to mitigate stroke's secondary injury, and thereby widening the therapeutic window. We observed that CAPE protected the brain in a dose-dependent manner (1-10 mg/kg body weight) and showed a wide therapeutic window (about 18 h) in a rat model of transient focal cerebral ischemia and reperfusion. The treatment also increased nitric oxide and glutathione levels, decreased lipid peroxidation and nitrotyrosine levels, and enhanced cerebral blood flow. CAPE down-regulated inflammation by blocking nuclear factor kappa B activity. The affected mediators included adhesion molecules (intercellular adhesion molecule-1 and E-selectin), cytokines (tumor necrosis factor-alpha and interleukin-1beta) and inducible nitric oxide synthase. Anti-inflammatory action of CAPE was further documented through reduction of ED1 (marker of activated macrophage/microglia) expression. The treatment inhibited apoptotic cell death by down-regulating caspase 3 and up-regulating anti-apoptotic protein Bcl-xL. Conclusively, CAPE is a promising drug candidate for ischemic stroke treatment due to its inhibition of oxidative stress and inflammation, and its clinically relevant wide therapeutic window.  相似文献   

5.
Antioxidant ebselen reduces oxidative damage in focal cerebral ischemia   总被引:13,自引:0,他引:13  
The antioxidant and neuroprotective potential of the glutathione peroxidase mimic ebselen has been investigated in experimental stroke. Intravenous ebselen (1 mg/kg/h) or vehicle infusion was started 45 min before permanent middle cerebral artery occlusion in the rat, and continued until the end of the experiment. The topography and extent of oxidative damage to the brain was assessed immunohistochemically using an antibody for DNA damage that identified hydroxylated products of 2'-deoxyguanosine (8-OHdG/8-oxodGuo) and an antibody for lipid peroxidation that identified the 4-hydroxynonenal histidine adduct (4-HNE). Ischemic damage was mapped and evaluated with standard histopathology. In the vehicle-treated rats immunopositive staining for both 8-oxodGuo and 4-HNE extended beyond the boundary of ischemic damage. In ebselen-treated rats, the extent of tissue immunopositive for 8-oxodGuo, and 4-HNE was less than that demonstrating ischemic damage confirming the antioxidant mechanism of action in vivo. In addition, ebselen treatment induced a 28% reduction in cortical ischemic damage (p <.02).  相似文献   

6.
Ischemic post-conditioning (Post-cond) is a phenomenon in which intermittent interruptions of blood flow in the early phase of reperfusion can protect organ from ischemia/reperfusion (I/R) injury. Recent studies demonstrated ischemic Post-cond reduced infarct size in cerebral I/R injury. However, the molecular mechanisms underlying this phenomenon are not completely understood. As inflammation is known to be detrimental to the neurological outcome during the acute phase after stroke, we investigated whether ischemic Post-cond played its protective role in preventing post-ischemic inflammation in the rat middle cerebral artery occlusion model. Rats were treated with ischemic Post-cond after 60 min of occlusion (beginning of reperfusion). The infarct volume and myeloperoxidase activity were assessed at 24 h. The lipid peroxidation levels was evaluated by malondialdehyde assay and the expressions of interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule 1 were studied by RT-PCR or western blotting. Ischemic Post-cond decreased myeloperoxidase activity and expressions of interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule 1. Ischemic Post-cond also reduced infarct volume and lipid peroxidation levels. These findings indicated that ischemic Post-cond may be a promising neuroprotective approach for focal cerebral I/R injury and it is achieved, at least in part, by the inhibition of inflammation.  相似文献   

7.
Dehydroascorbic acid, the oxidized form of ascorbic acid, is rapidly reduced to ascorbate in living organs (ascorbate recycling). We examined the GSH-dependent dehydroascorbate reductase activity in several tissues of the chicken. The activity was highest in the liver, and second highest in the brain. The activity was localized in the cytosol fraction of the liver. We subsequently examined the dehydroascorbate reduction in separated chicken hepatocytes. The cellular ascorbate concentration was elevated in dehydroascorbate-treated cells. It is thought that hepatocytes incorporated external dehydroascorbate and converted it into ascorbate. These findings suggest that the liver plays an important role in ascorbate recycling by the chicken.  相似文献   

8.
Chicoric acid is polyphenol of natural plant and has a variety of bioactivity. Caused by various kinds of stimulating factors, acute liver injury has high fatality rate. The effect of chicoric acid in acute liver injury induced by Lipopolysaccharide (LPS) and d -galactosamine (d -GalN) was investigated in this study. The results showed that CA decreased the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum and reduced the mortality induced by LPS/d -GalN. CA can restrain mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) to alleviate inflammation. Meanwhile, the results indicated CA can active nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway with increasing the level of AMP-activated protein kinase (AMPK). And with the treatment of CA, protein levels of autophagy genes were obvious improved. The results of experiments indicate that CA has protective effect in liver injury, and the activation of AMPK and autophagy may make sense.  相似文献   

9.
Acute neuroprotective effects of cinnamophilin (CINN; (8R, 8'S)-4, 4'-dihydroxy-3, 3'-dimethoxy-7-oxo-8, 8'-neolignan), a novel antioxidant and free radical scavenger, were studied in a mouse model of transient middle cerebral artery (MCA) occlusion. CINN was administered intraperitoneally either 15 min before (pretreatment) or 2 h after the onset of MCA occlusion (postischemic treatment). Relative to vehicle-treated controls, animals pretreated with CINN, at 20-80 mg/kg, had significant reductions in brain infarction by 33-46% and improvements in neurobehavioral outcome. Postischemic administration with CINN (80 mg/kg) also significantly reduced brain infarction by 43% and ameliorated neurobehavioral deficits. Additionally, CINN administration significantly attenuated in situ accumulation of superoxide anions (O2-) in the boundary zones of infarct at 4 h after reperfusion. Consequently, CINN-treated animals exhibited significantly decreased levels of oxidative damage, as assessed by immunopositive reactions for 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 4-hydroxynonenal (4-HNE), and the resultant inflammatory reactions at 24 h post-insult. It is concluded that CINN effectively reduced brain infarction and improved neurobehavioral outcome following a short-term recovery period after severe transient focal cerebral ischemia in mice. The finding of a decreased extent of reactive oxygen species and oxidative damage observed with CINN treatment highlights that its antioxidant and radical scavenging ability is contributory.  相似文献   

10.
To address the role of oxidative DNA damage in focal cerebral ischemia lacking reperfusion, we investigated DNA base and strand damage in a rat model of permanent middle cerebral artery occlusion (MCAO). Contents of 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and apurinic/apyrimidinic abasic sites (AP sites), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains obtained 4-72 h after MCAO. DNA single- and double-strand breaks were detected on coronal brain sections using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), respectively. Levels of 8-OHdG and AP sites were markedly elevated 16-72 h following MCAO in the frontal cortex, representing the peri-infarct region, but levels did not significantly change within the ischemic core regions of the caudateputamen and parietal cortex. PANT- and TUNEL-positive cells began to be detectable 4-8 h following MCAO in the caudate-putamen and parietal cortex and reached maximal levels at 72 h. PANT- and TUNEL-positive cells were also detected 16-72 h after MCAO in the lateral frontal cortex within the infarct border, where many cells also showed colocalization of DNA single-strand breaks and DNA fragmentation. In contrast, levels of PANT-positive cells alone were transiently increased (16 h after MCAO) in the medial frontal cortex, an area distant from the infarct zone. These data suggest that within peri-infarct brain regions, oxidative injury to nuclear DNA in the form of base and strand damage may be a significant and contributory cause of secondary expansion of brain damage following permanent focal ischemia.  相似文献   

11.

Background

Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion.

Methodology/Principal Findings

We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8+ cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model.

Conclusion/Significance

CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.  相似文献   

12.
We previously demonstrated the presence of activated areas in the non-injured contralateral sensorimotor cortex in addition to the ipsilateral sensorimotor cortex of the area surrounding a brain infarction, using a rat model of focal photochemically induced thrombosis (PIT) and functional magnetic resonance imaging. Using this model, we next applied gene expression profiling to screen key molecules upregulated in the activated area. RNA was extracted from the ipsilateral and contralateral sensorimotor cortex to the focal brain infarction and from the sham controlled cortex, and hybridized to gene-expression profiling arrays containing 1,322 neurology-related genes. Results showed that glycine receptors were upregulated in both the ipsilateral and contralateral cortex to the focal ischemic lesion. To prove the preclinical significance of upregulated glycine receptors, kynurenic acid, an endogenous antagonist to glycine receptors on neuronal cells, was administered intrathecally. As a result, the kynurenic acid significantly improved behavioral recovery within 10 days from paralysis induced by the focal PIT (p < 0.0001), as evaluated with beam walking. These results suggest that intrathecal administration of a glycine receptor antagonist may facilitate behavioral recovery during the acute phase after brain infarction.  相似文献   

13.
Nitric oxide has been shown to be involved in the regulation of cerebral blood flow and the consequences of cerebral ischemia. Short-term inhibition of its synthesis induces hypertension and increases the cortical infarct volume in focal ischemia. Our purpose was to investigate the influence of the long-term inhibition of nitric oxide synthase on infarct volume due to middle cerebral artery (MCA) occlusion and on the reactivity of cerebral arteries. Sprague Dawley rats were given N(omega)-nitro-L-arginine methyl ester (L-NAME) for 2 or 6 weeks and compared to untreated normotensive rats and untreated spontaneously hypertensive rats (SHRs). Brain nitric oxide synthase activity was measured by the 14C-L-arginine assay. Arterial blood pressure was measured in each group. Independently, the reactivity of MCA trees was studied in vitro by a perfusion technique. Cortical infarct volume was not significantly modified by either 2-week or 6-week L-NAME treatment, despite induced hypertension, whereas it was significantly higher in SHRs than in normotensive rats. The reactivity of the MCA tree was significantly affected by the treatment with a clearcut time-dependency. Compared to normotensive controls, contractility to noradrenaline and serotonin was reduced, more severely at 6 weeks, and while dilatation to acetylcholine and nitroprusside was moderately reduced at 6 weeks, dilatation to papaverine was then increased. A major difference of treated animals compared to SHRs was the decreased response to 5-hydroxytryptamine. We conclude that infarct expansion may be limited in treated animals by a progressive reduction in cerebral artery response to vasoconstrictory neurotransmitters, concomitant with augmented non-guanylate cyclase dilator responses (cf. papaverine) and some recovery of dilatation to acetylcholine.  相似文献   

14.
15.
目的:观察α-亚麻酸(ALA)对糖尿病大鼠体内炎症介质和氧化应激的影响,探讨ALA在糖尿病防治中的作用。方法:雄性SD大鼠高脂饮食喂养4周后,腹腔注射链脲佐菌素(STZ)30 mg/kg建立2型糖尿病(T2DM)模型。将大鼠随机分为3组(n=10):正常对照组、糖尿病模型组和ALA治疗组(500μg/kg.d)。4周后测定大鼠血清中肿瘤坏死因子(TNF-α)、可溶性P-选择素(sP-selectin)、可溶性细胞间黏附分子(sICAM-1)、一氧化氮(NO)、丙二醛(MDA)的含量以及超氧化物岐化酶(SOD)和过氧化氢酶(CAT)的活性。结果:与正常对照组相比,糖尿病大鼠血清中炎症介质TNF-α、sP-selectin和sICAM-1的含量增加,血清NO含量下降而MDA升高,同时抗氧化酶SOD和CAT的活性降低;ALA治疗可显著降低糖尿病大鼠血清中TNF-α、sP-selectin和sICAM-1的含量(与STZ+vehicle组相比,P<0.01),增加血清NO水平并减少MDA含量,升高抗氧化酶SOD和CAT的活性(与STZ+vehicle组相比,均P<0.05)。结论:ALA可显著降低糖尿病大鼠血清炎症介质的生成,减轻氧化应激水平,具有抗炎和抗氧化作用。提示ALA对糖尿病及糖尿病并发症的发生发展可能具有一定的防治作用。  相似文献   

16.
Tsai SK  Lin MJ  Liao PH  Yang CY  Lin SM  Liu SM  Lin RH  Chih CL  Huang SS 《Life sciences》2006,78(23):2758-2762
The effects of caffeic acid phenethyl ester (CAPE), an antioxidant derived from propolis, on the infarct volume elicited by focal cerebral ischemia were studied on Long-Evans rats. Cerebral infarction was induced by microsurgical procedures with ligation of the right middle cerebral artery (MCA) and clipping of bilateral common carotid arteries (CCA) for 60 min. The rats were sacrificed 24 h later and serial brain slices of 2 mm thickness were taken and stained for the measurement of infarct area. CAPE was administered intravenously 15 min before MCA occlusion. Pretreatment of CAPE (0.1, 1 and 10 microg/kg) significantly reduced the total infarct volume from 169.6 +/- 14.5 mm3 (control) to 61.0 +/- 24.1 mm3 (0.1 microg/kg CAPE), 47.4 +/- 9.1 mm3 (1 microg/kg CAPE), and 42.4 +/- 8.7 mm3 (10 microg/kg CAPE), respectively. Plasma nitric oxide (NO) content was significantly increased in rats subjected to focal cerebral ischemia. It is concluded that CAPE possesses neuroprotective properties in focal cerebral ischemia injury in rats possibly through its antioxidant effect and/or via the upregulation of NO production.  相似文献   

17.
目的建立一种操作简单的急性脑缺血动物模型。方法取雄性Wistar大鼠40只,体重200~230g,手术前禁食12 h,自由饮水,随机分为对照组A、B、C组及模型D组,共4组,每组10只。即A组:假手术组,仅切开颈部两侧皮肤,分离双侧颈总动脉和迷走神经,不切断,然后缝合;B组:仅切断双侧颈部迷走神经;C组:结扎并切断双侧颈总动脉(CCA);D组:联合组,即结扎并切断双侧颈总动脉,同时切断双侧颈部迷走神经。观察各组大鼠手术后的脑缺血症状,记录各组大鼠在8h内的死亡情况,超过8h死亡的动物按8h计,计算死亡率和死亡时间。结果 A组大鼠没有脑缺血症状,无死亡;B组大鼠无脑缺血症状,呼吸变慢变深,心率血压上升,但无死亡;C组大鼠部分出现脑缺血症状,眼睑下垂,活动能力低下,自发运动减少,有些大鼠术后自发运动增加,在8 h内无死亡;D组大鼠大多数出现较为明显的脑缺血症状,在8 h内全部死亡。结论采取同时结扎并切断大鼠双侧颈总动脉和双侧颈部迷走神经的方法,可以建立急性脑缺血大鼠动物模型,此方法具有手术简单,成功率高,术后动物缓慢死亡的特点。  相似文献   

18.
19.
This study examined the hypothesis that low-concentration apomorphine improves postischemic hemodynamic and mitochondrial function in the isolated rat heart model by attenuating oxidation of myocardial proteins. Control and apomorphine-treated hearts were subjected to 35 min of perfusion, 25 min of normothermic global ischemia, and 60 min of reperfusion. Apomorphine (2 microM) was introduced into the perfusate for 20 min starting from the onset of reperfusion. Apomorphine significantly (p <.05) improved postischemic hemodynamic function: work index of the heart (product of LVDP and heart rate) was twice as high in apomorphine-treated hearts compared to controls at the end of reperfusion (p <.01). After isolation of cardiac mitochondria, the respiratory control ratio (RCR) was calculated from the oxygen consumption rate of State 3 and State 4 respiration. Apomorphine significantly improved postischemic RCR (87% of preischemic value vs. 39% in control, p <.05). Using an immunoblot technique, carbonyl content of multiple unidentified myocardial proteins (mitochondrial and nonmitochondrial) was observed to be elevated after global ischemia and reperfusion. Apomorphine significantly attenuated the increased protein oxidation at the end of reperfusion. These results support the conclusion that apomorphine is capable of preventing ischemia/reperfusion-induced oxidative stress and thereby attenuating myocardial protein oxidation and preserving mitochondrial respiration function.  相似文献   

20.
本实验旨在观察去甲二氢愈创木酸(nordihydroguaiaretic acid,NDGA)对大鼠局灶性脑缺血后炎症细胞聚集的作用及其机制。在大鼠大脑中动脉阻塞30min后进行再灌注72h,在再灌注30min,2、24、48h时分别腹腔注射一次NDGA(5、10mg/kg)。再灌注72h后检测脑损伤、内源性IgG渗出、中性粒细胞和巨噬细胞/小胶质细胞聚集、细胞间黏附分子-1(intercellular adhesion molecule-1,ICAM-1)mRNA和蛋白表达,并在再灌注3h后检测脑内5-脂氧酶(5-lipoxygenase,5-LOX)的催化产物白三烯B4(leukotriene B4,LTB4)和半胱氨酰白三烯(cysteinyl leukotrienes,CysLTs)含量。结果显示:NDGA能显著改善脑损伤,减少内源性IgG渗出、中性粒细胞浸润、ICAM-1mRNA和蛋白表达,同时降低脑内LTB4和CysLTs含量,但对巨噬细胞/小胶质细胞聚集没有影响。上述结果提示,NDGA对脑缺血亚急性期炎症反应的抑制主要表现为减少中性粒细胞浸润,机制可能与抑制5-LOX激活有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号